

SS 2021

Type-Checking with Implicit Variables

Program Verification

Part 4 – Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

Overview

- recall: a functional program is well-defined if
 - it is pattern disjoint,
 - it is pattern complete, and
 - $\bullet \ \hookrightarrow \text{ is terminating}$
- well-definedness is prerequisite for standard model, for derived theorems,
- task: given a functional program as input, ensure well-definedness
 - known: type-checking algorithm
 - known: algorithm for checking pattern disjointness
 - missing: algorithm for type-inference
 - missing: algorithm for deciding pattern completeness
 - missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

RT (DCS @ UIBK)

Part 4 – Checking Well-Definedness of Functional Programs

Type-Inference

• structure of functional programs

- data-type definitions
- $\bullet\,$ function definitions: type of new function + defining equations
- not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
 - singleton characters get type Nat
 - words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

append : List \times List \rightarrow List append(Cons(x, y), z) = Cons(x, append(y, z))append(Nil, x) = x

we should be able to infer that $x:\mathsf{Nat},\,y:\mathsf{List}$ and $z:\mathsf{List}$ in the first equation, whereas $x:\mathsf{List}$ in the second equation

Type-Checking with Implicit Variables

2/101

<pre>Interlude: Maybe-Type for Errors • recall type-checking algorithm (variable type_check :: Sig -> Vars -> Te type_check sigma vars (Fun f ts (tys_in,ty_out) <- sigma f tys_ts <- mapM (type_check si if tys_ts == tys_in then retu • Maybe-type is only one possibility to re • let us abstract from concrete Maybe-ty • introduce new type Check to representype Check a = Maybe a • function return :: a -> Check a • failure :: Check a failure = Nothing • convenience function: asserting a pro assert :: Bool -> Check ()</pre>	<pre>rm -> Maybe Type) = do gma vars) ts rn ty_out else Nothing present computational results with failure coe: nt a result or failure to produce successful results perty</pre>	it Variables	 original type type_check type_check type_check (tys_in, tys_ts < if tys_t with new ab type_check type_check type_check type_check type_check tys_ts assert (return t 	•	Type-Checking with Implicit Variables
assert $p = if p$ then return ()			0	readability, change Check-type easily	
RT (DCS @ UIBK) Part 4 – Checking We	I-Definedness of Functional Programs	5/101	RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	6/101

<pre>Type-Checking and Type-Inference • known: type-checking algorithm type_check :: Sig -> Vars -> Term -> Check Type • type Sig = FSym -> Check ([Type], Type) - Σ • type Vars = Var -> Check Type -V • type_check takes Σ and V and delivers type of term • we want a function that works in the other direction: it gets an intended type as input, and delivers a suitable type for the variables infer_type :: Sig -> Type -> Term -> Check [(Var,Type)] • then type-checking an equation without explicit Vars is possible type_check_eqn :: Sig -> (Term, Term) -> Check () type_check_eqn sigma (Var x, r) = failure type_check_eqn sigma (1 @ (Fun f _), r) = do (_,ty) <- sigma f vars <- infer_type sigma ty 1 ty_r <- type_check sigma (\ x -> lookup x vars) r assert (ty == ty_r)</pre>		<pre>Type-Inference Algorithm • note: upcoming algorithm only infers types of variables (in polymorphic setting often also type of function symbols is inferred) infer_type :: Sig -> Type -> Term -> Check [(Var,Type)] infer_type sig ty (Var x) = return [(x,ty)] infer_type sig ty (Fun f ts) = do (tys_in,ty_out) <- sig f assert (length tys_in == length ts) assert (ty_out == ty) vars_l <- mapM (\ (ty, t) -> infer_type sig ty t) (zip tys_in ts) let vars = nub (concat vars_l) nub removes duplicates assert (distinct (map fst vars)) return vars</pre>			
		RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	7/101	RT (DCS @ UIBK)

Soundness of Type-Inference Algorithm

properties

• if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then infer_type $\Sigma \tau t = return (\mathcal{V} \cap \mathcal{V}ars(t))$

if
$$infer_type \Sigma \tau t = return \mathcal{V}$$
 then

- ${\mathcal V}$ is well-defined (no conflicting variable assignments) and
- $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $infer_type \Sigma \tau t \neq failure$ ' is a property which is not strong enough when performing induction

Changing the Error Monad

Part 4 – Checking Well-Definedness of Functional Programs

9/101

Changing the Error Monad

Weakness of Maybe-Type for Errors

- situation: several functions for checking properties of terms, equations, which can be assembled to check functional programs wrt. slides 3/4 (data-type definitions), 3/15 (function definitions) and partly 3/45 (well-definedness)
 - infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
 - type_check :: Sig -> Vars -> Term -> Check Type
 - type_check_eqn :: Sig -> (Term, Term) -> Check ()
- problem: if checks are not successful, we just get result Nothing
- desired: informative error message why a functional program is refused
- possible solution: use more verbose error type than Maybe
 type Check a = Either String a

Changing Implementation of Interface

- current interface for error type
 - type Check a = Maybe a
 - function return :: a -> Check a
 - function assert :: Bool -> Check ()
 - function failure :: Check a
 - do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
 - type Check a = Either String a
 - return, do-blocks and \mathtt{mapM} are unchanged, since these are part of generic monad interface
 - functions assert and failure need to be changed, since they now require error messages
 - failure :: String -> Check a
 failure = Left
 - assert :: Bool -> String -> Check ()
 - assert p err = if p then return () else failure err

Changing the Error Monad

Changing Algorithms for Checking Properties

Changing the Error Monad

14/101

```
Changing Algorithms for Checking Properties, Continued
   • adapting algorithms often only requires additional error messages
                                                                                                • example requiring more changes; with type Check a = Maybe a
   • before change (type Check a = Maybe a)
                                                                                                  type_check_eqn sigma (Var x, r) = failure
      type_check :: Sig -> Vars -> Term -> Check Type
                                                                                                  type_check_eqn sigma (1 @ (Fun f _), r) = do
     type_check sigma vars (Var x) = vars x
                                                                                                     (_,ty) <- sigma f
     type_check sigma vars (Fun f ts) = do
                                                                                                     vars <- infer_type sigma ty 1</pre>
        (tys_in,ty_out) <- sigma f</pre>
                                                                                                     ty_r <- type_check sigma (\ x -> lookup x vars) r
        tys_ts <- mapM (type_check sigma vars) ts</pre>
                                                                                                     assert (ty == ty_r)
        assert (tys_ts == tys_in)
                                                                                                • new version with type Check a = Either String a
        return ty_out
                                                                                                  type_check_eqn sigma (Var x, r) = failure "var as lhs"
   • after change (type Check a = Either String a)
                                                                                                  type_check_eqn sigma (1 @ (Fun f ), r) = do
     type_check :: Sig -> Vars -> Term -> Check Type
     type_check sigma vars (Var x) = ...
                                                                                                     ty_r <- type_check sigma (\ x -> lookup x vars) r
     type_check sigma vars t@(Fun f ts) = do
                                                                                                     assert (ty == ty_r) "types of lhs and rhs don't match"
                                                                                                • problem: lookup produces Maybe, not Either String
        assert (tys_ts == tys_in) (show t ++ " ill-typed")
                                                                                                • solution: use maybeToEither :: e -> Maybe a -> Either e a
        . . .
RT (DCS @ UIBK)
                                                                                   13/101
                                                                                            RT (DCS @ UIBK)
                            Part 4 - Checking Well-Definedness of Functional Programs
                                                                                                                         Part 4 - Checking Well-Definedness of Functional Programs
```

Changing the Error Monad

Fixed Type-Checking Algorithm with Error Messages import Data.Either.Utils -- for maybeToEither -- import requires MissingH lib; if not installed, define it yourself: -- maybeToEither e Nothing = Left e

```
-- maybeToEither _ (Just x) = return x
```

```
type_check_eqn sigma (Var x, r) = failure "var as lhs"
  type_check_eqn sigma (1 @ (Fun f _), r) = do
    (_,ty) <- sigma f
    vars <- infer_type sigma ty 1</pre>
    ty_r <- type_check</pre>
       sigma
       (\ x -> maybeToEither
            (x ++ " is unknown variable")
            (lookup x vars))
       r
    assert (ty == ty_r) "types of lhs and rhs don't match"
RT (DCS @ UIBK)
                             Part 4 - Checking Well-Definedness of Functional Programs
```

Processing Functional Programs

Processing Functional Programs

	Processin	g Functional Programs			Processing Functional Programs
			Recall: Data Type D	efinitions	
			• given: set of types 7	Ty, signature $\Sigma = \mathcal{C} \uplus \mathcal{D}$	
Due en estar Ermet	iousl Dus many		-	ition has the following form	
Processing Funct				0	
 aim: write prog 	ram which takes		data	$\tau = c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau$	
	program as input (data type definitions $+$ function definitions) syntactic requirements				where
	elevant information in some internal representation checks well-definedness			$ c_n:\tau_{n,1}\times\ldots\times\tau_{n,m_n}\to\tau$	
			• $\tau \notin \mathcal{T}y$	and $c_i eq c_j$ for $i eq j$	fresh type name
	is essential part of a compiler		• $c_1, \ldots, c_n \notin \Delta$	and $c_i \neq c_j$ for $i \neq j$	fresh and distinct constructor names
 program should be easy to verify 			• each $\tau_{i,j} \in \{\tau\} \cup$) $\mathcal{T} y$ at $ au_{i,j} \in \mathcal{T} y$ for all j	only known types non-recursive constructor
					non-recursive constructor
			 effect: add new type True True (-) 	and new constructors	
			• $\mathcal{T}y := \mathcal{T}y \cup \{\tau\}$ • $\mathcal{C} := \mathcal{C} \cup \{c_1 : \tau_1\}$	$_{,1} \times \ldots \times \tau_{1,m_1} \to \tau, \ldots, c_n : \tau_{n,1} >$	$\langle \cdot \rangle \times \tau \longrightarrow \tau$
			$\mathbf{c} = \mathbf{c} \circ [\mathbf{c}_1 \cdot \mathbf{r}_1]$	$(1, \dots, n)$	$\cdots \wedge n, m_n \wedge j$
RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	17/101	RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functi	onal Programs 18/101
Existing Encoding	g of Part 2: Signatures and Terms	g Functional Programs	Encoding Functional	Programs in Haskell	Processing Functional Programs
type Check a = .	Maybe a or Either String a		-	data-type definitions and	
• •	v o			= Data Type [(FSym, FSym_	[Info]]
type Type = Strip	ng		data Function_Defini		
type Var = Stri	ng		type Functional_Prog		
type FSym = Strip	ng		([Data_Definition]	, [Function_Definition])	
type Vars = Var	-> Check Type		internal represen	tation	
<pre>type FSym_Info =</pre>	([Type], Type)		*	ym, FSym_Info)] signatu	ures as list
type Sig = FSym	-> Check FSym_Info			list of	
			type Cons = Sig_List		
data Term = Var	Var Fun FSym [Term]			erm, Term)] all fur	
Now Auxiliary E.	nction for Error Monad			askell-type; it also store	-
New Auxiliary Fu			data Prog_Info = Pro	g_Info [Type] Cons Defs Ec	quations
	ck a => Bool True if argument is not an error				
	g = False or is_result (Left _) = False		checking single d		
is_result _ = Tr	ue is_result _ = True		process_data_definit	ion ::	

RT (DCS @ UIBK)

19/101

RT (DCS @ UIBK)

Checking a Single Data Definitions	Processing Functional Programs Checking Several Data	Processing Functional Programs Definitions
<pre>process_data_definition (Prog_Info tys cons defs eqs) (Data ty new_cs) = do assert (not (elem ty tys)) let new_tys = ty : tys let sigma = sig_list_to_sig (cons ++ defs) assert (distinct (map fst new_cs))</pre>	version of foldl	
<pre>assert (all (\ (c,_) -> not (is_result (sigma c))) new_cs) assert (all (\ (_,(tys_in,ty_out)) -> ty_out == ty &&</pre>	0	n :: finition -> Check Prog_Info n = previous slide
<pre>all (\ ty -> elem ty new_tys) tys_in) new_cs) assert (any (\ (_,(tys_in,_)) -> all (/= ty) tys_in) new_cs) return (Prog_Info new_tys (new_cs ++ cons) defs eqs)</pre>	0	ns :: efinition] -> Check Prog_Info ns = foldM process_data_definition
Part 4 – Checking Well-Definedness of Functional Programs	21/101 RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs 22/101

	Processing Functional Programs	Processing Functional Programs
Checking Function Definitions wrt. Slide 3/15		
<pre>data Function_Definition = Function FSym name of function FSym_Info type of function [(Term,Term)] equations</pre>	Checking Functional Programs initial_prog_info = Prog_Info [] []] [] []
<pre>process_function_definition :: Prog_Info -> Function_Definition -> Check Prog_Info process_function_definition = exercise</pre>	<pre>process_program :: Functional_Prog process_program (data_defs, fun_des pi <- process_data_definitions is process_function_definitions pi =</pre>	fs) = do nitial_prog_info data_defs
<pre>process_function_definitions :: Prog_Info -> [Function_Definition] -> Check Prog_Info process_function_definitions = foldM process_function_definition</pre>		

Current State

- process_program :: Functional_Prog -> Check Prog_Info is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs wrt. slides 3/4 and 3/15
- its functional style using error monads permits to easily verify its correctness
 - no induction required
 - based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...
- missing: checks for well-defined functional programs wrt. slide 3/45

Checking Pattern Disjointness

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

25/101

Checking Pattern Disjointness

Deciding Pattern Disjointness

- program is pattern disjoint if for all $f: \tau_1 \times \cdots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_1 \in \mathcal{T}(\mathcal{C})_{\tau_1}, \ldots, t_n \in \mathcal{T}(\mathcal{C})_{\tau_n}$ there is at most one equation $\ell = r$ in the program, such that ℓ matches $f(t_1, \ldots, t_n)$
- in proseminar it was proven that pattern disjointness is equivalent to the following condition: for each pair of distinct equations $\ell_1 = r_1$ and $\ell_2 = r_2$, ℓ_1 and a variable renamed variant of ℓ_2 do not unify
- key missing part for checking pattern disjointness is an algorithm for unification:

given two terms s and t, decide
$$\exists \sigma. s\sigma = t\sigma$$

Checking Pattern Disjointness

Unification Algorithm of Martelli and Montanari

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- question: is U solvable, i.e., does there exist a solution σ , a substitution satisfying $\forall i \in \{1, ..., n\}$. $s_i \sigma = t_i \sigma$
- two different kinds of output:
 - unification problem in solved form:

$$\{x_1 \stackrel{?}{=} v_1, \ldots, x_m \stackrel{?}{=} v_m\}$$
 with distinct x_j 's

solved forms can be interpreted as substitution

$$\sigma(x) = \begin{cases} v_i, & \text{if } x = x_i \\ x, & \text{otherwise} \end{cases}$$

and this σ will be solution of U

- \perp , indicating that U is not solvable
- $\bullet\,$ algorithm itself is build via one-step relation \rightsquigarrow which is applied as long as possible

RT (DCS @ UIBK)

Unification Algorithm of Martelli and Montanari, continued

Checking Pattern Disjointness

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- output: solution of U via solved form or \bot , indicating unsolvability
- algorithm applies \rightsquigarrow as long as possible; \rightsquigarrow is defined as

$$U \cup \{t \stackrel{?}{=} t\} \rightsquigarrow U \tag{delete}$$

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} f(v_1, \dots, v_k)\} \rightsquigarrow U \cup \{u_1 \stackrel{?}{=} v_1, \dots, v_k \stackrel{?}{=} v_k\} \qquad (\text{decompose}$$

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} g(v_1, \dots, v_\ell)\} \rightsquigarrow \bot, \text{ if } f \neq g \lor k \neq \ell$$
 (clash)

$$U \cup \{f(\dots) \stackrel{?}{=} x\} \rightsquigarrow U \cup \{x \stackrel{?}{=} f(\dots)\}$$
(swap)

$$U \cup \{x \stackrel{?}{=} f(\dots)\} \rightsquigarrow \bot, \text{ if } x \in \mathcal{V}ars(f(\dots))$$
 (occurs check)

$$U \cup \{x \stackrel{?}{=} t\} \rightsquigarrow U\{x/t\} \cup \{x \stackrel{?}{=} t\},$$

if $x \notin Vars(t)$ and x occurs in U (eliminate)

notation $U\{x/t\}$: apply substitution $\{x/t\}$ on all terms in U (lhs + rhs)

```
RT (DCS @ UIBK)
```

```
Part 4 – Checking Well-Definedness of Functional Programs
```

```
Correctness of Unification Algorithm
```

- we only state properties (proofs: see term rewriting lecture)
 - \rightsquigarrow terminates
 - normal form of \rightsquigarrow is \perp or a solved form
 - whenever $U \rightsquigarrow V$, then U and V have same solutions
 - in total: to solve unification problem U
 - determine some normal form V of U
 - if $V = \bot$ then U is unsolvable
 - $\ \bullet \$ otherwise, V represents a substitution that is a solution to U
- note that \rightsquigarrow is not confluent

• {
$$x \stackrel{?}{=} y, y \stackrel{?}{=} x$$
} $\stackrel{x \not y}{\rightsquigarrow}$ { $x \stackrel{?}{=} y, y \stackrel{?}{=} y$ } \rightsquigarrow { $x \stackrel{?}{=} y$ }
• { $x \stackrel{?}{=} y, y \stackrel{?}{=} x$ } $\stackrel{y \not x}{\rightsquigarrow}$ { $x \stackrel{?}{=} x, y \stackrel{?}{=} x$ } \rightsquigarrow { $y \stackrel{?}{=} x$]

RT (DCS @ UIBK)

29/101

Checking Pattern Disjointness

Part 4 – Checking Well-Definedness of Functional Programs

```
30/101
```

Checking Pattern Disjointness

```
A Concrete Implementing of the Unification Algorithm
Correctness of an Implementation of a (Unification) Algorithm
                                                                                                             subst :: Var -> Term -> Term -> Term
  • any concrete implementation will make choices
                                                                                                             subst x t = apply_subst ( y \rightarrow if y == x then t else Var y)
       • preference of rules
       • selection of pairs from U
                                                                                                             unify :: [(Term, Term)] -> Maybe [(Var, Term)]
       • representation of sets \boldsymbol{U}
                                                                                                             unify u = unify_main u []
       • (pivot-selection in quicksort)
       • (order of edges in graph-/tree-traversals)
                                                                                                             unify_main :: [(Term, Term)] -> [(Var,Term)] -> Maybe [(Var, Term)]
       •
                                                                                                             unify_main [] v = Just v
                                                                                                                                                                       -- return solved form
                                                                                                             unify_main ((Fun f ts, Fun g ss) : u) v =
  • task: how to ensure that implementation is sound
                                                                                                               if f == g && length ts == length ss
  • solution: refinement proof
                                                                                                               then unify_main (zip ts ss ++ u) v
                                                                                                                                                                       -- decompose

    aim: reuse correctness of abstract algorithm (→)

                                                                                                               else Nothing
                                                                                                                                                                       -- clash
                                                                                                             unify_main ((Fun f ts, x) : u) v =
       • define relation between representations in concrete and abstract algorithm (this was called
                                                                                                               unify_main ((x, Fun f ts) : u) v
                                                                                                                                                                       -- swap
         alignment before and done informally)
                                                                                                              unify_main ((Var x, t) : u) v =

    show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic)

                                                                                                               if Var x == t then unify_main u v
                                                                                                                                                                       -- delete
         algorithm can be related to some result of (non-deterministic) abstract algorithm
                                                                                                               else if x `elem` vars term t then Nothing
                                                                                                                                                                       -- occurs check
       • benefit: clear separation between
                                                                                                               else unify_main
                                                                                                                                                                       -- eliminate

    soundness of abstract algorithm

                                                                         (solves unification problems)
                                                                                                                  (map ( \setminus (1,r) \rightarrow (subst x t 1, subst x t r)) u)

    soundness of implementation

                                                                     (implements abstract algorithm)
                                                                                                                  ((x,t) : map ( \setminus (y, s) \rightarrow (y, subst x t s)) v)
```

Checking Pattern Disjointness

Notes on Implementation

- non-trivial to prove soundness of implementation, since there are several differences wrt.
 - $unify_main$ takes two parameters u and v
 - these represent one unification problem $u \cup v$
 - rule-application is not tried on v, only on u
 - we need to know that v is in normal form wrt. \leadsto
 - in (occurs check)-rule, the algorithm has no test that rhs is function application
 we need to show that this will follow from other conditions
 - in (elimination)-rule, the algorithms substitutes only in rhss of \boldsymbol{v}
 - $\hfill \bullet$ we need to know that substituting in lhss of v has no effect
 - in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
 - we need to check that consequences don't harm

- relation \sim formally aligns parameters of concrete algorithm (u and v) with parameters of abstract algorithm (U); \sim also includes invariants of implementation
 - set converts list to set, we identify $s \stackrel{?}{=} t$ with (s, t)
 - $(u,v) \sim U$ iff
 - $U = set \ u \cup set \ v$,
 - set v is in normal form wrt. \rightsquigarrow (notation: set $v \in NF(\rightsquigarrow)$), and
 - for all $(x,t) \in set \ v$: x does not occur in u
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal

```
• set (x : xs) = \{x\} \cup set xs

• set (xs ++ ys) = set xs \cup set ys

• set (zip [x_1, \dots, x_n] [y_1, \dots, y_n]) = \{(x_1, y_1), \dots, (x_n, y_n)\}

• set (map \ f [x_1, \dots, x_n]) = \{f \ x_1, \dots, f \ x_n\}

• subst x \ t \ s = s\{x/t\}

• ...
```

these properties can be proven formally and also be applied formally (although we don't do it in the upcoming proof)

```
RT (DCS @ UIBK)Part 4 - Checking Well-Definedness of Functional Programs33/101RT (DCS @ UIBK)Part 4 - Checking Well-Definedness of Functional Programs34/101
```

Checking Pattern Disjointness

```
Soundness via Refinement: Main Statement
```

- define set_maybe Nothing $= \bot$, set_maybe (Just w) = set w
- property: whenever $(u, v) \sim U$ and $unify_main \ u \ v = res$ then $U \sim ! set_maybe \ res$
- once property is established, we can prove that implementation solves unification problems
 - assume input u, i.e., invocation of $unify \ u$ which yields result res
 - hence, $unify_main \ u \ [] = res$
 - moreover, $(u,[])\sim set \; u$ by definition of \sim
 - via property conclude set $u \rightsquigarrow$! set_maybe res
 - at this point apply correctness of →: set_maybe res is the correct answer to the unification problem set u

Proving the Refinement Property

- property P(u, v, U): $(u, v) \sim U \land unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\rightsquigarrow) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$
- we prove the property P(u, v, U) by induction on u and v wrt. the algorithm for arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls;

induction wrt. algorithm gives partial correctness result (assumes termination)

- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and v):
 - we have to prove P([], v, U), so assume
 - (*) $([],v) \sim U$ and
 - (**) $unify_main [] v = res$
 - from (*) conclude $U = set \ v$ and $set \ v \in NF(\rightsquigarrow)$
 - from (**) conclude res = Just v and hence, $set_maybe res = set v$
 - we have to show $U \rightsquigarrow^! set_maybe res$, i.e., $set v \rightsquigarrow^! set v$ which is satisfied since $set v \in NF(\rightsquigarrow)$

Checking Pattern Disjointness

- P(u, v, U): $(u, v) \sim U \wedge unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 2 (arguments (f(ts), g(ss)) : u and v)

- we have to prove P((f(ts),g(ss)):u,v,U), so assume
 - $(*) \ \left(\left(f(ts), g(ss) \right) : u, v \right) \sim U$ and
- (**) unify_main ((f(ts), g(ss)) : u) v = res
- consider sub-cases
 - $\neg(f = g \land length \ ts = length \ ss)$:
 - from (**) conclude $set_maybe \ res = \bot$
 - from (*) conclude $f(ts) \stackrel{?}{=} g(ss) \in U$ and hence $U \rightsquigarrow \bot$ by (clash)
 - consequently, $U \rightsquigarrow^! set_maybe res$
 - $f = g \land length \ ts = length \ ss$:
 - from (**) conclude $res = unify_main ((f(ts), g(ss)) : u) v = unify_main (zip ts ss ++ u) v$
 - from (*) and alignment for zip and ++ conclude U = {f(ts) = g(ss)} ∪ set u ∪ set v and hence U → set (zip ts ss ++ u) ∪ set v =: V by (decompose)
 - we get $P(zip \ ts \ ss \ ++ \ u, v, V)$ as IH; $(zip \ ts \ ss \ ++ \ u, v) \sim V$ follows from (*), so $U \rightsquigarrow V \rightsquigarrow^! set_maybe \ res$

RT (DCS @ UIBK)

```
Part 4 – Checking Well-Definedness of Functional Programs
```

- P(u, v, U): $(u, v) \sim U \wedge unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $\bullet \ (u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\rightsquigarrow) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 4 (arguments (x, t) : u and v)

- we have to prove P((x,t):u,v,U), so assume
 - (*) $((x,t):u,v) \sim U$ and
- (**) unify_main ((x,t):u) v = res
- consider sub-cases (where the red part is not triggered by structure of algorithm)
 - $x \neq t \land x \notin \mathcal{V}ars(t) \land x$ occurs in set $u \cup set v$:
 - define $u' = map \ (\lambda(l, r). \ (subst \ x \ t \ l, subst \ x \ t \ r)) \ u$
 - define $v' = map \ (\lambda(y, s). \ (y, subst \ x \ t \ s)) \ v$
 - define $V = (set \ u \cup set \ v)\{x/t\} \cup \{x \stackrel{?}{=} t\}$
 - from (**) conclude $res = unify_main ((x,t):u) v = unify_main u' ((x,t):v')$
 - from IH conclude P(u', (x,t):v', V) and hence, $(u', (x,t):v') \sim V \longrightarrow V \longrightarrow set_maybe\ restrict{restructure}{restructure}$
 - for proving $U \rightsquigarrow^! set_maybe\ res$ it hence suffices to show $(u',(x,t):v') \sim V$ and $U \rightsquigarrow V$
 - $U \stackrel{(*)}{=} \{x \stackrel{?}{=} t\} \cup set \ u \cup set \ v \rightsquigarrow (set \ u \cup set \ v)\{x/t\} \cup \{x/t\} = V$ by (eliminate) because of preconditions
- RT (DCS @ UIBK) Part 4 Checking Well-Definedness of Functional Programs

38/101

Checking Pattern Disjointness

Checking Pattern Disjointness

37/101

- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \land set \ v \in NF(\rightsquigarrow) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$
- case 4 (arguments (x, t) : u and v)
 - we have to prove P((x,t):u,v,U), so assume (*) $((x,t):u,v) \sim U$ and ... and consider sub-case $x \neq t \land x \notin Vars(t) \land x$ occurs in set $u \cup set v$:
 - define $u' = map \ (\lambda(l, r). \ (subst \ x \ t \ l, subst \ x \ t \ r)) \ u$
 - define $v' = map (\lambda(y, s). (y, subst x t s)) v$
 - define $V = (set \ u \cup set \ v) \{x/t\} \cup \{x \stackrel{?}{=} t\}$
 - we still need to show $(u', (x, t) : v') \sim V$
 - since (*) holds, we know $\forall (y,s) \in set \ v. \ x \neq y$
 - hence, $v' = map \ (\lambda(y, s). \ (subst \ x \ t \ y, subst \ x \ t \ s)) \ v$
 - so, $V = (set \ u)\{x/t\} \cup \{x \stackrel{?}{=} t\} \cup (set \ v)\{x/t\} = set \ u' \cup set \ ((x,t):v')$
 - we show $\forall (y,s) \in set \ ((x,t):v'). \ y \notin \mathcal{V}ars(u') \text{ as follows:} x \notin \mathcal{V}ars(u') \text{ since } x \notin \mathcal{V}ars(t); \text{ and if } (y,s) \in set \ v', \text{ then } (y,s') \in set \ v \text{ for some } s' \text{ and } by (*) we \text{ conclude } y \notin \mathcal{V}ars((x,t):u); \text{ thus, } y \notin \mathcal{V}ars((set \ u)\{x/t\}) = \mathcal{V}ars(u')$
 - we finally show set ((x,t): v') ∈ NF(→): so, assume to the contrary that some step is applicable; by the shape of set ((x,t): v') we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available facts

Proving the Refinement Property

- case 4 (arguments (x, t) : u and v)
 - other sub-cases: exercise
- case 3 (arguments (f(ss), x) : u and v): exercise
- summary
 - $\bullet\,$ non-trivial implementation of abstract unification algorithm \rightsquigarrow
 - optimizations required additional invariants, encoded in refinement relation
 - proof of correctness can be done formally
 - induction + case analysis proof uses mostly the structure of the Haskell code; exception: case analysis on "x occurs in set u
 v set v"
 - most cases can easily be solved, after having identified suitable invariants
 - fully reuse correctness of \rightsquigarrow
 - we only proved partial correctness
 - termination of implementation: consider lexicographic measure

$$(\underbrace{|\mathcal{V}ars(set\ u)|}_{(eliminate)}, \underbrace{|u|}_{(decomp),(delete)}, \underbrace{length\ [x\mid (t,\ Var\ x)\leftarrow u]}_{(swap)})$$

Checking Pattern Completeness

- reminder: program is pattern complete, if for all $f: \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C})_{\tau_i}$ there is some lhs that matches $f(t_1, \ldots, t_n)$
- idea of abstract algorithm
 - a pattern problem is a set P of pairs (t, L) where
 - *t* is a term, representing the set of all its constructor ground instances
 - L is a set of left-hand sides that potentially match instances of t
 - initially, $P = \{(f(x_1, \dots, x_n), \text{set of all lhss of } f \text{-equations}) \mid f \in \mathcal{D}\}$
 - whenever some left-hand side $\ell \in L$ cannot match any instance of t anymore, it can be removed
 - whenever L becomes empty, then no instance of t can be matched
 - whenever all constructor ground instances of t are matched by L, then (t, L) can be removed from P
 - when P becomes empty, pattern completeness should be guaranteed
 - if none of the above is applicable, we instantiate t
- initial task: think about exact statement, what kind of property of pattern problem we are investigating (similar to definition of solution of unification problem)

```
RT (DCS @ UIBK)
```

Part 4 - Checking Well-Definedness of Functional Programs

42/101

Checking Pattern Completeness

Semantics of Pattern Problems

- in the following algorithm and proofs, we always consider type-correct terms and substitutions wrt. $\Sigma = \mathcal{C} \cup \mathcal{D}$, but do not mention this explicitly
- a pattern problem is a set P of pairs (t, L) consisting of a term t and a set of terms L

Checking Pattern Completeness

- P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- obviously, $P = \emptyset$ is complete
- we define \perp as additional pattern problem, which is not complete
- define $L_{init f}$ as the set of all lhss of f-equations of the program
- define $P_{init} = \{(f(x_1, \ldots, x_n), L_{init, f}) \mid f \in \mathcal{D}\}$
- consequence: program is pattern complete iff P_{init} is complete

Deciding Completeness of Pattern Problems

- we develop abstract algorithm that is similar to abstract unification algorithm, it is defined via a one step relation \rightarrow that transforms pattern problems into equivalent simpler problems
- it uses the matching algorithm of slides 3/23-29 (with detailed error results) as auxiliary algorithm
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$, if ℓ matches t (match)
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if match ℓ t clashes (clash)
- $P \cup \{(t, \emptyset)\} \rightarrow \bot$ (fail)
- $P \cup \{(t,L)\} \rightarrow P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\},$ if (split)
 - $\ell \in L$ and match ℓ t results in fun-var-conflict with variable x
 - the type of x is τ
 - τ has *n* constructors c_1, \ldots, c_n
 - $\sigma_i = \{x/c_i(x_1, \ldots, x_k)\}$ where k is the arity of c_i and the x_i 's are distinct fresh variables

Checking Pattern Completeness

Example

Checking Pattern Completeness

Example

consider

data Bool = True : Bool | False : Bool

$$\ell_1 := \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots$$

 $\ell_2 := \operatorname{conj}(\operatorname{False}, y) = \dots$
 $\ell_3 := \operatorname{conj}(x, \operatorname{False}) = \dots$

then we have

$$\begin{split} P_{init} &= \{(\operatorname{conj}(x_1, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_2, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{False}, x_2), \{\ell_2, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, x_2), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{True}), \{\ell_1, \ell_3\}), (\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{(\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \{\operatorname{conj}(\operatorname{True}, \operatorname{False}), \{\ell_1, \ell_3\})\} \\ & \rightarrow \mathcal{O} \\ & \text{Part 4 - Checking Well-Definedness of Functional Programs} \end{split}$$

consider

data Bool = True : Bool | False : Boo
:= conj(True, True) = . . .
$$\ell_2 := \text{conj}(\text{False}, y) = . . .$$

then we have

		$P_{init} = \{(conj(x_1, x_2), \{\ell_1, \ell_2\})\}$
		$ \rightarrow \{(conj(True, x_2), \{\ell_1, \ell_2\}), (conj(False, x_2), \{\ell_1, \ell_2\})\} $
		$ \rightarrow \{(conj(True, x_2), \{\ell_1\}), (conj(False, x_2), \{\ell_1, \ell_2\})\} $
		$\rightharpoonup \{(conj(True, x_2), \{\ell_1\})\}$
		$ \rightarrow \{(conj(True,True),\{\ell_1\}),(conj(True,False),\{\ell_1\})\} $
		$\rightarrow \{(conj(True,False),\{\ell_1\})\}$
		$\rightarrow \{(conj(True,False),\varnothing)\}$
		$\rightarrow \bot$
45/101	RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs

 ℓ_1

Partial Correctness of \rightarrow

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- theorem: whenever $P \rightharpoonup Q$, then P is complete iff Q is complete
- corollary: if P →* Ø then P is complete, and if P →* ⊥ then P is not complete
- proof of theorem
 - (match): $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P$, if ℓ matches t
 - we only have to show that $\{(t,\{\ell\}\cup L)\}$ is complete, i.e., for all constructor ground substitutions σ there must be some $\ell'\in\{\ell\}\cup L$ that matches $t\sigma$
 - since ℓ matches t, we know that $t=\ell\gamma$ for some substitution γ
 - consequently $t\sigma = (\ell\gamma)\sigma = \ell(\gamma\sigma)$, i.e., ℓ matches $t\sigma$ and obviously $\ell \in \{\ell\} \cup L$
 - (fail): $P \cup \{(t, \emptyset)\} \rightharpoonup \bot$
 - both matching problems are not complete: \bot by definition, and for (t, \varnothing) there obviously isn't any $\ell \in \varnothing$ which matches $t\sigma$

Partial Correctness of →, continued

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued
 - (clash): $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if match ℓ t clashes
 - if suffices to show that ℓ cannot match any instance of t, i.e., $match \ \ell \ (t\sigma)$ will always fail
 - to this end we require an auxiliary property of the matching algorithm
 - for a matching problem M, define $M\sigma=\{(\ell,r\sigma)\mid (\ell,r)\in M\},$ i.e., where σ is applied on rhss, and $\bot\sigma=\bot$
 - lemma: whenever M is transformed into M' by rule (decompose) or (clash), then $M\sigma$ is transformed into $M'\sigma$ by the same rule
 - hence, since $match~\ell~t$ clashes, we conclude that $match~\ell~(t\sigma)$ clashes

46/101

Checking Pattern Completeness

Partial Correctness of \rightarrow , final part

Checking Pattern Completeness

Checking Pattern Completeness

(fail)

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued Correctness of \rightarrow , Missing Parts • (split): $P \cup \{(t, L)\} \rightarrow P \cup \{(t\sigma_1, L), \dots, (t\sigma_n, L)\}$, where $x : \tau$, τ has constructors c_1, \ldots, c_n and $\sigma_i = \{x/c_i(x_1, \ldots, x_k)\}$ for fresh x_i already proven • we only consider one direction of the proof: we assume that the rhs of \rightarrow is complete and • if $P \rightarrow^* \emptyset$ then P is complete prove that the lhs is complete • if $P \rightharpoonup^* \bot$ then P is not complete • to this end, consider an arbitrary constructor ground substitution σ and we have to show that • open: termination of \rightarrow $t\sigma$ is matched by some element of L • since σ is constructor ground, we know $\sigma(x) = c_i(t_1, \ldots, t_k)$ for some constructor c_i and open: can → get stuck? constructor ground terms t_1, \ldots, t_k • define $\gamma(y) = \begin{cases} t_j, \\ \ddots \end{cases}$ if $y = x_i$ $\sigma(y)$, otherwise • γ is well-defined since the x_i 's are distinct • γ is a constructor ground substitution • $t\sigma = t\sigma_i\gamma$ since the x_i 's are fresh • since $(t\sigma_i, L)$ is an element of the rhs of \rightarrow and the assumed completeness, we conclude that there is some element of L that matches $(t\sigma_i)\gamma$ and consequently, also $t\sigma$ RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Programs RT (DCS @ UIBK) 49/101 Part 4 - Checking Well-Definedness of Functional Programs

ightarrow Cannot Get Stuck

- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$, if ℓ matches t (match)
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}, \text{ if } match \ \ell \ t \text{ results in clash}$ (clash)
- $P \cup \{(t, \emptyset)\} \rightarrow \bot$
- $P \cup \{(t,L)\} \rightarrow P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, if (split) • $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x and \ldots
 - $\ell \in L$ and *match* ℓ *t* results in fun-var-conflict with variable *x* and ...
- lemma: whenever P is in normal form wrt. \rightharpoonup and for all $(t, L) \in P$ and all $\ell \in L$, the lhs ℓ is linear, then $P \in \{\emptyset, \bot\}$
- proof by contradiction
 - assume P is such a normal form, $P \notin \{\emptyset, \bot\}$
 - hence, $(t,L) \in P$ for some t and L
 - since (fail) is not applicable, $L\neq \varnothing,$ i.e., $\ell\in L$ for some ℓ
 - as (match) is not applicable, $match \ \ell \ t$ must fail
 - ${\ }^{\bullet}$ as (clash) and (split) are not applicable the failure can only be a var-clash
 - however, a var-clash cannot occur since ℓ is linear

Termination of \rightharpoonup

- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P$, if ℓ matches t (match)
- $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}, \text{ if } match \ \ell \ t \ \text{clashes}$ (clash)
- $P \cup \{(t, \emptyset)\} \rightarrow \bot$ (fail)
- $P \cup \{(t,L)\} \rightarrow P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\},$ if (split)
 - $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x and \dots
- clearly, \rightharpoonup without (split) terminates as in every step the size of the pattern problem is reduced
- argumentation that also (split) cannot be applied infinitely often
 - a fun-var-conflict between t and $\ell \in L$ occurs iff the subterm of t at position p is a variable x, but the subterm ℓ at position p is a function application
 - the effect of (split) is that the variable x becomes a constructor, so there is no fun-var-conflict of $t\sigma_i$ with any lhs at position p any more
 - hence, when (split)ting over-and-over again, all possible fun-var-conflicts move to deeper positions
 - since the depths of the conflict positions are bounded by the sizes of the terms in *L*, all fun-var-conflicts eventually disappear, so that (split) is no longer applicable

50/101

Checking Pattern Completeness

 Implementing → a direct implementation of → mainly faces two problems (exercise) handling of fresh variable figuring out constructors in (split) direct: matching algorithm is started from scratch every time an optimized implementation should try to reuse previous runs of matching algorithm after applying (split) this will require changes in the interface of matching algorithm 		gorithm	 Summary on Pattern Completeness pattern completeness of functional programs is decidable: program is pattern complete iff P_{init} →! Ø partial correctness was proven via invariant of → proof required additional properties of matching algorithm termination of → was shown informally formal proof would require further properties of matching algorithm termination proof was tricky, definitely requiring human interaction in contrast: upcoming part is on automated termination proving 			
RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	53/101	RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	54/101	
	Termination – Dependency Pairs		 Turing show halting prob questic probler algorith we here conside universal termin 	r ograms termination is a famous problem <i>j</i> ed that "halting problem" is undecidable	rmination – Dependency Pairs	

Termination of Functional Programs

Termination - Dependency Pairs

- for termination, we mainly consider functional programs which are pattern-disjoint; hence, \hookrightarrow is confluent
- consequence: it suffices to prove innermost termination, i.e., the restriction of \rightarrow such that arguments t_i will be fully evaluated before evaluating a function invocation $f(t_1,\ldots,t_n)$
- example without confluence

f(True, False, x) = f(x, x, x) $f(\ldots,\ldots,x) = x$ (all other cases) coin = Truecoin = False

- both f and coin terminate if seen as separate programs
- program is innermost terminating, but not terminating in general

$$\mathsf{f}(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \mathsf{f}(\mathsf{coin},\mathsf{coin},\mathsf{coin}) \hookrightarrow^2 \mathsf{f}(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \dots$$

```
RT (DCS @ UIBK)
```

```
Part 4 - Checking Well-Definedness of Functional Programs
```

Subterm Relation and Innermost Evaluation

• define \triangleright as the strict subterm relation and \triangleright as its reflexive closure

$$\frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright t_i} \qquad \qquad \frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright s}$$

• innermost evaluation $\stackrel{i}{\rightarrow}$ is defined similar to one-step evaluation \rightarrow

$$\frac{s_i \stackrel{\epsilon \mapsto}{\to} t_i}{F(s_1, \dots, s_i, \dots, s_n) \stackrel{\epsilon \mapsto}{\to} F(s_1, \dots, t_i, \dots, s_n)} \text{ rewrite in contexts} \\ \frac{\ell = r \text{ is equation in program } \forall s \lhd \ell \sigma. \ s \in NF(\hookrightarrow)}{\ell \sigma \stackrel{\epsilon \mapsto}{\to} r \sigma} \text{ root step}$$

example

$$f(True, False, coin) \not\rightarrow f(coin, coin, coin)$$

since coin \triangleleft f(True, False, coin) and coin $\notin NF(\hookrightarrow)$

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

58/101

Termination – Dependency Pairs

Termination - Dependency Pairs

57/101

Strong Normalization

• relation \succ is strongly normalizing, written $SN(\succ)$, if there is no infinite sequence

$$a_1 \succ a_2 \succ a_3 \succ \dots$$

- strong normalization is other notion for termination
- strong normalization is also equivalent to induction; the following two conditions are equivalent
 - $SN(\succ)$
 - $\forall P. (\forall x. (\forall y. x \succ y \longrightarrow P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$
- equivalence shows why it is possible to perform induction wrt. algorithm for terminating programs

Termination Analysis with Dependency Pairs

- aim: prove $SN(\stackrel{i}{\hookrightarrow})$
- only reason for potential non-termination: recursive calls
- for each recursive call of eqn. $f(t_1, \ldots, t_n) = \ell = r \ge f(s_1, \ldots, s_n)$ build one dependency pair with fresh (constructor) symbol f^{\sharp} :

$$f^{\sharp}(t_1,\ldots,t_n) \to f^{\sharp}(s_1,\ldots,s_n)$$

define DP as the set of all dependency pairs

• example program for Ackermann function has three dependency pairs

$$ack(Zero, y) = Succ(y)$$

$$ack(Succ(x), Zero) = ack(x, Succ(Zero))$$

$$ack(Succ(x), Succ(y)) = ack(x, ack(Succ(x), y))$$

$$ack^{\sharp}(Succ(x), Zero) \rightarrow ack^{\sharp}(x, Succ(Zero))$$

$$ack^{\sharp}(Succ(x), Succ(y)) \rightarrow ack^{\sharp}(x, ack(Succ(x), y))$$

$$ack^{\sharp}(Succ(x), Succ(y)) \rightarrow ack^{\sharp}(Succ(x), y)$$
Part 4 - Checking Well-Definedness of Functional Programs

$$f^{\sharp}(t_1,\ldots,t_n) \to f^{\sharp}(s_1,\ldots,s_n)$$

ne
$$DP$$
 as the set of all dependency pairs

Termination - Dependency Pairs

62/101

Example of Evaluation and Chain minus(x, Zero) = xTermination Analysis with Dependency Pairs, continued minus(Succ(x), Succ(y)) = minus(x, y)• dependency pairs provide characterization of termination $\operatorname{div}(\operatorname{Zero},\operatorname{Succ}(y)) = \operatorname{Zero}$ • definition: let $P \subseteq DP$; a *P*-chain is a possible infinite sequence $\mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x,y),\mathsf{Succ}(y)))$ minus^{\sharp}(Succ(x), Succ(y)) \rightarrow minus^{\sharp}(x, y) $s_1\sigma_1 \rightarrow t_1\sigma_1 \stackrel{i}{\leftrightarrow} s_2\sigma_2 \rightarrow t_2\sigma_2 \stackrel{i}{\leftrightarrow} s_3\sigma_3 \rightarrow t_2\sigma_3 \stackrel{i}{\leftrightarrow} \dots$ $\operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))$ such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$ • example innermost evaluation • $s_i \sigma_i \rightarrow t_i \sigma_i$ represent the "main" recursive calls that may lead to non-termination div(Succ(Zero), Succ(Zero)) • $t_i \sigma_i \stackrel{i}{\hookrightarrow} s_{i+1} \sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls $\stackrel{i}{\hookrightarrow}$ Succ(div(minus(Zero, Zero), Succ(Zero))) • theorem: $SN(\hookrightarrow)$ iff there is no infinite DP-chain $\stackrel{i}{\hookrightarrow}$ Succ(div(Zero, Succ(Zero))) advantage of dependency pairs $\stackrel{i}{\hookrightarrow}$ Succ(Zero) • in infinite chain, non-terminating recursive calls are always applied at the root and its (partial) representation as DP-chain • simplifies termination analysis $div^{\sharp}(Succ(Zero), Succ(Zero))$ $\rightarrow div^{\sharp}(minus(Zero, Zero), Succ(Zero))$ $\stackrel{i}{\hookrightarrow}^* \operatorname{div}^{\sharp}(\operatorname{Zero}, \operatorname{Succ}(\operatorname{Zero}))$ RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Programs RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Programs 61/101

Termination - Dependency Pairs

Proving Termination

- global approaches
 - try to find one termination argument that no infinite chain exists
- iterative approaches
 - identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
 - remove harmless dependency pairs from set of dependency pairs
 - until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incremental
 - incremental: a termination proof of some function stays valid if later on other functions are added to the program
 - incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 57

Termination – Subterm Criterion

Termination – Subterm Criterion

A First Termination Technique – The Subterm Criterion

- the subterm criterion works as follows
 - let $P \subseteq DP$
 - choose f^{\sharp} , a symbol of arity n
 - choose some argument position $i \in \{1, \ldots, n\}$
 - demand $s_i \succeq t_i$ for all $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n) \in P$
 - define $P_{\triangleright} = \{ f^{\sharp}(s_1, \dots, s_n) \to f^{\sharp}(t_1, \dots, t_n) \in P \mid s_i \triangleright t_i \}$
 - then for proving absence of infinite *P*-chains it suffices to prove absence of infinite $P \setminus P_{\triangleright}$ -chains, i.e., one can remove all pairs in P_{\triangleright}
- observations

RT (DCS @ UIBK)

- easy to test: just find argument position i such that each i-th argument of all f^{\sharp} -dependency pairs decreases wrt. \succeq and then remove all strictly decreasing pairs
- incremental method: adding other dependency pairs for g^{\sharp} later on will have no impact

Part 4 - Checking Well-Definedness of Functional Programs

- can be applied iteratively
- fast, but limited power

- Subterm Criterion Example
 - consider a program with the following set of dependency pairs

$$\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Zero}) \to \operatorname{ack}^{\sharp}(x,\operatorname{Succ}(\operatorname{Zero}))$$
 (1)

- $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(x,\operatorname{ack}(\operatorname{Succ}(x),y))$ (2)
- $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(\operatorname{Succ}(x),y)$ (3)
- $\operatorname{minus}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \to \operatorname{minus}^{\sharp}(x, y)$ (4)

$$\operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))$$
(5)

$$\mathsf{plus}^{\sharp}(\mathsf{Succ}(x), y) \to \mathsf{plus}^{\sharp}(y, x)$$
 (6)

- it is easy to remove (4) by choosing any argument of minus[#]
- we can remove (1) and (2) by choosing argument 1 of ack^{\sharp}
- afterwards we can remove (3) by choosing argument 2 of ack^{\sharp}
- it is not possible to remove any of the remaining dependency pairs (5) and (6) by the subterm criterion
- 65/101 RT (DCS @ UIBK)

Part 4 – Checking Well-Definedness of Functional Programs

66/101

Subterm Criterion – Soundness Proof

Termination – Subterm Criterion

- assume the chosen parameters in the subterm criterion are f^{\sharp} and i
- it suffices to prove that there is no infinite chain

 $s_1\sigma_1 \to t_1\sigma_1 \stackrel{\leftarrow}{\to} s_2\sigma_2 \to t_2\sigma_2 \stackrel{\leftarrow}{\to} s_3\sigma_3 \to t_3\sigma_3 \stackrel{\leftarrow}{\to} \dots$

- such that all $s_j \to t_j \in P$, all s_j and t_j have f^{\sharp} as root and there are infinitely many $s_j \to t_j \in P_{\triangleright}$; perform proof by contradiction
- hence all $s_j \to t_j$ are of the form $f^{\sharp}(s_{j,1}, \ldots, s_{j,n}) \to f^{\sharp}(t_{j,1}, \ldots, t_{j,n})$
- from condition $s_{j,i} \ge t_{j,i}$ of criterion conclude $s_{j,i}\sigma_j \ge t_{j,i}\sigma_j$ and if $s_j \to t_j \in P_{\triangleright}$ then $s_{j,i} \triangleright t_{j,i}$ and thus $s_{j,i}\sigma_j \triangleright t_{j,i}\sigma_j$
- we further know $t_{j,i}\sigma_j \stackrel{\cdot}{\hookrightarrow}^* s_{j+1,i}\sigma_{j+1}$ since f^{\sharp} is a constructor
- this implies $t_{j,i}\sigma_j = s_{j+1,i}\sigma_{j+1}$ since $t_{j,i}\sigma_j \in NF(\hookrightarrow)$ as $t_{j,i}\sigma_j \leq s_{j,i}\sigma_j < f^{\sharp}(s_{j,1}\sigma_j, \dots, s_{j,n}\sigma_j) = s_j\sigma_j \in NF(\hookrightarrow)$
- obtain an infinite sequence with infinitely many \triangleright ; this is a contradiction to $SN(\triangleright)$

$$s_{1,i}\sigma_1 \succeq t_{1,i}\sigma_1 = s_{2,i}\sigma_2 \succeq t_{2,i}\sigma_2 = s_{3,i}\sigma_3 \succeq t_{3,i}\sigma_3 = \dots$$

Part 4 - Checking Well-Definedness of Functional Programs

Termination – Size-Change Principle

The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
 - let f^{\sharp} be a symbol of arity n
 - a size-change graph for f^{\sharp} is a bipartite graph G = (V, W, E)
 - the nodes are $V = \{1_{in}, \dots, n_{in}\}$ and $W = \{1_{out}, \dots, n_{out}\}$
 - E is a set of directed edges between in- and out-nodes labelled with \succ or \succeq
 - the size-change graph G of a dependency pair $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n)$ defines E as follows
 - $i_{in} \stackrel{\succ}{\to} j_{out} \in E$ whenever $s_i \triangleright t_j$ (strict decrease)
 - $i_{in} \stackrel{\succeq}{\rightarrow} j_{out} \in E$ whenever $s_i = t_j$ (weak decrease)
- in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are omitted

- Example Size-Change Graphs
- consider the following dependency pairs; they include permutations that cannot be solved by the subterm criterion

$$f^{\sharp}(\mathsf{Succ}(x), y) \to f^{\sharp}(x, \mathsf{Succ}(x))$$
(7)

$$f^{\sharp}(x, \mathsf{Succ}(y)) \to f^{\sharp}(y, x) \tag{8}$$

 $G_{(8)}: \quad 1 \underset{\swarrow}{\succ} 1$

• obtain size-change graphs that contain more information than just the size-decrease in one argument, as we had in subterm criterion

T (DCS @ UIBK)	Part 4 - Checking Well-Definedness of Functional Programs	69/101	RT (DCS @ UIBK)	Part 4 - Checking Well-Definedness of Functional Programs

Termination – Size-Change Principle

Multigraphs and Concatenation

- graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency pairs
- definition: let G be a set of size-change graphs for the same symbol f[#]; then the set of multigraphs for f[#] is defined as follows
 - every $G \in \mathcal{G}$ is a multigraph
 - whenever there are multigraphs G₁ and G₂ with edges E₁ and E₂ then also the concatenated graph G = G₁ • G₂ is a multigraph; here, the edges of E of G are defined as
 - if $i \to j \in E_1$ and $j \to k \in E_2$, then $i \to k \in E$
 - if at least one of the edges $i \to j$ and $j \to k$ is labeled with \succ then $i \to k$ is labeled with \succ , otherwise with \succeq
 - if the previous rules would produce two edges $i\xrightarrow{\succ}k$ and $i\xrightarrow{\succeq}k$, then only the former is added to E
- a multigraph G is maximal if $G = G \cdot G$
- since there are only finitely many possible sets of edges, the set of multigraphs is finite and can easily be computed

Example – Multigraphs

• consider size-change graphs

 $\begin{array}{ccc} G_{(7)}: & 1 \xrightarrow{\succ} 1 \\ & & & \\ & & & \\ & & & 2 \end{array}$

• this leads to three maximal multigraphs

$$\begin{array}{cccc} G_{(7)} \bullet G_{(8)} : 1 \stackrel{\succ}{\longrightarrow} 1 & G_{(8)} \bullet G_{(7)} : 1 & 1 & G_{(8)} \bullet G_{(8)} : 1 \stackrel{\succ}{\rightarrow} 1 \\ & & & & \\ 2 & 2 & 2 & 2 & 2 \\ \end{array}$$

• and a non-maximal multigraph

RT (DCS @ UIBK)

Part 4 – Cheo

70/101

Termination – Size-Change Principle

Size-Change Termination

- instead of multigraphs, one can also glue two graphs G_1 and G_2 by just identifying the out-nodes of G_1 with the in-nodes of G_2 , defined as $G_1 \circ G_2$; in this way it is also possible to consider an infinite sequence of graphs $G_1 \circ G_2 \circ G_3 \circ \ldots$
- example:

$$\begin{array}{ccc} G_{(7)} \circ G_{(8)} \circ G_{(8)} \circ G_{(7)} : & 1 \stackrel{\succ}{\searrow} 1 & 1 \stackrel{\succ}{\swarrow} 1 \\ & 2 & 2 & 2 & 2 & 2 \\ \end{array}$$

- definition: a set \mathcal{G} of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\xrightarrow{\succ}$ -edges
- theorem: let P be a set of dependency pairs for symbol f^{\sharp} and \mathcal{G} be the corresponding size-change graphs; if \mathcal{G} is size-change terminating, then there is no infinite P-chain
- the proof is mostly identical to the one of the subterm criterion

```
RT (DCS @ UIBK)
                                                                                                                                                                      RT (DCS @ UIBK)
                                                   Part 4 - Checking Well-Definedness of Functional Programs
                                                                                                                                                     73/101
                                                                                                                                                                                                                          Part 4 - Checking Well-Definedness of Functional Programs
                                                                                                                                                                                                                                                                                                                           74/101
                                                                                                                          Termination - Size-Change Principle
                                                                                                                                                                                                                                                                                                 Termination – Size-Change Principle
```

Proof of Theorem

- the direction that size-change termination implies the property on maximal multigraphs can be done in a straight-forward way
- the other direction is much more advanced and relies upon Ramsey's theorem in its infinite version

Deciding Size-Change Termination

- definition: a set G of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\xrightarrow{\succ}$ -edges
- checking size-change termination directly is not possible
- still, size-change termination is decidable
- theorem: let \mathcal{G} be a set of size-change graphs; the following two properties are equivalent 1. \mathcal{G} is size-change terminating
 - 2. every maximal multigraph of \mathcal{G} contains an edge $i \xrightarrow{\succ} i$
- although the above theorem only gives rise to an EXPSPACE-algorithm, size-change termination is in PSPACE: in fact, size-change termination is PSPACE-complete
- despite the high theoretical complexity class, for sets of size-change graphs arising from usual algorithms, the number of multigraphs is rather low

Proof of Theorem: Easy Direction (1. implies 2.)

- assume that \mathcal{G} is size-change terminating, and consider any maximal graph G
- since G is a multigraph, it can be written as $G = G_1 \cdot \ldots \cdot G_n$ with each $G_i \in \mathcal{G}$
- consider infinite graph $G_1 \circ \ldots \circ G_n \circ G_1 \circ \ldots \circ G_n \circ \ldots$
- because of size-change termination, this graph contains path with infinitely many \rightarrow -edges
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\stackrel{\succ}{\rightarrow}$ -edges
- on this path some index *i* must be visited infinitely often
- hence there is a path of length k such that $G \circ G \circ \ldots \circ G$ (k-times) contains a path from the leftmost argument i to the rightmost argument i with at least one $\stackrel{\succ}{\rightarrow}$ -edge
- consequently $G \cdot G \cdot \ldots \cdot G$ (k-times) contains an edge $i \xrightarrow{\succ} i$
- by maximality, $G = G \cdot G \cdot \ldots \cdot G$, and thus G contains an edge $i \xrightarrow{\succ} i$

Termination – Size-Change Principle

Ramsey's Theorem

• definition: given set X and $n \in \mathbb{N}$, we define $X^{(n)}$ as the set of all subsets of X of size n; formally:

$$X^{(n)} = \{ Z \mid Z \subseteq X \land |Z| = n \}$$

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$

RT (DCS @ UIBK)

- let C be a finite set of colors
- let X be an infinite set
- let c be a coloring of the size n sets of X, i.e., $c:X^{(n)}\to C$
- theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color

- consider some arbitrary infinite graph $G_0 \circ G_1 \circ G_2 \circ \ldots$
- for n < m define $G_{n,m} = G_n \bullet \ldots \bullet G_{m-1}$
- by Ramsey's theorem there is an infinite set $I \subseteq \mathbb{N}$ such that $G_{n,m}$ is always the same graph G for all $n,m \in I$ with n < m
 - $(n = 2, C = multigraphs, X = \mathbb{N}, c(\{n, m\}) = G_{min\{n,m\},max\{n,m\}})$
- G is maximal: for $n_1 < n_2 < n_3$ with $\{n_1, n_2, n_3\} \subseteq I$, we have $G_{n_1,n_3} = G_{n_1} \cdot \ldots \cdot G_{n_2-1} \cdot G_{n_2} \cdot \ldots \cdot G_{n_3-1} = G_{n_1,n_2} \cdot G_{n_2,n_3}$, and thus $G = G \cdot G$
- by assumption, G contains edge $i \xrightarrow{\succ} i$
- let $I = \{n_1, n_2, \ldots\}$ with $n_1 < n_2 < \ldots$ and obtain

$$G_0 \circ G_1 \circ \dots$$

= $G_0 \circ \dots \circ G_{n_1-1} \circ G_{n_1} \circ \dots \circ G_{n_2-1} \circ G_{n_2} \circ \dots \circ G_{n_3-1} \circ \dots$
~ $G_0 \circ \dots \circ G_{n_1-1} \circ G$ $\circ G$ $\circ \dots$

so that edge $i \xrightarrow{\succ} i$ of G delivers path with infinitely many $\xrightarrow{\succ}$ -edges

		0	, , , , ,	
Part 4 – Checking Well-Definedness of Functional Programs	77/101	RT (DCS @ UIBK)	Part 4 – Checking Well-Definedness of Functional Programs	78/101

Termination – Size-Change Principle

Proof of Ramsey's Theorem

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \to C$
 - theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color
- proof of Ramsey's theorem is interesting
 - it is simple, in that it only uses standard induction on n with arbitrary c and X
 - it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case n = 0 is trivial, since there is only one size-0 set: the empty set

Proof of Ramsey's Theorem – Step Case n = m + 1• define $X_0 = X$

- pick an arbitrary element a_0 of X_0
- define $Y_0 = X_0 \setminus \{a_0\}$; define coloring $c': Y_0^{(m)} \to C$ as $c'(Z) = c(Z \cup \{a_0\})$
- IH yields infinite subset $X_1 \subseteq Y_0$ such that all size m sets of X_1 have the same color c_0 w.r.t. c'
- hence, $c(\{a_0\} \cup Z) = c_0$ for all $Z \in X_1^{(m)}$
- next pick an arbitrary element a_1 of X_1 to obtain infinite set $X_2 \subseteq X_1 \setminus \{a_1\}$ such that $c(\{a_1\} \cup Z) = c_1$ for all $Z \in X_2^{(m)}$
- by iterating this obtain elements a_0, a_1, a_2, \ldots , colors $c_0, c_1, c_2 \ldots$ and sets X_0, X_1, X_2, \ldots satisfying the above properties
- since C is finite there must be some color d in the infinite list c_0, c_1, \ldots that occurs infinitely often; define $Y = \{a_i \mid c_i = d\}$
- Y has desired properties since all size n sets of Y have color d: if $Z \in Y^{(n)}$ then Z can be written as $\{a_{i_1}, \ldots, a_{i_n}\}$ with $i_1 < \ldots < i_n$; hence, $Z = \{a_{i_1}\} \cup Z'$ with $Z' \in X^{(m)}_{i_1+1}$, i.e., $c(Z) = c_{i_1} = d$
- RT (DCS @ UIBK)

Termination - Size-Change Principle

Summary of Size-Change Principle

- size-change principle abstracts dependency pairs into set of size-change graphs
- if no critical graph exists (multigraph without edge $i \xrightarrow{\succ} i$), termination is proven
- soundness relies upon Ramsey's theorem
- subsumes subterm criterion
- still no handling of defined symbols in dependency pairs as in

$\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))$

Termination – Reduction Pairs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

81/101

Termination - Reduction Pairs

Reduction Pairs

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- previously we used \triangleright on $s_i \rightarrow t_i$ to ensure decrease $s_i \sigma_i \triangleright t_i \sigma_i$
- previously we used $s_i \sigma \in NF(\hookrightarrow)$ and \triangleright to turn $\stackrel{i}{\hookrightarrow}^*$ into =
- now generalize \triangleright to strongly normalizing relation \succ
- now demand $\ell \succeq r$ for equations to ensure decrease $t_i \sigma_i \succeq s_{i+1} \sigma_{i+1}$
- definition: reduction pair (\succ, \succeq) is pair of relations such that
 - $SN(\succ)$
 - \succeq is transitive
 - \succ and \succeq are compatible: $\succ \circ \succeq \subseteq \succ$
 - both \succ and \succeq are closed under substitutions: $s \succeq t \longrightarrow s\sigma \succeq t\sigma$ \succeq is closed under contexts: $s \succeq t \longrightarrow F(\dots, s, \dots) \succeq F(\dots, t, \dots)$

 - note: \succ does not have to be closed under contexts

RT (DCS @ UIBK)

83/101

RT (DCS @ UIBK)

Applying Reduction Pairs

• recall definition: *P*-chain is sequence

 $s_1\sigma_1 \rightarrow t_1\sigma_1 \stackrel{i}{\leftrightarrow} s_2\sigma_2 \rightarrow t_2\sigma_2 \stackrel{i}{\leftrightarrow} s_3\sigma_3 \rightarrow t_3\sigma_3 \stackrel{i}{\leftrightarrow} \dots$

- such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$
- demand $s \succeq t$ for all $s \to t \in P$ to ensure $s_i \sigma_i \succeq t_i \sigma_i$
- demand $\ell \succeq r$ for all equations to ensure $t_i \sigma_i \succeq s_{i+1} \sigma_{i+1}$
- define $P_{\succ} = \{s \to t \in P \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

Termination - Reduction Pairs

Example

• remaining termination problem

$$\begin{split} \min(x, \mathsf{Zero}) &= x \\ \min(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \min(x, y) \\ \operatorname{div}(\mathsf{Zero}, \mathsf{Succ}(y)) &= \mathsf{Zero} \\ \operatorname{div}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \operatorname{Succ}(\operatorname{div}(\min(x, y), \mathsf{Succ}(y))) \\ \operatorname{div}^{\sharp}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &\to \operatorname{div}^{\sharp}(\min(x, y), \mathsf{Succ}(y)) \end{split}$$

constraints

$$\begin{split} \minus(x, \mathsf{Zero}) \succeq x \\ \minus(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succeq \minus(x, y) \\ \operatorname{div}(\mathsf{Zero}, \mathsf{Succ}(y)) \succeq \mathsf{Zero} \\ \operatorname{div}(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succeq \mathsf{Succ}(\operatorname{div}(\minus(x, y), \mathsf{Succ}(y))) \\ \operatorname{div}^{\sharp}(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succ \operatorname{div}^{\sharp}(\minus(x, y), \mathsf{Succ}(y)) \end{split}$$

Part 4 - Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Termination – Reduction Pairs

85/101

Applying Reduction Pairs with Usable Equations

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{i}{\hookrightarrow} s_2\sigma_2 \to t_2\sigma_2 \stackrel{i}{\hookrightarrow} s_3\sigma_3 \to t_3\sigma_3 \stackrel{i}{\hookrightarrow} \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- choose a symbol f^{\sharp} and define $P_{f^{\sharp}} = \{s \to t \in P \mid root \ s = f^{\sharp}\}$
- demand $s \succeq t$ for all $s \to t \in P_{f^{\sharp}}$
- demand $\ell \succsim r$ for all $l=r \in \mathcal{U}$ where $\mathcal U$ are usable equations wrt. $P_{f^{\sharp}}$
- define $P_{\succ} = \{s \to t \in P_{f^{\sharp}} \mid s \succ t\}$
- effect: pairs in P_\succ cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

Termination - Reduction Pairs

Termination - Reduction Pairs

$$\operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))$$

- requiring l ≿ r for all program equations l = r is quite demanding
 not incremental, i.e., adding other functions later will invalidate proof
 not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations \mathcal{U} wrt. a set P are program equations of those symbols that occur in P or that are invoked by (other) usable equations; formally, let \mathcal{E} be set of equations of program, let $root (f(\ldots)) = f$; then \mathcal{U} is defined as

$$\frac{s \to t \in P \quad t \succeq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell}{\ell = r \in \mathcal{U}}$$
$$\frac{\ell' = r' \in \mathcal{U} \quad r' \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell}{\ell = r \in \mathcal{U}}$$

• observation whenever $t_i \sigma_i \stackrel{{}_{\leftarrow}}{\rightarrow}^* s_{i+1} \sigma_{i+1}$ in chain, then only usable equations of $\{s_i \rightarrow t_i\}$ can be used RT (DCS © UIBK) Part 4 - Checking Well-Definedness of Functional Programs 86/101

• remaining termination problem

$$\begin{split} \min & \operatorname{minus}(x,\operatorname{Zero}) = x \\ \min & \operatorname{succ}(x),\operatorname{succ}(y)) = \min & \operatorname{sucs}(x,y) \\ & \operatorname{div}(\operatorname{Zero},\operatorname{Succ}(y)) = \operatorname{Zero} \\ & \operatorname{div}(\operatorname{Succ}(x),\operatorname{Succ}(y)) = \operatorname{Succ}(\operatorname{div}(\min & \operatorname{sucs}(x,y),\operatorname{Succ}(y))) \\ & \operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\min & \operatorname{sucs}(x,y),\operatorname{Succ}(y)) \end{split}$$

• constraints

$$\begin{split} & \mathsf{minus}(x,\mathsf{Zero}) \succsim x\\ & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y)\\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{split}$$

 because of usable equations, applying reduction pairs becomes incremental: new function definitions won't increase usable equations of DPs of previously defined equations

Part 4 – Checking Well-Definedness of Functional Programs

RT (DCS @ UIBK)

Remaining Problem

• given constraints

$$\begin{split} \min_{x} & (x, \text{Zero}) \succeq x \\ \min_{x} & (\text{Succ}(x), \text{Succ}(y)) \succeq \min_{x} (x, y) \\ & \text{div}^{\sharp} (\text{Succ}(x), \text{Succ}(y)) \succ \text{div}^{\sharp} (\min_{x} (x, y), \text{Succ}(y)) \end{split}$$

find a suitable reduction pair such that these constraints are satisfied

- many such reductions pair are available (cf. term rewriting lecture)
 - Knuth-Bendix order (constraint solving is in P)
 - recursive path order (NP-complete)
 - polynomial interpretations (undecidable)
 - powerful
 - intuitive
 - automatable

• matrix interpretations (undecidable)

• weighted path order (undecidable)

```
RT (DCS @ UIBK)
```

RT (DCS @ UIBK)

```
Part 4 - Checking Well-Definedness of Functional Programs
```

```
Polynomial Interpretation
```

Termination - Reduction Pairs

- interpret each *n*-ary symbol *F* as polynomial $p_F(x_1, \ldots, x_n)$
- $\bullet\,$ polynomials are over $\mathbb N$ and have to be weakly monotone

$$x_i \ge y_i \longrightarrow p_F(x_1, \dots, x_i, \dots, x_n) \ge p_F(x_1, \dots, y_i, \dots, x_n)$$

sufficient criterion: forbid subtraction and negative numbers in p_F

• interpretation is lifted to terms by composing polynomials

$$\|x\| = x$$
$$[F(t_1, \dots, t_n)] = p_F([t_1]], \dots, [t_n])$$

- $\succeq_{(\sim)}$ is defined as
- $s \underset{(\sim)}{\succ} t \text{ iff } \forall \vec{x} \in \mathbb{N}^*. \llbracket s \rrbracket_{(\geq)} \llbracket t \rrbracket$
- (\succ, \succeq) is a reduction pair, e.g.,

• $SN(\succ)$ follows from strong-normalization of > on $\mathbb N$

- \succeq is closed under contexts since each p_F is weakly monotone
- RT (DCS @ UIBK)

89/101

Termination - Reduction Pairs

Part 4 – Checking Well-Definedness of Functional Programs

90/101

Termination - Reduction Pairs

Example – Polynomial Interpretation

• given constraints

$$\begin{split} \min& \mathsf{minus}(x,\mathsf{Zero}) \succsim x\\ \min& \mathsf{us}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \min& \mathsf{us}(x,y)\\ \mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ & \mathsf{div}^{\sharp}(\min& (x,y),\mathsf{Succ}(y)) \end{split}$$

and polynomial interpretation

$$p_{minus}(x_1, x_2) = x_1$$

$$p_{Zero} = 2$$

$$p_{Succ}(x_1) = 1 + x_1$$

$$p_{div^{\sharp}}(x_1, x_2) = x_1 + 3x_2$$

we obtain polynomial constraints

$$\llbracket \minus(x, \operatorname{Zero}) \rrbracket = x \ge x = \llbracket x \rrbracket$$
$$\llbracket \minus(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rrbracket = 1 + x \ge x = \llbracket \minus(x, y) \rrbracket$$
$$\llbracket \operatorname{div}^{\sharp}(\operatorname{Succ} \dots) \rrbracket = 4 + x + 3y > 3 + x + 3y = \llbracket \operatorname{div}^{\sharp}(\minus \dots) \rrbracket$$
Part 4 - Checking Well-Definedness of Functional Programs

Solving Polynomial Constraints

- each polynomial constraint over $\mathbb N$ can be brought into simple form " $p\geq 0$ " for some polynomial p

• replace
$$p_1 > p_2$$
 by $p_1 \ge p_2 + 1$

• replace
$$p_1 \ge p_2$$
 by $p_1 - p_2 \ge 0$

- the question of " $p \ge 0$ " over \mathbb{N} is undecidable (Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of p are non-negative, then $p\geq 0$ for all instances over $\mathbb N$
- division example has trivial constraints

original	simplified
$x \ge x$	$0 \ge 0$
$1 + x \ge x$	$1 \ge 0$
4 + x + 3y > 3 + x + 3y	$0 \ge 0$

RT (DCS @ UIBK)

91/101

Termination – Reduction Pairs

Termination - Reduction Pairs

93/101

Termination - Reduction Pairs

Symbolic Polynomial Interpretations

• fix shape of polynomial, e.g., linear

•

RT (DCS @ UIBK)

$$p_F(x_1, \ldots, x_n) = F_0 + F_1 x_1 + \cdots + F_n x_n$$

where the F_i are symbolic coefficients

$$p_{minus}(x_1, x_2) = x_1$$

$$p_{Zero} = 2$$

$$p_{Succ}(x_1) = 1 + x_1$$

$$p_{div} \#(x_1, x_2) = x_1 + 3x_2$$

concrete interpretation above becomes symbolic

$$\begin{split} p_{\mathsf{minus}}(x_1, x_2) &= \mathsf{m}_0 + \mathsf{m}_1 x_1 + \mathsf{m}_2 x_2 \\ p_{\mathsf{Zero}} &= \mathsf{Z}_0 \\ p_{\mathsf{Succ}}(x_1) &= \mathsf{S}_0 + \mathsf{S}_1 x_1 \\ p_{\mathsf{div}^{\sharp}}(x_1, x_2) &= \mathsf{d}_0 + \mathsf{d}_1 x_1 + \mathsf{d}_2 x_2 \\ \text{Part 4 - Checking Well-Definedness of Functional Programs} \end{split}$$

94/101

96/101

Termination - Reduction Pairs

RT (DCS @ UIBK)

Symbolic Polynomial Constraints • given constraints

Finding Polynomial Interpretations

aim: search for suitable interpretationapproach: perform everything symbolically

• in division example, interpretation was given on slides

$$\begin{aligned} \minus(x, \operatorname{Zero}) &\succeq x\\ \minus(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\succeq \minus(x, y)\\ \operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) &\succ \operatorname{div}^{\sharp}(\minus(x, y), \operatorname{Succ}(y)) \end{aligned}$$

Part 4 - Checking Well-Definedness of Functional Programs

• obtain symbolic polynomial constraints

$$\begin{split} \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 \mathsf{Z}_0 &\geq x \\ \mathsf{m}_0 + \mathsf{m}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{m}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) &\geq \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y \\ \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) &\geq \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y) \\ &+ \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) \end{split}$$

- > / - - - -

• and simplify to

$$\begin{aligned} (\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0) + (\mathsf{m}_1 - 1)x &\geq 0\\ (\mathsf{m}_1\mathsf{S}_0 + \mathsf{m}_2\mathsf{S}_0) + (\mathsf{m}_1\mathsf{S}_1 - \mathsf{m}_1)x + (\mathsf{m}_2\mathsf{S}_1 - \mathsf{m}_2)y &\geq 0\\ (\mathsf{d}_1\mathsf{S}_0 - \mathsf{d}_1\mathsf{m}_0 - 1) + (\mathsf{d}_1\mathsf{S}_1 - \mathsf{d}_1\mathsf{m}_1)x + (-\mathsf{d}_1\mathsf{m}_2)y &\geq 0\\ \text{Part 4 - Checking Well-Definedness of Functional Programs} \end{aligned}$$

Absolute Positiveness – Symbolic Example
 on symbolic polynomial constraints

$$(\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0) + (\mathsf{m}_1 - 1)x \ge 0$$

$$(\mathsf{m}_1\mathsf{S}_0 + \mathsf{m}_2\mathsf{S}_0) + (\mathsf{m}_1\mathsf{S}_1 - \mathsf{m}_1)x + (\mathsf{m}_2\mathsf{S}_1 - \mathsf{m}_2)y \ge 0$$

$$(\mathsf{d}_1\mathsf{S}_0 - \mathsf{d}_1\mathsf{m}_0 - 1) + (\mathsf{d}_1\mathsf{S}_1 - \mathsf{d}_1\mathsf{m}_1)x + (-\mathsf{d}_1\mathsf{m}_2)y \ge 0$$

absolute positiveness works as before; obtain constraints

$m_0 + m_2 Z_0 \geq 0$	$m_1-1 \geq 0$	
$m_1S_0+m_2S_0\geq 0$	$m_1S_1-m_1\geq 0$	$m_2S_1-m_2\geq 0$
$d_1S_0-d_1m_0-1\geq 0$	$d_1S_1-d_1m_1\geq 0$	$-d_1m_2 \ge 0$

- at this point, use solver for integer arithmetic to find suitable coefficients (in \mathbb{N})
- popular choice: SMT solver for integer arithmetic where one has to add constraints $m_0 \ge 0, m_1 \ge 0, m_2 \ge 0, S_0 \ge 0, S_1 \ge 0, Z_0 \ge 0, \dots$

Constraint Solving by Hand – Example • original constraints		Termination – Re	duction Pairs	Constraint Solving by • original constraints	Termination – Reduct	tion Pairs			
	$m_0 + m_2 Z_0 \ge 0$	$m_1-1 \geq 0$			$m_0 + r$	$n_2 Z_0 \ge 0$	$\mathbf{m}_1 - 1 \ge 0$		
m	$_1S_0 + m_2S_0 \ge 0$	$m_1S_1-m_1\geq 0$	$m_2S_1-m_2\geq 0$		m_1S_0+r	$m_2S_0 \ge 0$	$m_1S_1-m_1\geq 0$	$m_2S_1-m_2\geq 0$	
d_1S_0	$-d_1m_0 - 1 \ge 0$	$d_1S_1-d_1m_1\geq 0$	$-d_1m_2 \ge 0$		$d_1S_0-d_1m_0$	$-1 \ge 0$	$d_1S_1-d_1m_1\geq 0$	$-d_1m_2\geq 0$	
• delete trivial o	onstraints				 encode as SMT prob 	em in file div	vision.smt2		
		$m_1-1\geq 0$			(set-logic QF_NIA)			
		$m_1S_1 - m_1 \ge 0$	$m_2S_1-m_2\geq 0$		•		(declare-fun d2 () I	nt)	
d_1S_0	$-d_1m_0 - 1 \ge 0$	$d_1S_1-d_1m_1\geq 0$	$-d_1m_2\geq 0$		(assert (>= m0 0) (assert (>= (+ m0				
 conclusions 					 (assert (>= (* (-	1) d1 m2)	0))		
	$m_1 \geq 1$	$d_1 \geq 1$			(check-sat)	_,,	~,,,		
	$S_0 \ge 1$	$S_1 \ge 1$			(get-model)				
	$m_2 = 0$	$S_1 \ge m_1$	$m_0 = 0$		(exit)				
RT (DCS @ UIBK)	Part 4 – Check	ing Well-Definedness of Functional Programs		97/101	RT (DCS @ UIBK)	Part 4 – Checki	ng Well-Definedness of Functional Program	IS	98/101

Termination - Reduction Pairs

Constraint Solving by SMT-Solver - Example Continued

• invoke SMT solver, e.g., Microsoft's open source solver Z3

cmd> z3 division.smt2 sat (model (define-fun d1 () Int 8) (define-fun S1 () Int 15) (define-fun SO () Int 8) (define-fun ZO () Int O)

- (define-fun m2 () Int 0) (define-fun m1 () Int 12)
- (define-fun m0 () Int 4)
- (define-fun d2 () Int 0)
- (define-fun d0 () Int 0))
- parse result to obtain polynomial interpretation

Constraint Solving by SMT-Solver - Scepticism

- polynomial interpretation found by SMT solving approach is generated by complex (potentially buggy) tool
- however, termination is essential for well-defined programs, i.e., in particular to derive correct theorems
- solution: certification
 - search for interpretation can be done in arbitrary untrusted way
 - write simple trusted checker that certifies whether concrete interpretation indeed satisfies all constraints
 - like solving NP-complete problem: positive answer can easily be verified
- in fact, this approach is heavily used in termination proving
 - untrusted tools: AProVE, TTT2, Terminator,
 - trusted checker: CeTA; soundness formally proven in Isabelle/HOL

RT

Termination - Reduction Pairs

Summary

- pattern-completeness and pattern-disjointness are decidable
- termination proving can be done via
 - dependency pairs
 - subterm criterion
 - size-change termination
 - polynomial interpretation
- termination proving often performed with help of SMT solvers
- increase reliability via certification: checking of generated proofs

RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs

101/101