innsbruck


## Program Verification

Part 4 - Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

## Overview

- recall: a functional program is well-defined if
- it is pattern disjoint,
- it is pattern complete, and
- $\hookrightarrow$ is terminating
- well-definedness is prerequisite for standard model, for derived theorems, ...
- task: given a functional program as input, ensure well-definedness
- known: type-checking algorithm
- known: algorithm for checking pattern disjointness
- missing: algorithm for type-inference
- missing: algorithm for deciding pattern completeness
- missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

Type-Checking with Implicit Variables

## Type-Inference

- structure of functional programs
- data-type definitions
- function definitions: type of new function + defining equations
- not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
- singleton characters get type Nat
- words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

$$
\begin{aligned}
& \text { append }: \text { List } \times \text { List } \rightarrow \text { List } \\
& \text { append }(\operatorname{Cons}(x, y), z)=\operatorname{Cons}(x, \text { append }(y, z)) \\
& \text { append }(\operatorname{Nil}, x)=x
\end{aligned}
$$

we should be able to infer that $x$ : Nat, $y$ : List and $z$ : List in the first equation, whereas $x$ : List in the second equation

## Interlude: Maybe-Type for Errors

Type-Checking with Implicit Variables

- recall type-checking algorithm (variable case omitted)
type_check :: Sig -> Vars -> Term -> Maybe Type
type_check sigma vars (Fun $f$ ts) $=$ do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
if tys_ts == tys_in then return ty_out else Nothing
- Maybe-type is only one possibility to represent computational results with failure
- let us abstract from concrete Maybe-type:
- introduce new type Check to represent a result or failure type Check a = Maybe a
- function return : : a $\rightarrow$ Check a to produce successful results
- function to raise a failure
failure : : Check a
failure $=$ Nothing
- convenience function: asserting a property
assert :: Bool -> Check ()
assert $p=$ if $p$ then return () else failure
RT (DCS @ UIBK)
Part 4 - Checking Well-Definedness of Functional Program


## Back to Type-Checking and Type-Inference

Type-Checking with Implicit Variables

- known: type-checking algorithm
type_check : : Sig -> Vars -> Term -> Check Type
- type Sig = FSym $\rightarrow$ Check ([Type], Type) $-\Sigma$
- type Vars = Var $\rightarrow$ Check Type $-\mathcal{V}$
- type_check takes $\Sigma$ and $\mathcal{V}$ and delivers type of term
- we want a function that works in the other direction: it gets an intended type as input, and delivers a suitable type for the variables
infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
- then type-checking an equation without explicit Vars is possible
type_check_eqn : : Sig -> (Term, Term) -> Check ()
type_check_eqn sigma (Var $x, r)=$ failure
type_check_eqn sigma (l @ (Fun f _) , r) = do
(_,ty) <- sigma f
vars <- infer_type sigma ty l
ty_r <- type_check sigma ( $\backslash \mathrm{x}$-> lookup x vars) r
assert (ty == ty_r)


## Making Type-Checking More Abstract

- original type-checking algorithm
type_check : : Sig -> Vars -> Term -> Maybe Type
type_check sig vars (Var $x$ ) = vars x
type_check sigma vars (Fun $f$ ts) $=$ do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
if tys_ts == tys_in then return ty_out else Nothing
- with new abstract types and functions
type_check : : Sig -> Vars -> Term -> Check Type
type_check sig vars (Var x ) = vars x
type_check sigma vars (Fun $f$ ts) $=$ do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
assert (tys_ts == tys_in)
return ty_out
- advantage: readability, change Check-type easily


## Type-Inference Algorithm

- note: upcoming algorithm only infers types of variables
(in polymorphic setting often also type of function symbols is inferred)
infer_type :: Sig -> Type -> Term -> Check [(Var,Type)]
infer_type sig ty (Var $x$ ) = return [(x,ty)]
infer_type sig ty (Fun $f$ ts) $=$ do
(tys_in,ty_out) <- sig f
assert (length tys_in == length ts)
assert (ty_out == ty)
vars_l <- mapM ( $\left.\backslash(t y, ~ t) ~->~ i n f e r \_t y p e ~ s i g ~ t y ~ t\right) ~\left(z i p ~ t y s \_i n ~ t s\right) ~$
let vars = nub (concat vars_l) -- nub removes duplicates
assert (distinct (map fst vars))
return vars
distinct : : Eq a => [a] -> Bool
distinct $\mathrm{xs}=$ length (nub xs) $==$ length xs


## Soundness of Type-Inference Algorithm

- properties
- if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then infer_type $\Sigma \tau t=\operatorname{return}(\mathcal{V} \cap \mathcal{V} \operatorname{ars}(t))$
- if infer_type $\Sigma \tau t=$ return $\mathcal{V}$ then
- $\mathcal{V}$ is well-defined (no conflicting variable assignments) and
- $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then infer_type $\Sigma \tau t \neq$ failure' $^{\text {i }}$ is a property which is not strong enough when performing induction


## Changing Implementation of Interface

- current interface for error type
- type Check a = Maybe a
- function return : : a -> Check a
- function assert : : Bool -> Check ()
- function failure : : Check a
- do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
- type Check a = Either String a
- return, do-blocks and mapM are unchanged, since these are part of generic monad interface
- functions assert and failure need to be changed, since they now require error messages
failure :: String -> Check a
failure $=$ Left
- assert :: Bool -> String -> Check ()
assert $p$ err $=$ if $p$ then return () else failure err


## Changing Algorithms for Checking Properties

- adapting algorithms often only requires additional error messages
- before change (type Check a = Maybe a)
type_check :: Sig -> Vars -> Term -> Check Type
type_check sigma vars (Var x) = vars x
type_check sigma vars (Fun $f$ ts) $=$ do
(tys_in,ty_out) <- sigma f
tys_ts <- mapM (type_check sigma vars) ts
assert (tys_ts == tys_in)
return ty_out
- after change (type Check a = Either String a) type_check :: Sig -> Vars -> Term -> Check Type type_check sigma vars (Var x) = ...
type_check sigma vars t@(Fun $f$ ts) $=$ do
assert (tys_ts == tys_in) (show t ++ " ill-typed")


## Changing Algorithms for Checking Properties, Continued

- example requiring more changes; with type Check a = Maybe a type_check_eqn sigma ( $\operatorname{Var} \mathrm{x}, \mathrm{r})=$ failure
type_check_eqn sigma (l @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- infer_type sigma ty 1
ty_r <- type_check sigma ( assert (ty == ty_r)
- new version with type Check a = Either String a type_check_eqn sigma (Var $x, r)=$ failure "var as lhs" type_check_eqn sigma (1 @ (Fun f _), r) = do ty_r <- type_check sigma ( $\backslash \mathrm{x}$-> lookup x vars) r assert (ty == ty_r) "types of lhs and rhs don't match"
- problem: lookup produces Maybe, not Either String
- solution: use maybeToEither : : e -> Maybe a -> Either e a


## Fixed Type-Checking Algorithm with Error Messages

import Data.Either.Utils -- for maybeToEither
-- import requires MissingH lib; if not installed, define it yourself:
-- maybeToEither e Nothing = Left e
-- maybeToEither _ (Just x ) = return x
type_check_eqn sigma (Var $x, r)=$ failure "var as lhs"
type_check_eqn sigma (1 @ (Fun f _), r) = do
(_,ty) <- sigma f
vars <- infer_type sigma ty l
ty_r <- type_check
sigma
( $\$ x $->$ maybeToEither
(x ++ " is unknown variable")
(lookup $x$ vars))
r
assert (ty == ty_r) "types of lhs and rhs don't match"

## Processing Functional Programs

- aim: write program which takes
- functional program as input (data type definitions + function definitions)
- checks the syntactic requirements
- stores the relevant information in some internal representation
- later: also checks well-definedness
- such a program is essential part of a compiler
- program should be easy to verify


## Existing Encoding of Part 2: Signatures and Terms

type Check a = ... -- Maybe a or Either String a
type Type = String
type Var = String
type FSym = String
type Vars = Var -> Check Type
type FSym_Info = ([Type], Type)
type Sig = FSym $->$ Check FSym_Info
data Term $=$ Var Var | Fun FSym [Term]

## New Auxiliary Function for Error Monad

is_result : : Check a => Bool -- True if argument is not an error is_result Nothing = False or is_result (Left _) = False is_result _ = True is_result _ = True

## Recall: Data Type Definitions

- given: set of types $\mathcal{T} y$, signature $\Sigma=\mathcal{C} \uplus \mathcal{D}$
- each data type definition has the following form

$$
\text { data } \tau=c_{1}: \tau_{1,1} \times \ldots \times \tau_{1, m_{1}} \rightarrow \tau \quad \text { where }
$$

| ...
$\mid c_{n}: \tau_{n, 1} \times \ldots \times \tau_{n, m_{n}} \rightarrow \tau$
fresh type name

- $c_{1}, \ldots, c_{n} \notin \Sigma \quad$ and $\quad c_{i} \neq c_{j}$ for $i \neq j$
- each $\tau_{i, j} \in\{\tau\} \cup \mathcal{T} y$
- exists $c_{i}$ such that $\tau_{i, j} \in \mathcal{T} y$ for all $j$
- effect: add new type and new constructors
- $\mathcal{T} y:=\mathcal{T} y \cup\{\tau\}$
- $\mathcal{C}:=\mathcal{C} \cup\left\{c_{1}: \tau_{1,1} \times \ldots \times \tau_{1, m_{1}} \rightarrow \tau, \ldots, c_{n}: \tau_{n, 1} \times \ldots \times \tau_{n, m_{n}} \rightarrow \tau\right\}$


## Encoding Functional Programs in Haskell

-- input: unchecked data-type definitions and function definitions
data Data_Definition = Data Type [(FSym, FSym_Info)]
data Function_Definition = ... -- later
type Functional_Prog =
([Data_Definition], [Function_Definition])
-- internal representation
type Sig_List $=\left[\left(F S y m, ~ F S y m \_I n f o\right)\right]--$ signatures as list
type Defs = Sig_List -- list of defined symbols
type Cons $=$ Sig_List -- list of constructors
type Equations $=[($ Term, Term $)] \quad--$ all function equations
-- all combined in Haskell-type; it also stores known types
data Prog_Info = Prog_Info [Type] Cons Defs Equations
-- checking single data type definition
process_data_definition ::
Prog_Info -> Data_Definition -> Check Prog_Info
RT (DCS @ UIBK) Part 4 - Checking Well-Definedness of Functional Program

## Checking a Single Data Definitions

process_data_definition
(Prog_Info tys cons defs eqs)
(Data ty new_cs)
= do
assert (not (elem ty tys))
let new_tys = ty : tys
let sigma = sig_list_to_sig (cons ++ defs)
assert (distinct (map fst new_cs))
assert (all
( $\backslash\left(c, \_\right)$-> not (is_result (sigma c))) new_cs)
assert (all (\ (_, (tys_in,ty_out)) ->
ty_out == ty \&\&
all ( $\backslash$ ty -> elem ty new_tys) tys_in) new_cs)
assert (any
(
return (Prog_Info new_tys (new_cs ++ cons) defs eqs)

## Checking Function Definitions wrt. Slide 3/15

```
data Function_Definition = Function
    FSym -- name of function
    FSym_Info -- type of function
    [(Term,Term)] -- equations
process_function_definition
    :: Prog_Info -> Function_Definition -> Check Prog_Info
process_function_definition = ... -- exercise
process_function_definitions ::
    Prog_Info -> [Function_Definition] -> Check Prog_Info
process_function_definitions =
    foldM process_function_definition
```


## Checking Several Data Definitions

- processing many data definitions can be easily done by using foldM: predefined monadic version of foldl
foldM :: Monad m => (b -> a $->\mathrm{m}$ b) $->\mathrm{b}$-> [a] $->\mathrm{m}$ b
foldM fer] = return e
foldM f e (x : xs) = do
d <- f e $x$
foldM f d Xs
process_data_definition : :
Prog_Info -> Data_Definition -> Check Prog_Info
process_data_definition = ... -- previous slide
process_data_definitions :
Prog_Info -> [Data_Definition] -> Check Prog_Info
process_data_definitions $=$ foldM process_data_definition

RT (DCS @ UIBK)
Part 4 - Checking Well-Definedness of Functional Program
22/101

## Checking Functional Programs

initial_prog_info = Prog_Info [] [] [] []
process_program : : Functional_Prog -> Check Prog_Info
process_program (data_defs, fun_defs) = do
pi <- process_data_definitions initial_prog_info data_defs
process_function_definitions pi fun_defs

## Current State

- process_program :: Functional_Prog -> Check Prog_Info is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs wrt. slides $3 / 4$ and $3 / 15$
- its functional style using error monads permits to easily verify its correctness
- no induction required
- based on assumption that builtin functions behave correctly, e.g., all, any, nub, ..
- missing: checks for well-defined functional programs wrt. slide $3 / 45$


## Checking Pattern Disjointness

## Deciding Pattern Disjointness

- program is pattern disjoint if for all $f: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau \in \mathcal{D}$ and all $t_{1} \in \mathcal{T}(\mathcal{C})_{\tau_{1}}, \ldots$, $t_{n} \in \mathcal{T}(\mathcal{C})_{\tau_{n}}$ there is at most one equation $\ell=r$ in the program, such that $\ell$ matches $f\left(t_{1}, \ldots, t_{n}\right)$
- in proseminar it was proven that pattern disjointness is equivalent to the following condition: for each pair of distinct equations $\ell_{1}=r_{1}$ and $\ell_{2}=r_{2}$, $\ell_{1}$ and a variable renamed variant of $\ell_{2}$ do not unify
- key missing part for checking pattern disjointness is an algorithm for unification:
given two terms $s$ and $t$, decide $\exists \sigma . s \sigma=t \sigma$
- input: unification problem $U=\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\}$
- output: solution of $U$ via solved form or $\perp$, indicating unsolvability
- algorithm applies $\rightsquigarrow$ as long as possible; $\rightsquigarrow$ is defined as

$$
\begin{align*}
& U \cup\{t \stackrel{?}{=} t\} \rightsquigarrow U \\
& U \cup\left\{f\left(u_{1}, \ldots, u_{k}\right) \stackrel{?}{=} f\left(v_{1}, \ldots, v_{k}\right)\right\} \rightsquigarrow U \cup\left\{u_{1} \stackrel{?}{=} v_{1}, \ldots, v_{k} \stackrel{?}{=} v_{k}\right\} \\
& U \cup\left\{f\left(u_{1}, \ldots, u_{k}\right) \stackrel{?}{=} g\left(v_{1}, \ldots, v_{\ell}\right)\right\} \rightsquigarrow \perp, \text { if } f \neq g \vee k \neq \ell  \tag{clash}\\
& U \cup\{f(\ldots) \stackrel{?}{=} x\} \rightsquigarrow U \cup\{x \stackrel{?}{=} f(\ldots)\}  \tag{swap}\\
& U \cup\{x \stackrel{?}{=} f(\ldots)\} \rightsquigarrow \perp, \text { if } x \in \operatorname{Vars}(f(\ldots)) \\
& U \cup\{x \stackrel{?}{=} t\} \rightsquigarrow U\{x / t\} \cup\{x \stackrel{?}{=} t\} \\
& \quad \text { if } x \notin \mathcal{V} \text { ars }(t) \text { and } x \text { occurs in } U
\end{align*}
$$

notation $U\{x / t\}$ : apply substitution $\{x / t\}$ on all terms in $U$ (lhs + rhs)
(decompose)
(occurs check)
(eliminate)

## Correctness of Unification Algorithm

- we only state properties (proofs: see term rewriting lecture)
- $\rightsquigarrow$ terminates
- normal form of $\rightsquigarrow$ is $\perp$ or a solved form
- whenever $U \rightsquigarrow V$, then $U$ and $V$ have same solutions
- in total: to solve unification problem $U$
- determine some normal form $V$ of $U$
- if $V=\perp$ then $U$ is unsolvable
- otherwise, $V$ represents a substitution that is a solution to $U$
- note that $\rightsquigarrow$ is not confluent
- $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{x / y}{\rightsquigarrow}\{x \stackrel{?}{=} y, y \stackrel{?}{=} y\} \rightsquigarrow\{x \stackrel{?}{=} y\}$
- $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{y / x}{\rightsquigarrow}\{x \stackrel{?}{=} x, y \stackrel{?}{=} x\} \rightsquigarrow\{y \stackrel{?}{=} x\}$


## Correctness of an Implementation of a (Unification) Algorithm

Checking Pattern Disjointness

- any concrete implementation will make choices
- preference of rules
- selection of pairs from $U$
- representation of sets $U$
- (pivot-selection in quicksort)
- (order of edges in graph-/tree-traversals)
- ...
- task: how to ensure that implementation is sound
- solution: refinement proof
- aim: reuse correctness of abstract algorithm ( $\rightsquigarrow$ )
- define relation between representations in concrete and abstract algorithm (this was called alignment before and done informally)
- show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic) algorithm can be related to some result of (non-deterministic) abstract algorithm
- benefit: clear separation between
- soundness of abstract algorithm
- soundness of implementation
(solves unification problems) (implements abstract algorithm)


## A Concrete Implementing of the Unification Algorithm

subst :: Var -> Term -> Term -> Term
subst $\mathrm{x} t=$ apply_subst ( $\backslash \mathrm{y} \rightarrow$ if $\mathrm{y}==\mathrm{x}$ then t else $\operatorname{Var} \mathrm{y}$ )
unify :: [(Term, Term)] -> Maybe [(Var, Term)]
unify $u=$ unify_main $u$ []
unify_main :: [(Term, Term)] -> [(Var,Term)] -> Maybe [(Var, Term)]
unify_main [] v = Just v
-- return solved form
unify_main ((Fun f ts, Fun g ss) : u) v =
if $f==g$ \&\& length ts $==$ length $s s$
then unify_main (zip ts ss ++ u) v else Nothing
-- decompose
unify_main ((Fun fts, x) : u) v=
unify_main ( (x, Fun f ts) : u) v
-- clash
unify_main ((Var x, t) : u) v =
if $\operatorname{Var} \mathrm{x}==\mathrm{t}$ then unify_main $\mathrm{u} v$
else if $x$ ‘elem` vars_term $t$ then Nothing
-- swap
-- delete
(map $(\backslash(1, r) \rightarrow($ subst $x t l$, subst $x t r)) u)$
$((x, t): \operatorname{map}(\backslash(y, s) \rightarrow(y$, subst $x t s)) v)$

RT (DCS © UIBK)

## Notes on Implementation

- non-trivial to prove soundness of implementation, since there are several differences wrt.
- unify_main takes two parameters $u$ and $v$
- these represent one unification problem $u \cup v$
- rule-application is not tried on $v$, only on $u$
- we need to know that $v$ is in normal form wrt. $\rightsquigarrow$
- in (occurs check)-rule, the algorithm has no test that rhs is function application
- we need to show that this will follow from other conditions
- in (elimination)-rule, the algorithms substitutes only in rhss of $v$
- we need to know that substituting in lhss of $v$ has no effect
- in (elimination)-rule, the algorithm does not check that $x$ occurs in remaining problem
- we need to check that consequences don't harm


## Soundness via Refinement: Main Statement

- define set_maybe Nothing $=\perp$, set_maybe (Just $w)=$ set $w$
- property: whenever $(u, v) \sim U$ and unify_main $u \quad v=$ res then $U \rightsquigarrow$ ! set_maybe res
- once property is established, we can prove that implementation solves unification problems
- assume input $u$, i.e., invocation of unify $u$ which yields result res
- hence, unify_main $u[]=$ res
- moreover, $(u,[]) \sim$ set $u$ by definition of $\sim$
via property conclude set $u \rightsquigarrow$ ! set_maybe res
- at this point apply correctness of $\rightsquigarrow$ :
set_maybe res is the correct answer to the unification problem set $u$


## Soundness via Refinement: Setting up the Relation

Checking Pattern Disjointness

- relation $\sim$ formally aligns parameters of concrete algorithm ( $u$ and $v$ ) with
parameters of abstract algorithm $(U)$; $\sim$ also includes invariants of implementation
- set converts list to set, we identify $s \stackrel{?}{=} t$ with $(s, t)$
- $(u, v) \sim U$ iff
- $U=$ set $u \cup$ set $v$,
- set $v$ is in normal form wrt. $\rightsquigarrow$ (notation: set $v \in N F(\rightsquigarrow)$ ), and
- for all $(x, t) \in$ set $v: x$ does not occur in $u$
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal
- set $(x: x s)=\{x\} \cup$ set $x s$
set $(x s++y s)=$ set $x s \cup$ set $y s$
- set $\left(z i p\left[x_{1}, \ldots, x_{n}\right]\left[y_{1}, \ldots, y_{n}\right]\right)=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- set $\left(\operatorname{map} f\left[x_{1}, \ldots, x_{n}\right]\right)=\left\{f x_{1}, \ldots, f x_{n}\right\}$
- subst $x t s=s\{x / t\}$
- ...
these properties can be proven formally and also be applied formally
(although we don't do it in the upcoming proof)


## Proving the Refinement Property

- property $P(u, v, U):(u, v) \sim U \wedge$ unify_main $u v=$ res $\longrightarrow U \rightsquigarrow$ ! set_maybe res
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in \operatorname{set} v . x \notin \mathcal{V a r s}(u)$
- we prove the property $P(u, v, U)$ by induction on $u$ and $v$ wrt. the algorithm for arbitrary $U$, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls;
induction wrt. algorithm gives partial correctness result (assumes termination)
- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and $v$ ):
- we have to prove $P([], v, U)$, so assume
$\left.{ }^{*}{ }^{*}\right)([], v) \sim U$ and
(**) unify_main [] $v=$ res
- from $\left(^{*}\right)$ conclude $U=$ set $v$ and set $v \in N F(\rightsquigarrow)$
- from $\left(^{* *}\right)$ conclude res $=$ Just $v$ and hence, set_maybe res $=$ set $v$
- we have to show $U \rightsquigarrow$ ! set_maybe res, i.e., set $v \rightsquigarrow$ ! set $v$ which is satisfied since set $v \in N F(\rightsquigarrow)$
- $P(u, v, U):(u, v) \sim U \wedge$ unify_main $u v=$ res $\longrightarrow U \rightsquigarrow$ set_maybe res
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \mathcal{V} \operatorname{ars}(u)$
case 2 (arguments $(f(t s), g(s s)): u$ and $v$ )
- we have to prove $P((f(t s), g(s s)): u, v, U)$, so assume
$\left.{ }^{*}\right)((f(t s), g(s s)): u, v) \sim U$ and
$\left.{ }^{* *}\right)$ unify_main $((f(t s), g(s s)): u) v=r e s$
- consider sub-cases
- $\neg(f=g \wedge$ length $t s=$ length $s s)$ :
- from (**) conclude set_maybe res $=\perp$
- from $\left({ }^{*}\right)$ conclude $f(t s) \stackrel{?}{=} g(s s) \in U$ and hence $U \rightsquigarrow \perp$ by (clash)
- consequently, $U \leadsto$ ! set_maybe res
- $f=g \wedge$ length $t s=$ length $s s:$
- from $\left({ }^{* *}\right)$ conclude res $=$ unify_main $((f(t s), g(s s)): u) v=$ unify_main (zip ts ss $\left.++u\right) v$
- from $\left(^{*}\right)$ and alignment for zip and ++ conclude $U=\{f(t s) \stackrel{?}{=} g(s s)\} \cup$ set $u \cup$ set $v$ and hence $U \rightsquigarrow$ set (zip ts ss $++u) \cup$ set $v=: V$ by (decompose)
we get $P(z i p$ ts ss $++u, v, V)$ as IH ; (zip ts ss $++u, v) \sim V$ follows from (*), so $U \rightsquigarrow V \rightsquigarrow$ set_maybe res
$(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u$ case 4 (arguments $(x, t): u$ and $v$ )
- we have to prove $P((x, t): u, v, U)$, so assume
$\left(^{*}\right)((x, t): u, v) \sim U$ and
$\left.{ }^{* *}\right)$ unify_main $((x, t): u) v=r e s$
- consider sub-cases (where the red part is not triggered by structure of algorithm)
- $x \neq t \wedge x \notin \mathcal{V} \operatorname{ars}(t) \wedge x$ occurs in set $u \cup$ set $v$ :
- define $u^{\prime}=\operatorname{map}(\lambda(l, r)$. (subst $x t l$, subst $\left.x t r)\right) u$
- define $v^{\prime}=\operatorname{map}(\lambda(y, s) .(y$, subst $x t s)) v$
- define $V=($ set $u \cup$ set $v)\{x / t\} \cup\{x \stackrel{?}{=} t\}$
- from $\left(^{* *}\right)$ conclude res $=$ unify_main $((x, t): u) v=$ unify_main $u^{\prime}\left((x, t): v^{\prime}\right)$
- from IH conclude $P\left(u^{\prime},(x, t): v^{\prime}, V\right)$ and hence, $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V \longrightarrow V \rightsquigarrow$ ! set_maybe res
- for proving $U \rightsquigarrow$ ! set_maybe res it hence suffices to show $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V$ and $U \rightsquigarrow V$
- $U \stackrel{(*)}{=}\{x \stackrel{?}{=} t\} \cup$ set $u \cup$ set $v \rightsquigarrow($ set $u \cup$ set $v)\{x / t\} \cup\{x / t\}=V$
by (eliminate) because of preconditions
- $(u, v) \sim U \longleftrightarrow U=$ set $u \cup$ set $v \wedge$ set $v \in N F(\rightsquigarrow) \wedge \forall(x, t) \in$ set $v . x \notin \operatorname{Vars}(u)$
case 4 (arguments $(x, t): u$ and $v$ )
- we have to prove $P((x, t): u, v, U)$, so assume $\left(^{*}\right)((x, t): u, v) \sim U$ and. and consider sub-case $x \neq t \wedge x \notin \mathcal{V} \operatorname{ars}(t) \wedge x$ occurs in set $u \cup$ set $v$ :
- define $u^{\prime}=\operatorname{map}(\lambda(l, r)$. (subst $x t l$, subst $\left.x t r)\right) u$
- define $v^{\prime}=\operatorname{map}(\lambda(y, s) .(y$, subst $x t s)) v$
- define $V=($ set $u \cup$ set $v)\{x / t\} \cup\{x \stackrel{?}{=} t\}$
- we still need to show $\left(u^{\prime},(x, t): v^{\prime}\right) \sim V$
- since $\left(^{*}\right)$ holds, we know $\forall(y, s) \in$ set $v . x \neq y$
- hence, $v^{\prime}=\operatorname{map}(\lambda(y, s)$. (subst $x t y$, subst $\left.x t s)\right) v$
- so, $V=($ set $u)\{x / t\} \cup\{x \stackrel{?}{=} t\} \cup($ set $v)\{x / t\}=$ set $u^{\prime} \cup$ set $\left((x, t): v^{\prime}\right)$
- we show $\forall(y, s) \in \operatorname{set}\left((x, t): v^{\prime}\right)$. $y \notin \mathcal{V} \operatorname{ars}\left(u^{\prime}\right)$ as follows:
$x \notin \mathcal{V} \operatorname{ars}\left(u^{\prime}\right)$ since $x \notin \mathcal{V} \operatorname{ars}(t)$; and if $(y, s) \in \operatorname{set} v^{\prime}$, then $\left(y, s^{\prime}\right) \in$ set $v$ for some $s^{\prime}$ and
by $\left({ }^{*}\right)$ we conclude $y \notin \mathcal{V} \operatorname{ars}((x, t): u)$; thus, $y \notin \mathcal{V} \operatorname{Vars}(($ set $u)\{x / t\})=\mathcal{V} \operatorname{ars}\left(u^{\prime}\right)$
- we finally show set $\left((x, t): v^{\prime}\right) \in N F(\rightsquigarrow)$ : so, assume to the contrary that some step is applicable; by the shape of $\operatorname{set}\left((x, t): v^{\prime}\right)$ we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available facts


## Checking Pattern Completeness

## Semantics of Pattern Problems

- in the following algorithm and proofs, we always consider type-correct terms and substitutions wrt. $\Sigma=\mathcal{C} \cup \mathcal{D}$, but do not mention this explicitly
- a pattern problem is a set $P$ of pairs $(t, L)$ consisting of a term $t$ and a set of terms $L$
- $P$ is complete if for all $(t, L) \in P$ and all constructor ground substitutions $\sigma$ there is some $\ell \in L$ that matches $t \sigma$
- obviously, $P=\varnothing$ is complete
- we define $\perp$ as additional pattern problem, which is not complete
- define $L_{i n i t, f}$ as the set of all lhss of $f$-equations of the program
- define $P_{\text {init }}=\left\{\left(f\left(x_{1}, \ldots, x_{n}\right), L_{\text {init }, f}\right) \mid f \in \mathcal{D}\right\}$
- consequence: program is pattern complete iff $P_{\text {init }}$ is complete


## Checking Pattern Completeness

- reminder: program is pattern complete, if for all $f: \tau_{1} \times \ldots \times \tau_{n} \rightarrow \tau \in \mathcal{D}$ and all $t_{i} \in \mathcal{T}(\mathcal{C})_{\tau_{i}}$ there is some Ihs that matches $f\left(t_{1}, \ldots, t_{n}\right)$
- idea of abstract algorithm
- a pattern problem is a set $P$ of pairs $(t, L)$ where
- $t$ is a term, representing the set of all its constructor ground instances
- $L$ is a set of left-hand sides that potentially match instances of $t$
- initially, $P=\left\{\left(f\left(x_{1}, \ldots, x_{n}\right)\right.\right.$, set of all lhss of $f$-equations $\left.) \mid f \in \mathcal{D}\right\}$
- whenever some left-hand side $\ell \in L$ cannot match any instance of $t$ anymore, it can be removed
- whenever $L$ becomes empty, then no instance of $t$ can be matched
- whenever all constructor ground instances of $t$ are matched by $L$, then $(t, L)$ can be removed from $P$
- when $P$ becomes empty, pattern completeness should be guaranteed
- if none of the above is applicable, we instantiate $t$
- initial task: think about exact statement, what kind of property of pattern problem we are investigating (similar to definition of solution of unification problem)


## Deciding Completeness of Pattern Problems

- we develop abstract algorithm that is similar to abstract unification algorithm, it is defined via a one step relation $\rightarrow$ that transforms pattern problems into equivalent simpler problems
- it uses the matching algorithm of slides 3/23-29 (with detailed error results) as auxiliary algorithm
- $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P$, if $\ell$ matches $t$
- $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P \cup\{(t, L)\}$, if match $\ell t$ clashes
- $P \cup\{(t, \varnothing)\} \rightharpoonup \perp$
- $P \cup\{(t, L)\} \rightharpoonup P \cup\left\{\left(t \sigma_{1}, L\right), \ldots,\left(t \sigma_{n}, L\right)\right\}$, if
- $\ell \in L$ and match $\ell t$ results in fun-var-conflict with variable $x$
the type of $x$ is $\tau$
- $\tau$ has $n$ constructors $c_{1}, \ldots, c_{n}$
- $\sigma_{i}=\left\{x / c_{i}\left(x_{1}, \ldots, x_{k}\right)\right\}$ where $k$ is the arity of $c_{i}$ and the $x_{i}$ 's are distinct fresh variables


## Example

consider
data Bool = True: Bool | False: Bool

$$
\begin{aligned}
\ell_{1}:=\operatorname{conj}(\text { True, True }) & =\ldots \\
\ell_{2} & :=\operatorname{conj}(\text { False }, y)
\end{aligned}=\ldots .
$$

then we have

$$
\begin{aligned}
P_{\text {init }} & =\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right),\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}\right),\left(\operatorname{conj}\left(\text { False, } x_{2}\right),\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}, \ell_{3}\right\}\right),\left(\operatorname{conj}\left(\text { False }, x_{2}\right),\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}, \ell_{3}\right\}\right),\left(\operatorname{conj}\left(\text { False }, x_{2}\right),\left\{\ell_{2}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True, } x_{2}\right),\left\{\ell_{1}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}(\text { True }, \text { True }),\left\{\ell_{1}, \ell_{3}\right\}\right),\left(\operatorname{conj}(\text { True, False }),\left\{\ell_{1}, \ell_{3}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}(\text { True }, \text { False }),\left\{\ell_{1}, \ell_{3}\right\}\right)\right\}
\end{aligned}
$$

RT (DCS @ UIBK)


## Example

Checking Pattern Completeness
consider

> data Bool = True : Bool | False : Bool

$$
\begin{aligned}
\ell_{1}:=\operatorname{conj}(\text { True }, \text { True }) & =\ldots \\
\quad \ell_{2} & :=\operatorname{conj}(\text { False }, y)
\end{aligned}=\ldots .
$$

then we have

$$
\begin{aligned}
P_{\text {init }} & =\left\{\left(\operatorname{conj}\left(x_{1}, x_{2}\right),\left\{\ell_{1}, \ell_{2}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}, \ell_{2}\right\}\right),\left(\operatorname{conj}\left(\text { False }, x_{2}\right),\left\{\ell_{1}, \ell_{2}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}\right\}\right),\left(\operatorname{conj}\left(\text { False }, x_{2}\right),\left\{\ell_{1}, \ell_{2}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}\left(\text { True }, x_{2}\right),\left\{\ell_{1}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}(\text { True }, \text { True }),\left\{\ell_{1}\right\}\right),\left(\operatorname{conj}(\text { True }, \text { False }),\left\{\ell_{1}\right\}\right)\right\} \\
& \rightharpoonup\left\{\left(\operatorname{conj}(\text { True }, \text { False }),\left\{\ell_{1}\right\}\right)\right\} \\
& \rightharpoonup\{(\operatorname{conj}(\text { True, False }), \varnothing)\} \\
& \rightharpoonup \perp
\end{aligned}
$$

## Partial Correctness of -

- definition: $P$ is complete if for all $(t, L) \in P$ and all constructor ground substitutions $\sigma$ there is some $\ell \in L$ that matches $t \sigma$
- theorem: whenever $P \rightharpoonup Q$, then $P$ is complete iff $Q$ is complete
- corollary: if $P \rightharpoonup^{*} \varnothing$ then $P$ is complete,
and if $P \rightharpoonup^{*} \perp$ then $P$ is not complete
- proof of theorem
- (match): $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P$, if $\ell$ matches $t$
- we only have to show that $\{(t,\{\ell\} \cup L)\}$ is complete, i.e., for all constructor ground substitutions $\sigma$ there must be some $\ell^{\prime} \in\{\ell\} \cup L$ that matches $t \sigma$
- since $\ell$ matches $t$, we know that $t=\ell \gamma$ for some substitution $\gamma$
- consequently $t \sigma=(\ell \gamma) \sigma=\ell(\gamma \sigma)$, i.e., $\ell$ matches $t \sigma$ and obviously $\ell \in\{\ell\} \cup L$
- (fail): $P \cup\{(t, \varnothing)\} \rightharpoonup \perp$
- both matching problems are not complete: $\perp$ by definition, and for $(t, \varnothing)$ there obviously isn't any $\ell \in \varnothing$ which matches $t \sigma$


## Partial Correctness of $\rightharpoonup$, continued

- definition: $P$ is complete if for all $(t, L) \in P$ and all constructor ground substitutions $\sigma$ there is some $\ell \in L$ that matches $t \sigma$
- proof continued
- (clash): $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P \cup\{(t, L)\}$, if match $\ell t$ clashes
- if suffices to show that $\ell$ cannot match any instance of $t$, i.e., match $\ell(t \sigma)$ will always fail
- to this end we require an auxiliary property of the matching algorithm
- for a matching problem $M$, define $M \sigma=\{(\ell, r \sigma) \mid(\ell, r) \in M\}$, i.e., where $\sigma$ is applied on rhss, and $\perp \sigma=\perp$
- lemma: whenever $M$ is transformed into $M^{\prime}$ by rule (decompose) or (clash), then $M \sigma$ is transformed into $M^{\prime} \sigma$ by the same rule
- hence, since match $\ell t$ clashes, we conclude that match $\ell(t \sigma)$ clashes
- definition: $P$ is complete if for all $(t, L) \in P$ and all constructor ground substitutions $\sigma$ there is some $\ell \in L$ that matches $t \sigma$
- proof continued
- (split): $P \cup\{(t, L)\} \rightharpoonup P \cup\left\{\left(t \sigma_{1}, L\right), \ldots,\left(t \sigma_{n}, L\right)\right\}$, where $x: \tau$,
$\tau$ has constructors $c_{1}, \ldots, c_{n}$ and $\sigma_{i}=\left\{x / c_{i}\left(x_{1}, \ldots, x_{k}\right)\right\}$ for fresh $x_{i}$
- we only consider one direction of the proof: we assume that the rhs of $\rightharpoonup$ is complete and prove that the Ihs is complete
- to this end, consider an arbitrary constructor ground substitution $\sigma$ and we have to show that $t \sigma$ is matched by some element of $L$
- since $\sigma$ is constructor ground, we know $\sigma(x)=c_{i}\left(t_{1}, \ldots, t_{k}\right)$ for some constructor $c_{i}$ and constructor ground terms $t_{1}, \ldots, t_{k}$
- define $\gamma(y)= \begin{cases}t_{j}, & \text { if } y=x_{j} \\ \sigma(y), & \text { otherwise }\end{cases}$
- $\gamma$ is well-defined since the $x_{j}$ 's are distinct
- $\gamma$ is a constructor ground substitution
- $t \sigma=t \sigma_{i} \gamma$ since the $x_{j}$ 's are fresh
- since $\left(t \sigma_{i}, L\right)$ is an element of the rhs of $\rightharpoonup$ and the assumed completeness, we conclude that there is some element of $L$ that matches $\left(t \sigma_{i}\right) \gamma$ and consequently, also $t \sigma$


## $\rightarrow$ Cannot Get Stuck

- $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P$, if $\ell$ matches $t$
- $P \cup\{(t,\{\ell\} \cup L)\} \rightharpoonup P \cup\{(t, L)\}$, if match $\ell t$ results in clash
- $P \cup\{(t, \varnothing)\} \rightharpoonup \perp$
- $P \cup\{(t, L)\} \rightharpoonup P \cup\left\{\left(t \sigma_{1}, L\right), \ldots,\left(t \sigma_{n}, L\right)\right\}$, if
- $\ell \in L$ and match $\ell t$ results in fun-var-conflict with variable $x$ and ..
- lemma: whenever $P$ is in normal form wrt. $\rightharpoonup$ and for all $(t, L) \in P$ and all $\ell \in L$, the Ihs $\ell$ is linear, then $P \in\{\varnothing, \perp\}$
- proof by contradiction
- assume $P$ is such a normal form, $P \notin\{\varnothing, \perp\}$
- hence, $(t, L) \in P$ for some $t$ and $L$
- since (fail) is not applicable, $L \neq \varnothing$, i.e., $\ell \in L$ for some $\ell$
- as (match) is not applicable, match $\ell t$ must fail
- as (clash) and (split) are not applicable the failure can only be a var-clash
- however, a var-clash cannot occur since $\ell$ is linear


## Implementing $\rightarrow$

- a direct implementation of $\rightarrow$ mainly faces two problems (exercise)
- handling of fresh variable
- figuring out constructors in (split)
- direct: matching algorithm is started from scratch every time
- an optimized implementation should try to reuse previous runs of matching algorithm after applying (split)
- this will require changes in the interface of matching algorithm


## Summary on Pattern Completeness

- pattern completeness of functional programs is decidable:
program is pattern complete iff $P_{\text {init }} \Delta!\varnothing$
- partial correctness was proven via invariant of -
- proof required additional properties of matching algorithm
- termination of $\rightharpoonup$ was shown informally
- formal proof would require further properties of matching algorithm
- termination proof was tricky, definitely requiring human interaction
- in contrast: upcoming part is on automated termination proving


## Termination of Programs

- the question of termination is a famous problem
- Turing showed that "halting problem" is undecidable
halting problem
- question: does program (Turing machine) terminate on given input
- problem is semi-decidable: positive instances can always be identified
- algorithm: just simulate the program and then say "yes, terminates"
we here consider universal termination, i.e., termination on all inputs
- universal termination is not even semi-decidable
- despite theoretical limits: often termination can be proven automatically


## Termination of Functional Programs

- for termination, we mainly consider functional programs which are pattern-disjoint; hence, $\hookrightarrow$ is confluent
- consequence: it suffices to prove innermost termination, i.e., the restriction of $\hookrightarrow$ such that arguments $t_{i}$ will be fully evaluated before evaluating a function invocation $f\left(t_{1}, \ldots, t_{n}\right)$
- example without confluence

$$
\begin{aligned}
\mathrm{f}(\text { True, False, } x) & =\mathrm{f}(x, x, x) \\
\mathrm{f}(\ldots, \ldots, x) & =x \quad \text { (all other cases) } \\
\text { coin } & =\text { True } \\
\text { coin } & =\text { False }
\end{aligned}
$$

- both $f$ and coin terminate if seen as separate programs
- program is innermost terminating, but not terminating in general

RT (DCS @ UIBK)
$\mathrm{f}($ True, False, coin $) \hookrightarrow \mathrm{f}($ coin, coin, coin $) \hookrightarrow^{2} \mathrm{f}($ True, False, coin $) \hookrightarrow \ldots$

$$
\text { Part } 4 \text { - Checking Well-Definedness of Functional Programs }
$$

## Strong Normalization

- relation $\succ$ is strongly normalizing, written $S N(\succ)$, if there is no infinite sequence

$$
a_{1} \succ a_{2} \succ a_{3} \succ \ldots
$$

- strong normalization is other notion for termination
- strong normalization is also equivalent to induction; the following two conditions are equivalent
- $S N(\succ)$
- $\forall P .(\forall x .(\forall y . x \succ y \longrightarrow P y) \longrightarrow P x) \longrightarrow(\forall x . P x)$
- equivalence shows why it is possible to perform induction wrt. algorithm for terminating programs


## Termination Analysis with Dependency Pairs

- aim: prove $S N(\stackrel{i}{\hookrightarrow})$
- only reason for potential non-termination: recursive calls
- for each recursive call of eqn. $f\left(t_{1}, \ldots, t_{n}\right)=\ell=r \unrhd f\left(s_{1}, \ldots, s_{n}\right)$ build one dependency pair with fresh (constructor) symbol $f^{\sharp}$ :

$$
f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \rightarrow f^{\sharp}\left(s_{1}, \ldots, s_{n}\right)
$$

define $D P$ as the set of all dependency pairs

- example program for Ackermann function has three dependency pairs

$$
\begin{aligned}
\operatorname{ack}(\text { Zero }, y) & =\operatorname{Succ}(y) \\
\operatorname{ack}(\operatorname{Succ}(x), \text { Zero }) & =\operatorname{ack}(x, \operatorname{Succ}(\text { Zero })) \\
\operatorname{ack}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{ack}(x, \operatorname{ack}(\operatorname{Succ}(x), y)) \\
\operatorname{ack}^{\sharp}\left(\operatorname{Succ}(x), \text { Zero }^{*}\right) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{Succ}(\text { Zero })) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(x, \operatorname{ack}(\operatorname{Succ}(x), y)) \\
\operatorname{ack}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{ack}^{\sharp}(\operatorname{Succ}(x), y)
\end{aligned}
$$

## Termination Analysis with Dependency Pairs, continued

- dependency pairs provide characterization of termination
- definition: let $P \subseteq D P$; a $P$-chain is a possible infinite sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma_{i} \in N F(\hookrightarrow)$

- $s_{i} \sigma_{i} \rightarrow t_{i} \sigma_{i}$ represent the "main" recursive calls that may lead to non-termination
- $t_{i} \sigma_{i} \stackrel{\text { i }}{ }{ }^{*} s_{i+1} \sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls
- theorem: $S N(\stackrel{i}{\hookrightarrow})$ iff there is no infinite $D P$-chain
- advantage of dependency pairs
- in infinite chain, non-terminating recursive calls are always applied at the root
- simplifies termination analysis


## Proving Termination

- global approaches
- try to find one termination argument that no infinite chain exists
- iterative approaches
- identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
- remove harmless dependency pairs from set of dependency pairs
- until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incremental
- incremental: a termination proof of some function stays valid
if later on other functions are added to the program
- incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 57


## Example of Evaluation and Chain

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{minus}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- example innermost evaluation
$\operatorname{div}(\operatorname{Succ}($ Zero $), \operatorname{Succ}($ Zero $))$
$\stackrel{i}{\hookrightarrow}$ Succ( $\operatorname{div}($ minus(Zero, Zero), Succ(Zero)))
$\stackrel{i}{\hookrightarrow} \operatorname{Succ}(\operatorname{div}($ Zero, Succ(Zero) $))$
$\stackrel{i}{\hookrightarrow}$ Succ(Zero)
and its (partial) representation as $D P$-chain

$$
\begin{aligned}
& \operatorname{div}^{\sharp}(\text { Succ (Zero) , Succ(Zero) }) \\
& \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(\text { Zero, Zero }), \operatorname{Succ}(\text { Zero })) \\
& \hookrightarrow^{*} \operatorname{div}^{\sharp}(\text { Zero, Succ(Zero) })
\end{aligned}
$$

Termination - Subterm Criterion

## A First Termination Technique - The Subterm Criterion

- the subterm criterion works as follows
- let $P \subseteq D P$
- choose $f^{\sharp}$, a symbol of arity $n$
- choose some argument position $i \in\{1, \ldots, n\}$
- demand $s_{i} \unrhd t_{i}$ for all $f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \in P$
- define $P_{\triangleright}=\left\{f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right) \in P \mid s_{i} \triangleright t_{i}\right\}$
- then for proving absence of infinite $P$-chains it suffices to prove absence of infinite $P \backslash P_{\triangleright}$-chains, i.e., one can remove all pairs in $P_{\triangleright}$


## - observations

- easy to test: just find argument position $i$ such that each $i$-th argument of all
$f^{\sharp}$-dependency pairs decreases wrt. $\unrhd$ and then remove all strictly decreasing pairs
- incremental method: adding other dependency pairs for $g^{\sharp}$ later on will have no impact
- can be applied iteratively
- fast, but limited power


## Subterm Criterion - Soundness Proof

- assume the chosen parameters in the subterm criterion are $f^{\sharp}$ and $i$
- it suffices to prove that there is no infinite chain

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{j} \rightarrow t_{j} \in P$, all $s_{j}$ and $t_{j}$ have $f^{\sharp}$ as root and there are infinitely many $s_{j} \rightarrow t_{j} \in P_{\triangleright}$; perform proof by contradiction

- hence all $s_{j} \rightarrow t_{j}$ are of the form $f^{\sharp}\left(s_{j, 1}, \ldots, s_{j, n}\right) \rightarrow f^{\sharp}\left(t_{j, 1}, \ldots, t_{j, n}\right)$
- from condition $s_{j, i} \unrhd t_{j, i}$ of criterion conclude $s_{j, i} \sigma_{j} \unrhd t_{j, i} \sigma_{j}$ and if $s_{j} \rightarrow t_{j} \in P_{\triangleright}$ then $s_{j, i} \triangleright t_{j, i}$ and thus $s_{j, i} \sigma_{j} \triangleright t_{j, i} \sigma_{j}$
- we further know $t_{j, i} \sigma_{j}{ }^{i}{ }^{*} s_{j+1, i} \sigma_{j+1}$ since $f^{\sharp}$ is a constructor
- this implies $t_{j, i} \sigma_{j}=s_{j+1, i} \sigma_{j+1}$ since $t_{j, i} \sigma_{j} \in N F(\hookrightarrow)$ as $t_{j, i} \sigma_{j} \unlhd s_{j, i} \sigma_{j} \triangleleft f^{\sharp}\left(s_{j, 1} \sigma_{j}, \ldots, s_{j, n} \sigma_{j}\right)=s_{j} \sigma_{j} \in N F(\hookrightarrow)$
- obtain an infinite sequence with infinitely many $\triangleright$; this is a contradiction to $S N(\triangleright)$

$$
s_{1, i} \sigma_{1} \unrhd t_{1, i} \sigma_{1}=s_{2, i} \sigma_{2} \unrhd t_{2, i} \sigma_{2}=s_{3, i} \sigma_{3} \unrhd t_{3, i} \sigma_{3}=\ldots
$$

## The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
- let $f^{\sharp}$ be a symbol of arity $n$
- a size-change graph for $f^{\sharp}$ is a bipartite graph $G=(V, W, E)$
- the nodes are $V=\left\{1_{\text {in }}, \ldots, n_{\text {in }}\right\}$ and $W=\left\{1_{\text {out }}, \ldots, n_{\text {out }}\right\}$
- $E$ is a set of directed edges between in- and out-nodes labelled with $\succ$ or $\succsim$
the size-change graph $G$ of a dependency pair $f^{\sharp}\left(s_{1}, \ldots, s_{n}\right) \rightarrow f^{\sharp}\left(t_{1}, \ldots, t_{n}\right)$ defines $E$ as follows
- $i_{\text {in }} \xrightarrow{\succ} j_{\text {out }} \in E$ whenever $s_{i} \triangleright t_{j} \quad$ (strict decrease)
- $i_{\text {in }} \underset{\rightarrow}{\approx} j_{\text {out }} \in E$ whenever $s_{i}=t_{j}$
(weak decrease)
- in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are omitted


## Multigraphs and Concatenation

- graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency pairs
- definition: let $\mathcal{G}$ be a set of size-change graphs for the same symbol $f^{\sharp}$; then the set of multigraphs for $f^{\sharp}$ is defined as follows
- every $G \in \mathcal{G}$ is a multigraph
- whenever there are multigraphs $G_{1}$ and $G_{2}$ with edges $E_{1}$ and $E_{2}$ then also the concatenated graph $G=G_{1} \cdot G_{2}$ is a multigraph; here, the edges of $E$ of $G$ are defined as
- if $i \rightarrow j \in E_{1}$ and $j \rightarrow k \in E_{2}$, then $i \rightarrow k \in E$
- if at least one of the edges $i \rightarrow j$ and $j \rightarrow k$ is labeled with $\succ$ then $i \rightarrow k$ is labeled with $\succ$, otherwise with $\succsim$
- if the previous rules would produce two edges $i \overleftrightarrow{\hookrightarrow} k$ and $i \stackrel{\succsim}{\rightrightarrows} k$, then only the former is added to $E$
- a multigraph $G$ is maximal if $G=G \cdot G$
- since there are only finitely many possible sets of edges, the set of multigraphs is finite and can easily be computed


## Size-Change Termination

- instead of multigraphs, one can also glue two graphs $G_{1}$ and $G_{2}$ by just identifying the out-nodes of $G_{1}$ with the in-nodes of $G_{2}$, defined as $G_{1} \circ G_{2}$; in this way it is also possible to consider an infinite sequence of graphs $G_{1} \circ G_{2} \circ G_{3} \circ \ldots$.
- example:

$$
G_{(7)} \circ G_{(8)} \circ G_{(8)} \circ G_{(7)}: 1 \stackrel{\ddots}{\succ}
$$

- definition: a set $\mathcal{G}$ of size-change graph is size-change terminating iff for every infinite concatenation of graphs of $\mathcal{G}$ there is a path with infinitely many $\begin{aligned} & \succ \\ & \text {-edges }\end{aligned}$
- theorem: let $P$ be a set of dependency pairs for symbol $f^{\sharp}$ and $\mathcal{G}$ be the corresponding size-change graphs; if $\mathcal{G}$ is size-change terminating, then there is no infinite $P$-chain
- the proof is mostly identical to the one of the subterm criterion


## Proof of Theorem: Easy Direction (1. implies 2.)

- assume that $\mathcal{G}$ is size-change terminating, and consider any maximal graph $G$
- since $G$ is a multigraph, it can be written as $G=G_{1} \cdot \ldots \cdot G_{n}$ with each $G_{i} \in \mathcal{G}$
- consider infinite graph $G_{1} \circ \ldots \circ G_{n} \circ G_{1} \circ \ldots \circ G_{n} \circ \ldots$
- because of size-change termination, this graph contains path with infinitely many $\rightarrow$-edges
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\xrightarrow{\succ}$-edges
- on this path some index $i$ must be visited infinitely often
- hence there is a path of length $k$ such that $G \circ G \circ \ldots \circ G$ ( $k$-times) contains a path from the leftmost argument $i$ to the rightmost argument $i$ with at least one $\leftrightarrows$-edge
- consequently $G \bullet G \bullet \ldots \cdot G(k$-times $)$ contains an edge $i \xrightarrow{\succ} i$
- by maximality, $G=G \cdot G \bullet \ldots \cdot G$, and thus $G$ contains an edge $i \xrightarrow{\succ} i$


## Ramsey's Theorem

- definition: given set $X$ and $n \in \mathbb{N}$, we define $X^{(n)}$ as the set of all subsets of $X$ of size $n$; formally:

$$
X^{(n)}=\{Z|Z \subseteq X \wedge| Z \mid=n\}
$$

- Ramsey's Theorem - Infinite Version
- let $n \in \mathbb{N}$
- let $C$ be a finite set of colors
let $X$ be an infinite set
- let $c$ be a coloring of the size $n$ sets of $X$, i.e., $c: X^{(n)} \rightarrow C$
- theorem: there exists an infinite subset $Y \subseteq X$ such that all size $n$ sets of $Y$ have the same color


## Proof of Ramsey's Theorem

- Ramsey's Theorem - Infinite Version
- let $n \in \mathbb{N}$
- let $C$ be a finite set of colors
- let $X$ be an infinite set
- let $c$ be a coloring of the size $n$ sets of $X$, i.e., $c: X^{(n)} \rightarrow C$
- theorem: there exists an infinite subset $Y \subseteq X$ such that all size $n$ sets of $Y$ have the same color
- proof of Ramsey's theorem is interesting
- it is simple, in that it only uses standard induction on $n$ with arbitrary $c$ and $X$
- it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case $n=0$ is trivial, since there is only one size- 0 set: the empty set

Proof of Theorem: Hard Direction (2. implies 1.)

- consider some arbitrary infinite graph $G_{0} \circ G_{1} \circ G_{2} \circ \ldots$
- for $n<m$ define $G_{n, m}=G_{n} \cdot \ldots \cdot G_{m-1}$
- by Ramsey's theorem there is an infinite set $I \subseteq \mathbb{N}$ such that $G_{n, m}$ is always the same graph $G$ for all $n, m \in I$ with $n<m$ $\left(n=2, C=\right.$ multigraphs, $\left.X=\mathbb{N}, c(\{n, m\})=G_{\min \{n, m\}, \max \{n, m\}}\right)$
- $G$ is maximal: for $n_{1}<n_{2}<n_{3}$ with $\left\{n_{1}, n_{2}, n_{3}\right\} \subseteq I$, we have $G_{n_{1}, n_{3}}=G_{n_{1}} \cdot \ldots \cdot G_{n_{2}-1} \cdot G_{n_{2}} \cdot \ldots \cdot G_{n_{3}-1}=G_{n_{1}, n_{2}} \cdot G_{n_{2}, n_{3}}$, and thus $G=G \cdot G$
- by assumption, $G$ contains edge $i \overleftrightarrow{\rightarrow} i$
- let $I=\left\{n_{1}, n_{2}, \ldots\right\}$ with $n_{1}<n_{2}<\ldots$ and obtain

$$
\begin{aligned}
& G_{0} \circ G_{1} \circ \ldots \\
= & G_{0} \circ \ldots \circ G_{n_{1}-1} \circ G_{n_{1}} \circ \ldots \circ G_{n_{2}-1} \circ G_{n_{2}} \circ \ldots \circ G_{n_{3}-1} \circ \ldots \\
\sim & G_{0} \circ \ldots \circ G_{n_{1}-1} \circ G
\end{aligned}
$$

so that edge $i \xrightarrow{\succ} i$ of $G$ delivers path with infinitely many $\xrightarrow{\succ}$-edges
RT (DCS © UIBK)
Part 4 - Checking Well-Definedness of Functional Program

Proof of Ramsey's Theorem - Step Case $n=m+1$

- define $X_{0}=X$
- pick an arbitrary element $a_{0}$ of $X_{0}$
- define $Y_{0}=X_{0} \backslash\left\{a_{0}\right\}$; define coloring $c^{\prime}: Y_{0}^{(m)} \rightarrow C$ as $c^{\prime}(Z)=c\left(Z \cup\left\{a_{0}\right\}\right)$
- IH yields infinite subset $X_{1} \subseteq Y_{0}$ such that all size $m$ sets of $X_{1}$ have the same color $c_{0}$ w.r.t. $c^{\prime}$
- hence, $c\left(\left\{a_{0}\right\} \cup Z\right)=c_{0}$ for all $Z \in X_{1}^{(m)}$
- next pick an arbitrary element $a_{1}$ of $X_{1}$ to obtain infinite set $X_{2} \subseteq X_{1} \backslash\left\{a_{1}\right\}$ such that $c\left(\left\{a_{1}\right\} \cup Z\right)=c_{1}$ for all $Z \in X_{2}^{(m)}$
- by iterating this obtain elements $a_{0}, a_{1}, a_{2}, \ldots$, colors $c_{0}, c_{1}, c_{2} \ldots$ and sets $X_{0}, X_{1}, X_{2}, \ldots$ satisfying the above properties
- since $C$ is finite there must be some color $d$ in the infinite list $c_{0}, c_{1}, \ldots$ that occurs infinitely often; define $Y=\left\{a_{i} \mid c_{i}=d\right\}$
- $Y$ has desired properties since all size $n$ sets of $Y$ have color $d$ : if $Z \in Y^{(n)}$ then $Z$ can be written as $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ with $i_{1}<\ldots<i_{n}$; hence, $Z=\left\{a_{i_{1}}\right\} \cup Z^{\prime}$ with $Z^{\prime} \in X_{i_{1}+1}^{(m)}$ $\underset{\text { © © С., }}{\text { i.K) }} c(Z)=c_{i_{1}}=d$
RT (DCS © UIBK)
Part 4 - Checking Well-Definedness of Functional Programs


## Summary of Size-Change Principle

- size-change principle abstracts dependency pairs into set of size-change graphs
- if no critical graph exists (multigraph without edge $i \hookrightarrow i$ ), termination is proven
- soundness relies upon Ramsey's theorem
- subsumes subterm criterion
- still no handling of defined symbols in dependency pairs as in

$$
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
$$

## Reduction Pairs

- recall definition: $P$-chain is sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma_{i} \in N F(\hookrightarrow)$

- previously we used $\triangleright$ on $s_{i} \rightarrow t_{i}$ to ensure decrease $s_{i} \sigma_{i} \triangleright t_{i} \sigma_{i}$
- previously we used $s_{i} \sigma \in N F(\hookrightarrow)$ and $\unrhd$ to turn ${ }^{i}{ }^{*}$ into $=$
- now generalize $\triangleright$ to strongly normalizing relation $\succ$
- now demand $\ell \succsim r$ for equations to ensure decrease $t_{i} \sigma_{i} \succsim s_{i+1} \sigma_{i+1}$
- definition: reduction pair $(\succ, \succsim)$ is pair of relations such that
- $S N(\succ)$
- $\succsim$ is transitive
- $\succ$ and $\succsim$ are compatible: $\succ 0 \succsim \subseteq \succ$
- both $\succ$ and $\succsim$ are closed under substitutions: $s \succsim t \longrightarrow s \sigma \succsim t \sigma$
- $\succsim$ is closed under contexts: $s \succsim t \longrightarrow F(\ldots, s, \ldots) \succsim F(\ldots, t, \ldots)$
- note: $\succ$ does not have to be closed under contexts


## Termination - Reduction Pairs

## Applying Reduction Pairs

- recall definition: $P$-chain is sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma \in N F(\hookrightarrow)$

- demand $s \succsim t$ for all $s \rightarrow t \in P$ to ensure $s_{i} \sigma_{i} \succsim t_{i} \sigma_{i}$
- demand $\ell \succsim r$ for all equations to ensure $t_{i} \sigma_{i} \succsim s_{i+1} \sigma_{i+1}$
- define $P_{\succ}=\{s \rightarrow t \in P \mid s \succ t\}$
- effect: pairs in $P_{\succ}$ cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite $P$-chain, then there also is an infinite $P \backslash P_{\succ}$-chain


## Example

Termination - Reduction Pairs

- remaining termination problem

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- constraints


## Usable Equations

$$
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
$$

- requiring $\ell \succsim r$ for all program equations $\ell=r$ is quite demanding
- not incremental, i.e., adding other functions later will invalidate proof
- not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations $\mathcal{U}$ wrt. a set $P$ are program equations of those symbols that occur in $P$ or that are invoked by (other) usable equations; formally, let $\mathcal{E}$ be set of equations of program, let $\operatorname{root}(f(\ldots))=f$; then $\mathcal{U}$ is defined as

$$
\begin{aligned}
\frac{s \rightarrow t \in P}{} \quad t \unrhd u \quad \ell=r \in \mathcal{E} \quad \text { root } u=\operatorname{root} \ell \\
\ell=r \in \mathcal{U} \\
\frac{\ell^{\prime}=r^{\prime} \in \mathcal{U}}{} \quad r^{\prime} \unrhd u \quad \ell=r \in \mathcal{E} \quad \text { root } u=\operatorname{root} \ell \\
\ell=r \in \mathcal{U}
\end{aligned}
$$

- observation whenever $t_{i} \sigma_{i} \stackrel{i}{~}^{*} s_{i+1} \sigma_{i+1}$ in chain, then only usable equations of $\left\{s_{i} \rightarrow t_{i}\right\}$ can be used $\qquad$


## Applying Reduction Pairs with Usable Equations

- recall definition: $P$-chain is sequence

$$
s_{1} \sigma_{1} \rightarrow t_{1} \sigma_{1} \stackrel{i}{\hookrightarrow}^{*} s_{2} \sigma_{2} \rightarrow t_{2} \sigma_{2} \stackrel{i}{\hookrightarrow}^{*} s_{3} \sigma_{3} \rightarrow t_{3} \sigma_{3} \stackrel{i}{\hookrightarrow}^{*} \ldots
$$

such that all $s_{i} \rightarrow t_{i} \in P$ and all $s_{i} \sigma \in N F(\hookrightarrow)$

- choose a symbol $f^{\sharp}$ and define $P_{f^{\sharp}}=\left\{s \rightarrow t \in P \mid\right.$ root $\left.s=f^{\sharp}\right\}$
- demand $s \succsim t$ for all $s \rightarrow t \in P_{f^{\sharp}}$
- demand $\ell \succsim r$ for all $l=r \in \mathcal{U}$ where $\mathcal{U}$ are usable equations wrt. $P_{f^{\sharp}}$
- define $P_{\succ}=\left\{s \rightarrow t \in P_{f^{\sharp}} \mid s \succ t\right\}$
- effect: pairs in $P_{\succ}$ cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite $P$-chain, then there also is an infinite $P \backslash P_{\succ}$-chain


## Example with Usable Equations

- remaining termination problem

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & =x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{minus}(x, y) \\
\operatorname{div}(\operatorname{Zero}, \operatorname{Succ}(y)) & =\operatorname{Zero} \\
\operatorname{div}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x, y), \operatorname{Succ}(y))) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \rightarrow \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- constraints

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- because of usable equations, applying reduction pairs becomes incremental: new function definitions won't increase usable equations of DPs of previously defined equations
RT (DCS © UIBK)


## Remaining Problem

Termination - Reduction Pairs

- given constraints

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

find a suitable reduction pair such that these constraints are satisfied

- many such reductions pair are available (cf. term rewriting lecture)
- Knuth-Bendix order (constraint solving is in P)
- recursive path order (NP-complete)
- polynomial interpretations (undecidable)
- powerful
- intuitive
- automatable
- matrix interpretations (undecidable)
- weighted path order (undecidable)


## Polynomial Interpretation

- interpret each $n$-ary symbol $F$ as polynomial $p_{F}\left(x_{1}, \ldots, x_{n}\right)$
- polynomials are over $\mathbb{N}$ and have to be weakly monotone

$$
x_{i} \geq y_{i} \longrightarrow p_{F}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \geq p_{F}\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)
$$

sufficient criterion: forbid subtraction and negative numbers in $p_{F}$

- interpretation is lifted to terms by composing polynomials

$$
\begin{aligned}
\llbracket x \rrbracket & =x \\
\llbracket F\left(t_{1}, \ldots, t_{n}\right) \rrbracket & =p_{F}\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)
\end{aligned}
$$

- $(\underset{)}{ }$ is defined as

$$
s \succsim t \text { iff } \forall \vec{x} \in \mathbb{N}^{*} . \llbracket s \rrbracket_{(\geq)} \llbracket t \rrbracket
$$

- $(\succ, \succsim)$ is a reduction pair, e.g.,
- $S N(\succ)$ follows from strong-normalization of $>$ on $\mathbb{N}$
- $\succsim$ is closed under contexts since each $p_{F}$ is weakly monotone


## Example - Polynomial Interpretation

- given constraints

$$
\begin{aligned}
\operatorname{minus}(x, \text { Zero }) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

and polynomial interpretation

$$
\begin{aligned}
p_{\text {minus }}\left(x_{1}, x_{2}\right) & =x_{1} \\
p_{\text {Zero }} & =2 \\
p_{\text {Succ }}\left(x_{1}\right) & =1+x_{1} \\
p_{\text {div }}\left(x_{1}, x_{2}\right) & =x_{1}+3 x_{2}
\end{aligned}
$$

we obtain polynomial constraints

$$
\begin{gathered}
\llbracket \operatorname{minus}(x, \text { Zero }) \rrbracket=x \geq x=\llbracket x \rrbracket \\
\llbracket \operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) \rrbracket=1+x \geq x=\llbracket \operatorname{minus}(x, y) \rrbracket \\
\llbracket \operatorname{div}^{\sharp}(\operatorname{Succ} \ldots) \rrbracket=4+x+3 y>3+x+3 y=\llbracket \operatorname{div}^{\sharp}(\text { minus } \ldots) \rrbracket \\
\text { Part } \ldots-\text { Checking Well-Definedness of Functional Programs }
\end{gathered}
$$

## Solving Polynomial Constraints

- each polynomial constraint over $\mathbb{N}$ can be brought into simple form " $p \geq 0$ " for some polynomial $p$
- replace $p_{1}>p_{2}$ by $p_{1} \geq p_{2}+1$
- replace $p_{1} \geq p_{2}$ by $p_{1}-p_{2} \geq 0$
- the question of " $p \geq 0$ " over $\mathbb{N}$ is undecidable
(Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of $p$ are non-negative, then $p \geq 0$ for all instances over $\mathbb{N}$
- division example has trivial constraints

| original | simplified |
| :---: | :---: |
| $x \geq x$ | $0 \geq 0$ |
| $1+x \geq x$ | $1 \geq 0$ |
| $4+x+3 y>3+x+3 y$ | $0 \geq 0$ |

## Finding Polynomial Interpretations

- in division example, interpretation was given on slides
- aim: search for suitable interpretation
- approach: perform everything symbolically


## Symbolic Polynomial Constraints

- given constraints

$$
\begin{aligned}
\operatorname{minus}(x, \operatorname{Zero}) & \succsim x \\
\operatorname{minus}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succsim \operatorname{minus}(x, y) \\
\operatorname{div}^{\sharp}(\operatorname{Succ}(x), \operatorname{Succ}(y)) & \succ \operatorname{div}^{\sharp}(\operatorname{minus}(x, y), \operatorname{Succ}(y))
\end{aligned}
$$

- obtain symbolic polynomial constraints

$$
\begin{aligned}
\mathrm{m}_{0}+\mathrm{m}_{1} x+\mathrm{m}_{2} \mathrm{Z}_{0} & \geq x \\
\mathrm{~m}_{0}+\mathrm{m}_{1}\left(\mathrm{~S}_{0}+\mathrm{S}_{1} x\right)+\mathrm{m}_{2}\left(\mathrm{~S}_{0}+\mathrm{S}_{1} y\right) & \geq \mathrm{m}_{0}+\mathrm{m}_{1} x+\mathrm{m}_{2} y \\
\mathrm{~d}_{0}+\mathrm{d}_{1}\left(\mathrm{~S}_{0}+\mathrm{S}_{1} x\right)+\mathrm{d}_{2}\left(\mathrm{~S}_{0}+\mathrm{S}_{1} y\right) & >\mathrm{d}_{0}+\mathrm{d}_{1}\left(\mathrm{~m}_{0}+\mathrm{m}_{1} x+\mathrm{m}_{2} y\right) \\
& +\mathrm{d}_{2}\left(\mathrm{~S}_{0}+\mathrm{S}_{1} y\right)
\end{aligned}
$$

- and simplify to

$$
\begin{aligned}
& \qquad\left(\mathrm{m}_{0}+\mathrm{m}_{2} \mathrm{Z}_{0}\right)+\left(\mathrm{m}_{1}-1\right) x \geq 0 \\
&\left(\mathrm{~m}_{1} \mathrm{~S}_{0}+\mathrm{m}_{2} \mathrm{~S}_{0}\right)+\left(\mathrm{m}_{1} \mathrm{~S}_{1}-\mathrm{m}_{1}\right) x+\left(\mathrm{m}_{2} \mathrm{~S}_{1}-\mathrm{m}_{2}\right) y \geq 0 \\
&\left(\mathrm{~d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1\right)+\left(\mathrm{d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1}\right) x+\left(-\mathrm{d}_{1} \mathrm{~m}_{2}\right) y \geq 0 \\
& \text { Part 4-Checking Well-Definedness of Functional Programs }
\end{aligned}
$$

- fix shape of polynomial, e.g., linear

$$
p_{F}\left(x_{1}, \ldots, x_{n}\right)=F_{0}+F_{1} x_{1}+\cdots+F_{n} x_{n}
$$

where the $F_{i}$ are symbolic coefficients

- $\quad p_{\text {minus }}\left(x_{1}, x_{2}\right)=x_{1}$

$$
\begin{aligned}
p_{\text {Zero }} & =2 \\
p_{\text {Succ }}\left(x_{1}\right) & =1+x_{1} \\
p_{\text {div\# }}\left(x_{1}, x_{2}\right) & =x_{1}+3 x_{2}
\end{aligned}
$$

concrete interpretation above becomes symbolic

$$
\begin{aligned}
p_{\text {minus }}\left(x_{1}, x_{2}\right) & =\mathrm{m}_{0}+\mathrm{m}_{1} x_{1}+\mathrm{m}_{2} x_{2} \\
p_{\text {Zero }} & =\mathrm{Z}_{0} \\
p_{\text {Succ }}\left(x_{1}\right) & =\mathrm{S}_{0}+\mathrm{S}_{1} x_{1} \\
p_{\text {div\# }}\left(x_{1}, x_{2}\right) & =\mathrm{d}_{0}+\mathrm{d}_{1} x_{1}+\mathrm{d}_{2} x_{2}
\end{aligned}
$$

## Absolute Positiveness - Symbolic Example

- on symbolic polynomial constraints

$$
\begin{aligned}
\left(\mathrm{m}_{0}+\mathrm{m}_{2} \mathrm{Z}_{0}\right)+\left(\mathrm{m}_{1}-1\right) x & \geq 0 \\
\left(\mathrm{~m}_{1} \mathrm{~S}_{0}+\mathrm{m}_{2} \mathrm{~S}_{0}\right)+\left(\mathrm{m}_{1} \mathrm{~S}_{1}-\mathrm{m}_{1}\right) x+\left(\mathrm{m}_{2} \mathrm{~S}_{1}-\mathrm{m}_{2}\right) y & \geq 0 \\
\left(\mathrm{~d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1\right)+\left(\mathrm{d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1}\right) x+\left(-\mathrm{d}_{1} \mathrm{~m}_{2}\right) y & \geq 0
\end{aligned}
$$

absolute positiveness works as before; obtain constraints

$$
\begin{aligned}
m_{0}+m_{2} Z_{0} & \geq 0 & m_{1}-1 & \geq 0 \\
m_{1} S_{0}+m_{2} S_{0} & \geq 0 & m_{1} S_{1}-m_{1} & \geq 0 \\
d_{1} S_{0}-d_{1} m_{0}-1 & \geq 0 & d_{1} S_{1}-d_{1} m_{1} & \geq 0
\end{aligned} m_{2} S_{1}-m_{2} \geq 001-d_{1} m_{2} \geq 0
$$

- at this point, use solver for integer arithmetic to find suitable coefficients (in $\mathbb{N}$ )
- popular choice: SMT solver for integer arithmetic where one has to add constraints $\mathrm{m}_{0} \geq 0, \mathrm{~m}_{1} \geq 0, \mathrm{~m}_{2} \geq 0, \mathrm{~S}_{0} \geq 0, \mathrm{~S}_{1} \geq 0, \mathrm{Z}_{0} \geq 0, \ldots$
RT (DCS © UIBK)


## Constraint Solving by Hand - Example

Termination - Reduction Pairs

- original constraints

$$
\begin{aligned}
\mathrm{m}_{0}+\mathrm{m}_{2} \mathrm{Z}_{0} & \geq 0 & m_{1}-1 & \geq 0 \\
\mathrm{~m}_{1} \mathrm{~S}_{0}+\mathrm{m}_{2} \mathrm{~S}_{0} & \geq 0 & m_{1} S_{1}-\mathrm{m}_{1} & \geq 0 \\
\mathrm{~d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1 & \geq 0 & d_{1} S_{1}-d_{1} m_{1} & \geq 0
\end{aligned} \mathrm{~m}_{2} S_{1}-\mathrm{m}_{2} \geq 0
$$

rivial constraints

- delete trivial constraints

$$
m_{2} S_{1}-m_{2} \geq 0
$$

$$
\mathrm{d}_{1} \mathrm{~S}_{0}-\mathrm{d}_{1} \mathrm{~m}_{0}-1 \geq 0
$$

$$
\begin{aligned}
\mathrm{m}_{1}-1 & \geq 0 \\
\mathrm{~m}_{1} \mathrm{~S}_{1}-\mathrm{m}_{1} & \geq 0 \\
\mathrm{~d}_{1} \mathrm{~S}_{1}-\mathrm{d}_{1} \mathrm{~m}_{1} & \geq 0
\end{aligned}
$$

$$
-\mathrm{d}_{1} \mathrm{~m}_{2} \geq 0
$$

- conclusions

| $\mathrm{m}_{1} \geq 1$ | $\mathrm{~d}_{1} \geq 1$ |
| ---: | :--- |
| $\mathrm{~S}_{0} \geq 1$ | $\mathrm{~S}_{1} \geq 1$ |
| $\mathrm{~m}_{2}=0$ | $\mathrm{~S}_{1} \geq \mathrm{m}_{1}$ |

$\mathrm{m}_{0}=0$

## Constraint Solving by SMT-Solver - Example

- original constraints

$$
\begin{array}{rlrr}
m_{0}+m_{2} Z_{0} & \geq 0 & m_{1}-1 & \geq 0 \\
m_{1} S_{0}+m_{2} S_{0} & \geq 0 & m_{1} S_{1}-m_{1} & \geq 0 \\
d_{1} S_{0}-d_{1} m_{0}-1 & \geq 0 & d_{1} S_{1}-d_{1} m_{1} & \geq 0
\end{array} m_{2} S_{1}-m_{2} \geq 0
$$

- encode as SMT problem in file division.smt2
(set-logic QF_NIA)
(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>= m0 0)) ... (assert (>= d2 0))
(assert (>= (+ m0 (* m2 Z0)) 0))
...
(assert (>= (* (-1) d1 m2) 0))
(check-sat)
(get-model)
(exit)


## Constraint Solving by SMT-Solver - Example Continued

- invoke SMT solver, e.g., Microsoft's open source solver Z3 cmd> z3 division.smt2
sat
(model
(define-fun d1 () Int 8)
(define-fun S1 () Int 15)
(define-fun SO () Int 8)
(define-fun ZO () Int 0)
(define-fun m2 () Int 0)
(define-fun m1 () Int 12)
(define-fun m0 () Int 4)
(define-fun d2 () Int 0)
(define-fun d0 () Int 0)
)
- parse result to obtain polynomial interpretation


## Summary

- pattern-completeness and pattern-disjointness are decidable
- termination proving can be done via
dependency pairs
- subterm criterion
- size-change termination
- polynomial interpretation
- termination proving often performed with help of SMT solvers
- increase reliability via certification: checking of generated proofs

