

Program Verification

Part 5 – Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms AX that are satisfied in standard model $\mathcal M$
 - equations of defined symbols
 - · equivalences regarding equality of constructors
 - structural induction formulas
- for proving property $\mathcal{M} \models \varphi$ it suffices to show $AX \models \varphi$
- problems: reasoning via natural deduction quite cumbersome
 - explicit introduction and elimination of quantifiers
 - no direct support for equational reasoning
- aim: equational reasoning
 - implicit transitivity reasoning: from $a =_{\tau} b =_{\tau} c =_{\tau} d$ conclude $a =_{\tau} d$
 - equational reasoning in contexts: from $a=_{\tau}b$ conclude $f(a)=_{\tau'}f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$

Equational Reasoning with Universally Quantified Formulas

- for now let us restrict to universally quantified formulas
- we can formulate properties like
 - $\forall xs$. reverse(reverse(xs)) = $\int_{-\infty}^{\infty} ds$
 - $\forall xs, ys. \text{ reverse}(\text{append}(xs, ys)) =_{\text{List}} \text{append}(\text{reverse}(ys), \text{reverse}(xs))$
 - $\forall x, y$. $\mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$

but not

• $\forall x. \exists y. \operatorname{greater}(y, x) =_{\mathsf{Bool}} \mathsf{True}$

• $\forall u. \ \mathsf{plus}(\mathsf{Zero}, y) =_{\mathsf{Nat}} y$

- universally quantified axioms

 - equations of defined symbols
 - $\forall x, y$. $\mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y))$
 - axioms about equality of constructors
 - - $\forall x, y$. $Succ(x) =_{Nat} Succ(y) \longleftrightarrow x =_{Nat} y$ • $\forall x. \, \mathsf{Succ}(x) =_{\mathsf{Nat}} \, \mathsf{Zero} \longleftrightarrow \mathsf{false}$
 - but not: structural induction formulas
 - $\varphi[u/\mathsf{Zero}] \longrightarrow (\forall x, \varphi[u/x] \longrightarrow \varphi[u/\mathsf{Succ}(x)]) \longrightarrow \forall u, \varphi$

Equational Reasoning in Formulas

- so far: $\hookrightarrow_{\mathcal{E}}$ replaces terms by terms using equations \mathcal{E} of program
- upcoming: \rightsquigarrow to simplify formulas using universally quantified axioms
- formal definition: let AX be a set of axioms; then \rightsquigarrow_{AX} is defined as

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript AX is dropped in \leadsto_{AX} when clear from context

Soundness of Equational Reasoning

- we show that whenever AX is valid in the standard model \mathcal{M} , then
 - $\varphi \leadsto_{AX} \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
 - so in particular $\mathcal{M} \models \vec{\forall} \varphi \longleftrightarrow \psi$
- immediate consequence: $\varphi \leadsto_{AX}^*$ true implies $\mathcal{M} \models \vec{\forall} \varphi$
- define calculus: $\vdash \vec{\forall} \varphi$ if $\varphi \leadsto_{AX}^*$ true
- example

$$\begin{aligned} &\mathsf{plus}(\mathsf{Zero},\mathsf{Zero}) =_{\mathsf{Nat}} \mathsf{times}(\mathsf{Zero},x) \\ &\leadsto \mathsf{Zero} =_{\mathsf{Nat}} \mathsf{times}(\mathsf{Zero},x) \\ &\leadsto \mathsf{Zero} =_{\mathsf{Nat}} \mathsf{Zero} \\ &\leadsto \mathsf{true} \end{aligned}$$

and therefore $\mathcal{M} \models \forall x$. plus(Zero, Zero) $=_{\mathsf{Nat}} \mathsf{times}(\mathsf{Zero}, x)$

Proving Soundness of $\rightsquigarrow: \varphi \rightsquigarrow \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

$$\varphi \leadsto \varphi'$$

- case $\frac{\varphi \leadsto \varphi'}{\varphi \land \psi \leadsto \varphi' \land \psi}$
 - IH: $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi'$ for arbitrary α
 - conclude $\mathcal{M} \models_{\alpha} \varphi \wedge \psi$ iff $\mathcal{M} \models_{\alpha} \varphi$ and $\mathcal{M} \models_{\alpha} \psi$ iff $\mathcal{M} \models_{\alpha} \varphi'$ and $\mathcal{M} \models_{\alpha} \psi$ (by IH) iff $\mathcal{M} \models_{\alpha} \varphi' \wedge \psi$
 - in total: $\mathcal{M} \models_{\alpha} \varphi \wedge \psi \longleftrightarrow \varphi' \wedge \psi$
- all other cases for Boolean simplifications and congruences are similar

Proving Soundness of \leadsto : $\varphi \leadsto \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

$$\vec{\forall} \, (\ell =_\tau r \longleftrightarrow \varphi) \in AX$$

- case $\ell\sigma =_{\tau} r\sigma \leadsto \varphi\sigma$
 - premise $\mathcal{M} \models \vec{\forall} \ (\ell =_{\tau} r \longleftrightarrow \varphi)$, so in particular $\mathcal{M} \models_{\beta} \ell =_{\tau} r \longleftrightarrow \varphi$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_{\alpha}$
 - conclude $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma$ iff $\llbracket \ell \rrbracket_{\beta} = \llbracket r \rrbracket_{\beta}$ (by SL) iff $\mathcal{M} \models_{\beta} \varphi$ (by premise) iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by SL)
 - in total: $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma \longleftrightarrow \varphi \sigma$

$$\vec{\forall} \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'$$

- case $s=_{\tau}t\leadsto s'=_{\tau}t$ • premise $\mathcal{M}\models \vec{\forall}\,\ell=_{\tau}r$, and $s=C[\ell\sigma]$ and $s'=C[r\sigma]$ where C is some context, i.e., term
 - with one hole which can be filled via $[\cdot]$ conclude $[s]_{\alpha}$ = $[C[\ell\sigma]]_{\alpha}$
 - $= \|C[\ell\sigma]\|_{\alpha}$ $= C[\ell\sigma]\alpha \downarrow \text{ (by reverse SL)}$ $= C\alpha[\ell\sigma\alpha] \downarrow = C\alpha[\ell\sigma\alpha\downarrow] \downarrow$
 - $\stackrel{(*)}{=} C\alpha[r\sigma\alpha \circlearrowleft] \circlearrowleft = C\alpha[r\sigma\alpha] \circlearrowleft$ $= C[r\sigma]\alpha \circlearrowleft$ $= [\![C[r\sigma]\!]\!]_{\alpha} \text{ (by reverse SL)}$
 - $= [s']_{\alpha}$ reason for (*): premise implies $[\ell]_{\alpha} = [r]_{\alpha} \text{ for } \beta(x) = [\sigma(x)]$
 - $[\![\ell]\!]_{\beta} = [\![r]\!]_{\beta}$ for $\beta(x) = [\![\sigma(x)]\!]_{\alpha}$, hence $[\![\ell\sigma]\!]_{\alpha} = [\![r\sigma]\!]_{\alpha}$ (by SL),
 - and thus, $\ell\sigma\alpha \downarrow = r\sigma\alpha \downarrow$ (by reverse SL)

 in total: $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$

9/44

Comparing \rightsquigarrow with \hookrightarrow

- ullet rewrites on terms whereas \leadsto also simplifies Boolean connectives and uses axioms about equality $=_{\tau}$
- ullet uses defined equations of program whereas \leadsto_{AX} is parametrized by set of axioms
 - in particular proven properties like $\forall xs$. reverse(reverse(xs)) = List xs can be added to set of axioms and then be used for xs
 - this addition of new knowledge greatly improves power, but can destroy both termination and confluence
 - example: adding $\forall xs. \ xs =_{\mathsf{List}} \mathsf{reverse}(\mathsf{reverse}(xs))$ to AX is bad idea
 - heuristics or user input required to select subset of theorems that are used with
 - new equations should be added in suitable direction
 - obvious: $\forall xs$. reverse(reverse(xs)) = List xs is intended direction
 - direction sometimes not obvious for distributive laws

$$\forall x, y, z. \ \mathsf{times}(\mathsf{plus}(x, y), z) =_{\mathsf{Nat}} \mathsf{plus}(\mathsf{times}(x, z), \mathsf{times}(y, z))$$

reason for left-to-right: more often applicable reason for right-to-left: term gets smaller

Limits of \rightsquigarrow

- \rightsquigarrow only works with universally quantified properties
 - defined equations
 - equivalences to simplify equalities $=_{\tau}$
 - newly derived properties such as $\forall xs$. reverse(reverse(xs)) = List xs
 - ~ can not deal with induction axioms such as the one for associativity of append (app)

$$\begin{aligned} &(\forall ys,zs.\;\operatorname{app}(\operatorname{app}(\operatorname{Nil},ys),zs) =_{\operatorname{List}}\operatorname{app}(\operatorname{Nil},\operatorname{app}(ys,zs))) \\ &\longrightarrow (\forall x,xs.(\forall ys,zs.\;\operatorname{app}(\operatorname{app}(xs,ys),zs) =_{\operatorname{List}}\operatorname{app}(xs,\operatorname{app}(ys,zs))) \longrightarrow \\ &(\forall ys,zs.\;\operatorname{app}(\operatorname{app}(\operatorname{Cons}(x,xs),ys),zs) =_{\operatorname{List}}\operatorname{app}(\operatorname{Cons}(x,xs),\operatorname{app}(ys,zs)))) \\ &\longrightarrow (\forall xs,ys,zs.\;\operatorname{app}(\operatorname{app}(xs,ys),zs) =_{\operatorname{List}}\operatorname{app}(xs,\operatorname{app}(ys,zs))) \end{aligned}$$

 \bullet in particular, \leadsto often cannot perform any simplification without induction proving

$$app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)))$$

cannot be simplified by \leadsto using the existing axioms

Induction in Combination with Equational Reasoning

- aim: prove equality $\vec{\forall} \ell =_{\tau} r$
- approach:
 - select induction variable x
 - reorder quantifiers such that $\vec{\forall} \ell =_{\tau} r$ is written as $\forall x. \varphi$
 - build induction formula wrt. slide 3/71

$$\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi$$

(no outer universal quantifier, since by construction above formula has no free variables)

• try to prove each φ_i via \rightsquigarrow

Example: Associativity of Append

- aim: prove equality $\forall xs, ys, zs$. $app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$
- approach:
 - select induction variable xs
 - reordering of quantifiers not required
 - the induction formula is presented on slide 11
 - φ_1 is

$$\forall ys, zs. \operatorname{app}(\operatorname{\mathsf{App}}(\operatorname{\mathsf{Nil}}, ys), zs) =_{\operatorname{\mathsf{List}}} \operatorname{\mathsf{app}}(\operatorname{\mathsf{Nil}}, \operatorname{\mathsf{app}}(ys, zs))$$

so we simply evaluate

$$\begin{split} &\operatorname{\mathsf{app}}(\operatorname{\mathsf{app}}(\operatorname{\mathsf{Nil}},ys),zs) =_{\mathsf{List}} \operatorname{\mathsf{app}}(\operatorname{\mathsf{Nil}},\operatorname{\mathsf{app}}(ys,zs)) \\ &\leadsto \operatorname{\mathsf{app}}(ys,zs) =_{\mathsf{List}} \operatorname{\mathsf{app}}(\operatorname{\mathsf{Nil}},\operatorname{\mathsf{app}}(ys,zs)) \\ &\leadsto \operatorname{\mathsf{app}}(ys,zs) =_{\mathsf{List}} \operatorname{\mathsf{app}}(ys,zs) \\ &\leadsto \operatorname{\mathsf{true}} \end{split}$$

Example: Associativity of Append, Continued

- approach: ...
 - φ_2 is

 $(\forall ys, zs. \operatorname{app}(\operatorname{\mathsf{Cons}}(x, xs), ys), zs) =_{\mathsf{List}} \operatorname{\mathsf{app}}(\operatorname{\mathsf{Cons}}(x, xs), \operatorname{\mathsf{app}}(ys, zs)))$

 $\forall x, xs. (\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow$

 \rightsquigarrow true \land app $(app(xs, ys), zs) =_{list} app(xs, app(ys, zs))$

• proving $\forall xs, ys, zs$. app $(app(xs, ys), zs) =_{list} app(xs, app(ys, zs))$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow

- $app(app(Cons(x, xs), ys), zs) =_{list} app(Cons(x, xs), app(ys, zs))$
 - \rightarrow app(Cons(x, app(xs, ys)), zs) = List app(Cons(x, xs), app(ys, zs))
 - $\rightsquigarrow \mathsf{Cons}(x, \mathsf{app}(\mathsf{app}(xs, ys), zs)) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x, xs), \mathsf{app}(ys, zs))$ \sim Cons $(x, app(app(xs, ys), zs)) =_{list} Cons(x, app(xs, app(ys, zs)))$
 - $\rightarrow x =_{\text{Nat}} x \land \mathsf{app}(\mathsf{app}(xs, ys), zs) =_{\text{List}} \mathsf{app}(xs, \mathsf{app}(ys, zs))$
 - $\rightsquigarrow \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{list}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$ \neq true
- problem: we get stuck, since currently IH is unused

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor c_i :

$$\varphi_i := \forall x_1, \dots, x_{m_i}.$$

$$\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j] \right) \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$
This for recursive arguments

- idea: for proving φ_i try to show $\varphi[x/c_i(x_1,\ldots,x_{m_i})]$ by evaluating it to true via \leadsto , where each IH $\varphi[x/x_i]$ is added as equality
- append-example
 - aim:

$$\operatorname{app}(\operatorname{app}(\operatorname{Cons}(x,xs),ys),zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x,xs),\operatorname{app}(ys,zs)) \leadsto^* \operatorname{true}$$

- add IH $\forall ys, zs.$ $\operatorname{app}(\operatorname{app}(xs,ys),zs) =_{\operatorname{List}} \operatorname{app}(xs,\operatorname{app}(ys,zs))$ to axioms
- problem IH $\varphi[x/x_j]$ is not universally quantified equation, since variable x_j is free (in append example, this would be x_j)

Integrating IHs into Equational Reasoning, Continued

- \bullet to solve problem, extend \leadsto to allow evaluation with equations that contain free variables
- add two new inference rules

$$\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'}{s =_{\tau} t \leadsto_{AX} s' =_{\tau} t} \qquad \frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{r = \ell\}} t'}{s =_{\tau} t \leadsto_{AX} s =_{\tau} t'}$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell=r$ when simplifying with \hookrightarrow ; so the chosen substitution σ must satisfy $\sigma(y)=y$ for all $y\notin\vec{x}$

- the swap of direction, i.e., the $r=\ell$ in the second rule is intended and a heuristic
 - either apply the IH on some lhs of an equality from left-to-right
 - or apply the IH on some rhs of an equality from right-to-left
- in both cases, an application will make both sides on the equality more equal
- another heuristic is to apply each IH only once

- Example: Associativity of Append, Continued
- proving $\forall xs, ys, zs$. app $(app(xs, ys), zs) =_{list} app(xs, app(ys, zs))$ approach: ...
 - φ_2 is $\forall x, xs. (\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{list}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow$ $(\forall ys, zs. \operatorname{app}(\operatorname{\mathsf{app}}(\mathsf{Cons}(x, xs), ys), zs) =_{\mathsf{list}} \operatorname{\mathsf{app}}(\mathsf{Cons}(x, xs), \operatorname{\mathsf{app}}(ys, zs)))$
 - so we try to prove the rhs of \longrightarrow via \rightsquigarrow and add

 $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{list}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

to the set of axioms (only for the proof of φ_2); then

$$\begin{split} & \mathsf{app}(\mathsf{app}(\mathsf{Cons}(x,xs),ys),zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x,xs),\mathsf{app}(ys,zs)) \\ & \leadsto^* \mathsf{app}(\mathsf{app}(xs,ys),zs) =_{\mathsf{List}} \mathsf{app}(xs,\mathsf{app}(ys,zs)) \\ & \leadsto \mathsf{app}(xs,\mathsf{app}(ys,zs)) =_{\mathsf{List}} \mathsf{app}(xs,\mathsf{app}(ys,zs)) \end{split}$$

here it is important to apply the IH only once, otherwise one would get

 $app(xs, app(ys, zs)) =_{list} app(app(xs, ys), zs)$

Integrating IHs into Equational Reasoning, Soundness

• aim: prove $\mathcal{M} \models \varphi_i$ for

$$\varphi_i := \vec{\forall} \underbrace{\bigwedge_j \psi_j}_{\mathsf{IHs}} \longrightarrow \psi$$

where we assume that $\psi \leadsto^*$ true with the additional local axioms of the IHs ψ_j

- hence show $\mathcal{M}\models_{\alpha}\psi$ under the assumptions $\mathcal{M}\models_{\alpha}\psi_{j}$ for all IHs ψ_{j}
- ullet by existing soundness proof of \leadsto we can nearly conclude $\mathcal{M}\models_lpha\psi$ from $\psi\leadsto^*$ true
- only gap: proof needs to cover new inference rules on slide 16

(and not $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$)

Soundness of Partially Quantified Equation Application

$$\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'$$
 • case
$$s =_{\tau} t \leadsto s' =_{\tau} t \quad \text{with } \sigma(y) = y \text{ for all } y \notin \vec{x}$$

- premise is $\mathcal{M} \models_{\mathbf{q}} \forall \vec{x}$. $\ell =_{\tau} r$
- and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ as before
- conclude $[s]_{\alpha} = [s']_{\alpha}$ as on slide 9 as main step to derive $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$ • only change is how to obtain $[\ell]_{\beta} = [r]_{\beta}$ for $\beta(x) = [\sigma(x)]_{\alpha}$
- - new proof
 - let $\vec{x} = x_1, \dots, x_k$ • premise implies $[\ell]_{\alpha[x_1:=a_1,...,x_k:=a_k]} = [r]_{\alpha[x_1:=a_1,...,x_k:=a_k]}$ for arbitrary a_i , so in particular
 - for $a_i = \llbracket \sigma(x_i) \rrbracket_{\alpha}$ • it now suffices to prove that $\alpha[x_1 := a_1, \dots, x_k := a_k] = \beta$
 - consider two cases
 - for variables x_i we have

• for all other variables
$$y \notin \vec{x}$$
 we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](y) = \alpha(y) = \llbracket y \rrbracket_{\alpha} = \llbracket \sigma(y) \rrbracket_{\alpha} = \beta(y)$$

 $\alpha[x_1 := a_1, \dots, x_k := a_k](x_i) = a_i = [\![\sigma(x_i)]\!]_{\alpha} = \beta(x_i)$

Summary

- framework for inductive proofs combined with equational reasoning
- apply induction first
- then prove each case $\forall \land \psi_j \longrightarrow \psi$ via evaluation $\psi \leadsto^*$ true where IHs ψ_j become local axioms
- free variables in IHs (induction variables) may not be instantiated by →, all the other variables may be instantiated ("arbitrary" variables)
- heuristic: apply IHs only once
- upcoming: positive and negative examples, guidelines, extensions

Examples, Guidelines, and Extensions

Associativity of Append

program

$$\begin{split} & \operatorname{app}(\mathsf{Cons}(x,xs),ys) = \mathsf{Cons}(x,\operatorname{app}(xs,ys)) \\ & \operatorname{app}(\mathsf{Nil},ys) = ys \end{split}$$

 $\vec{\forall} \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{list}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

- formula
- induction on xs works successfully
- what about induction on ys (or zs)?
- base case already gets stuck

$$\mathsf{app}(\mathsf{app}(xs,\mathsf{Nil}),zs) =_{\mathsf{List}} \mathsf{app}(xs,\mathsf{app}(\mathsf{Nil},zs))$$
$$\rightsquigarrow \mathsf{app}(\mathsf{app}(xs,\mathsf{Nil}),zs) =_{\mathsf{List}} \mathsf{app}(xs,zs)$$

- problem: ys is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation

Commutativity of Addition

program

$$\begin{aligned} \mathsf{plus}(\mathsf{Succ}(x), y) &= \mathsf{Succ}(\mathsf{plus}(x, y)) \\ \mathsf{plus}(\mathsf{Zero}, y) &= y \end{aligned}$$

 $\forall \mathsf{plus}(x,y) =_{\mathsf{Nat}} \mathsf{plus}(y,x)$

- formula
- let us try induction on x
- base case already gets stuck

$$\begin{aligned} \mathsf{plus}(\mathsf{Zero},y) =_{\mathsf{Nat}} \mathsf{plus}(y,\mathsf{Zero}) \\ \leadsto y =_{\mathsf{Nat}} \mathsf{plus}(y,\mathsf{Zero}) \end{aligned}$$

- final result suggests required lemma: Zero is also right neutral
- $\forall x. \ \mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x \ \mathsf{can} \ \mathsf{be} \ \mathsf{proven} \ \mathsf{with} \ \mathsf{our} \ \mathsf{approach}$
- \bullet then this lemma can be added to AX and base case of commutativity-proof can be completed

Right-Zero of Addition program

$$\mathsf{plus}(\mathsf{Zero}, y) = y$$

$$\vec{\forall}\,\mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x$$

plus(Succ(x), y) = Succ(plus(x, y))

- formula
 - only one possible induction variable: x
- base case:

plus(Zero, Zero) $=_{Nat}$ Zero \rightsquigarrow Zero $=_{Nat}$ Zero \rightsquigarrow true

step case adds IH plus(x, Zero) = Nat x as axiom and we get

 $plus(Succ(x), Zero) =_{Nat} Succ(x)$

→ true

- \rightsquigarrow Succ(plus(x, Zero)) = Nat Succ(x)
 - $\rightsquigarrow Succ(x) =_{Nat} Succ(x)$
 - Part 5 Reasoning about Functional Programs

Commutativity of Addition

formula

$$\vec{\forall} \operatorname{\mathsf{plus}}(x,y) =_{\mathsf{Nat}} \operatorname{\mathsf{plus}}(y,x)$$

• step case adds IH $\forall y$. $plus(x,y) =_{Nat} plus(y,x)$ to axioms and we get

$$\begin{aligned} \mathsf{plus}(\mathsf{Succ}(x),y) &=_{\mathsf{Nat}} \mathsf{plus}(y,\mathsf{Succ}(x)) \\ &\leadsto \mathsf{Succ}(\mathsf{plus}(x,y)) =_{\mathsf{Nat}} \mathsf{plus}(y,\mathsf{Succ}(x)) \\ &\leadsto \mathsf{Succ}(\mathsf{plus}(y,x)) =_{\mathsf{Nat}} \mathsf{plus}(y,\mathsf{Succ}(x)) \end{aligned}$$

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y$. $\mathsf{plus}(x, \mathsf{Succ}(y)) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y))$ can be proven with our approach (induction on x)
- ullet then this lemma can be added to AX and commutativity-proof can be completed

Fast Implementation of Reversalprogram

```
\begin{split} \operatorname{rev}(\mathsf{Cons}(x,xs)) &= \operatorname{app}(\operatorname{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})) \\ \operatorname{rev}(\mathsf{Nil}) &= \mathsf{Nil} \\ \operatorname{r}(\mathsf{Cons}(x,xs),ys) &= \operatorname{r}(xs,\mathsf{Cons}(x,ys)) \\ \operatorname{r}(\mathsf{Nil},ys) &= ys \\ \operatorname{rev\_fast}(xs) &= \operatorname{r}(xs,\mathsf{Nil}) \end{split} • aim: show that both implementations of reverse are equivalent, so that the naive
```

implementation can be replaced by the faster one

app(Nil, ys) = ys

 $\forall xs. \ \mathsf{rev_fast}(xs) =_{\mathsf{List}} \mathsf{rev}(xs)$

• applying → first yields desired lemma

 $\forall xs. \ \mathsf{r}(xs, \mathsf{Nil}) =_{\mathsf{list}} \mathsf{rev}(xs)$

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))

Generalizations Required

ullet for induction for the following formula there is only one choice: xs

$$\forall xs. \ \mathsf{r}(xs, \mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(xs)$$

step-case gets stuck

$$\begin{split} &\mathsf{r}(\mathsf{Cons}(x,xs),\mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(\mathsf{Cons}(x,xs)) \\ \leadsto^* &\mathsf{r}(xs,\mathsf{Cons}(x,\mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})) \\ \leadsto &\mathsf{r}(xs,\mathsf{Cons}(x,\mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{r}(xs,\mathsf{Nil}),\mathsf{Cons}(x,\mathsf{Nil})) \end{split}$$

- problem: the second argument Nil of r in formula is too specific
- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

$$\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{list}} \mathsf{rev}(xs)$$

creativity required

$$\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

Fast Implementation of Reversal, Continued

• proving main formula by induction on xs, since recursion is on xs

 $\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{list}} \mathsf{app}(\mathsf{rev}(xs), ys)$

$$\rightsquigarrow^* ys =_{\mathsf{list}} ys \rightsquigarrow \mathsf{true}$$

step-case solved with associativity of append and IH added to axioms

$$r(\mathsf{Cons}(x, xs), ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys)$$

$$\mathsf{r}(\mathsf{Cons}(x,xs),ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x,xs)),ys)$$

$$\rightsquigarrow \mathsf{r}(xs,\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x,xs)),ys)$$

$$ightharpoonup r(xs, \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys)$$

 $ightharpoonup \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys)$

$$\leadsto \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})),ys)$$

 $r(Nil, us) =_{liet} app(rev(Nil), us)$

$$\leadsto \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{app}(\mathsf{Cons}(x,\mathsf{Nil}),ys))$$

$$\leadsto \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{app}(\mathsf{Nil},ys)))$$

 \rightarrow app $(rev(xs), Cons(x, ys)) =_{list} app(rev(xs), Cons(x, ys)) \rightarrow true$

Fast Implementation of Reversal, Finalized • now add main formula to axioms, so that it can be used by \simegathapprox \square

 $\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{list}} \mathsf{app}(\mathsf{rev}(xs), ys)$

 $rev_fast(xs) =_{list} rev(xs)$

 $\forall xs. \operatorname{app}(xs, \operatorname{Nil}) =_{\mathsf{list}} xs$

• then for our initial aim we get

$$ightharpoonup r(xs, Nil) =_{List} rev(xs)$$

 $ightharpoonup app(rev(xs), Nil) =_{List} rev(xs)$

at this point one easily identifies a missing property

which is proven by induction on
$$xs$$
 in combination with \leadsto

 afterwards it is trivial to complete the equivalence proof of the two reversal implementations

Another Problem

consider the following program

```
\begin{aligned} \mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{Succ}(\mathsf{half}(x)) \\ \mathsf{le}(\mathsf{Zero},y) &= \mathsf{True} \\ \mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) &= \mathsf{False} \\ \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(y)) &= \mathsf{le}(x,y) \end{aligned} • and the desired property
```

half(Zero) = Zero

half(Succ(Zero)) = Zero

- - $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$
- half-equations
 better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of

induction on x will get stuck, since the step-case Succ(x) does not permit evaluation wrt.

half) with cases that correspond to patterns in lhss

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

30/44

Induction wrt. Algorithm

- induction wrt. algorithm was informally performed on slides 4/36
 - select some n-ary function f
 - each f-equation is turned into one case
 - for each recursive f-call in rhs get one IH
- example: for algorithm

$$\mathsf{half}(\mathsf{Zero}) = \mathsf{Zero}$$

 $\mathsf{half}(\mathsf{Succ}(\mathsf{Zero})) = \mathsf{Zero}$
 $\mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) = \mathsf{Succ}(\mathsf{half}(x))$

the induction rule for half is

$$\begin{array}{c} \varphi[y/{\sf Zero}] \\ \longrightarrow \varphi[y/{\sf Succ}({\sf Zero})] \\ \longrightarrow (\forall x. \ \varphi[y/x] \longrightarrow \varphi[y/{\sf Succ}({\sf Succ}(x))]) \\ \longrightarrow \forall y. \ \varphi \end{array}$$

Part 5 - Reasoning about Functional Programs

32/44

Induction wrt. Algorithm

- induction wrt. algorithm formally defined
 - let f be n-ary defined function within well-defined program
 - let there be k defined equations for f
 - let φ be some formula which has exactly n free variables x_1, \ldots, x_n • then the induction rule for f is

$$\varphi_{ind,f} := \psi_1 \longrightarrow \ldots \longrightarrow \psi_k \longrightarrow \forall x_1,\ldots,x_n. \ \varphi$$

where for the *i*-th *f*-equation $f(\ell_1, \ldots, \ell_n) = r$ we define

$$\psi_i := \vec{\forall} \left(\bigwedge_{r \succeq f(r_1, \dots, r_n)} \varphi[x_1/r_1, \dots, x_n/r_n] \right) \longrightarrow \varphi[x_1/\ell_1, \dots, x_n/\ell_n]$$

where $\vec{\forall}$ ranges over all variables in the equation

- properties
 - $\mathcal{M} \models \varphi_{ind,f}$; reason: pattern-completeness and termination $(SN(\hookrightarrow \circ \succeq))$

Part 5 - Reasoning about Functional Programs

- heuristic: good idea to prove properties $\vec{\forall} \varphi$ about function f via $\varphi_{f,ind}$
- ullet reason: structure will always allow one evaluation step of f-invocation

Back to Example

consider program

```
half(Zero) = Zero
half(Succ(Zero)) = Zero
half(Succ(Succ(x))) = Succ(half(x))
le(Zero, y) = True
le(Succ(x), Zero) = False
le(Succ(x), Succ(y)) = le(x, y)
```

for property

$$\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$$

chose induction for half (and not for le), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

(Nearly) Completing the Proof

applying induction for half on

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

turns this problem into three new proof obligations

- $le(half(Zero), Zero) =_{Bool} True$
- $le(half(Succ(Zero)), Succ(Zero)) =_{Bool} True$
- $le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True$ where $le(half(x), x) =_{Bool} True$ can be assumed as IH
- the first two are easy, the third one works as follows

$$\leadsto \operatorname{le}(\operatorname{Succ}(\operatorname{half}(x)),\operatorname{Succ}(\operatorname{Succ}(x))) =_{\operatorname{Bool}} \operatorname{True}$$

• here there is another problem, namely that the IH is not applicable

 \leftrightarrow le(half(x), Succ(x)) =_{Bool} True

 $le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True$

• problem solvable by proving an implication like $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True;$

uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with → can happen on both sides of implication, since → yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
 - assume axioms contain conditional equality $\varphi \longrightarrow \ell =_{\tau} r$, e.g., from IH
 - current goal is implication $\psi \longrightarrow C[\ell\sigma] =_{\tau} t$
 - we would like to replace goal by $\psi \longrightarrow C[r\sigma] =_{\tau} t$
 - but then we must ensure $\psi \longrightarrow \varphi \sigma$, e.g., via $\psi \longrightarrow \varphi \sigma \leadsto^*$ true
- must be extended to perform more Boolean reasoning
- not done formally at this point

Equational Reasoning with Conditions, Example

property

$$le(x,y) =_{Bool} True \longrightarrow le(x,Succ(y)) =_{Bool} True$$

- apply induction on le
- first case

$$\begin{split} &\mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Zero},\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \\ &\leadsto \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True} \\ &\leadsto \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{true} \\ &\leadsto \mathsf{true} \end{split}$$

second case

```
\begin{split} & \mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \leadsto \mathsf{False} =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \leadsto \mathsf{false} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \leadsto \mathsf{true} \end{split}
```

Equational Reasoning with Conditions, Example

property

$$le(x,y) =_{Bool} True \longrightarrow le(x,Succ(y)) =_{Bool} True$$

• third case has IH

$$\mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}$$

and we reason as follows

$$\begin{split} & \operatorname{le}(\operatorname{Succ}(x),\operatorname{Succ}(y)) =_{\operatorname{Bool}}\operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x),\operatorname{Succ}(\operatorname{Succ}(y))) =_{\operatorname{Bool}}\operatorname{True} \\ & \rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}}\operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x),\operatorname{Succ}(\operatorname{Succ}(y))) =_{\operatorname{Bool}}\operatorname{True} \\ & \rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}}\operatorname{True} \longrightarrow \operatorname{le}(x,\operatorname{Succ}(y)) =_{\operatorname{Bool}}\operatorname{True} \\ & \rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}}\operatorname{True} \longrightarrow \operatorname{True} =_{\operatorname{Bool}}\operatorname{True} \\ & \rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}}\operatorname{True} \longrightarrow \operatorname{true} \\ & \rightsquigarrow \operatorname{true} \end{split}$$

• proof of property $\forall x. \ \text{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$ finished

Final Example: Insertion Sort

consider insertion sort

```
\begin{split} & \operatorname{le}(\mathsf{Zero},y) = \mathsf{True} \\ & \operatorname{le}(\mathsf{Succ}(x),\mathsf{Zero}) = \mathsf{False} \\ & \operatorname{le}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \operatorname{le}(x,y) \\ & \operatorname{if}(\mathsf{True},xs,ys) = xs \\ & \operatorname{if}(\mathsf{False},xs,ys) = ys \\ & \operatorname{insort}(x,\mathsf{Nil}) = \mathsf{Cons}(x,\mathsf{Nil}) \\ & \operatorname{insort}(x,\mathsf{Cons}(y,ys)) = \operatorname{if}(\operatorname{le}(x,y),\mathsf{Cons}(x,\mathsf{Cons}(y,ys)),\mathsf{Cons}(y,\mathsf{insort}(x,ys))) \\ & \operatorname{sort}(\mathsf{Nil}) = \mathsf{Nil} \\ & \operatorname{sort}(\mathsf{Cons}(x,xs)) = \operatorname{insort}(x,\operatorname{sort}(xs)) \end{split}
```

- aim: prove soundness, e.g., result is sorted
- problem: how to express "being sorted"?
- in general: how to express properties if certain primitives are not available?

Expressing Properties

solution: express properties via functional programs

$$\ldots = \ldots$$

sort(Cons (x, xs)) = insort $(x, sort(xs))$

algorithm above, properties for specification below

```
and(True, b) = b
        and(False, b) = False
        all_le(x, Nil) = True
all_{le}(x, Cons(y, ys)) = and(le(x, y), all_{le}(x, ys))
          sorted(Nil) = True
sorted(Cons(x, xs)) = and(all\_le(x, xs), sorted(xs))
```

- example properties (where $b =_{\mathsf{Bool}} \mathsf{True}$ is written just as b)
 - sorted(insort(x, xs)) = $_{\mathsf{Bool}}$ sorted(xs)
 - sorted(sort(xs))
- important: functional programs for specifications should be simple: they must be readable for validation and need not be efficient

 already assume property of insort: $\forall x, xs.$ sorted(insort(x, xs)) $=_{\mathsf{Bool}}$ sorted(xs)

```
speculative proofs are risky: conjectures might be wrong
```

sorted(sort(Nil))

- property $\forall xs. \, \operatorname{sorted}(\operatorname{sort}(xs))$ is shown by induction on xs
- base case:

```
→ sorted(Nil)
```

- \rightsquigarrow True (recall: syntax omits $=_{Bool}$ True)
- step case with IH sorted(sort(xs)):

sorted(sort(Cons
$$(x, xs)$$
))

 \Rightarrow sorted(insort $(x, sort(xs))$)

```
→ True
```

Part 5 - Reasoning about Functional Programs

40/44

(*)

Examples, Guidelines, and Extensions

 $\stackrel{(*)}{\leadsto}$ sorted(sort(xs))

Example: Soundness of insort

- prove $\forall x, xs. \operatorname{sorted}(\operatorname{insort}(x, xs)) =_{\mathsf{Bool}} \operatorname{sorted}(xs)$ by induction on xs
- base case:

```
\begin{split} & \mathsf{sorted}(\mathsf{insort}(x,\mathsf{NiI})) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{NiI}) \\ & \leadsto \mathsf{sorted}(\mathsf{Cons}(x,\mathsf{NiI})) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{NiI}) \\ & \leadsto \mathsf{and}(\mathsf{all\_le}(x,\mathsf{NiI}),\mathsf{sorted}(\mathsf{NiI})) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{NiI}) \\ & \leadsto \mathsf{and}(\mathsf{True},\mathsf{sorted}(\mathsf{NiI})) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{NiI}) \\ & \leadsto \mathsf{sorted}(\mathsf{NiI}) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{NiI}) \\ & \leadsto \mathsf{true} \end{split}
```

Example: Soundness of insort, Step Case

- prove $\forall x, xs.$ sorted(insort(x, xs)) = $_{\mathsf{Bool}}$ sorted(xs) by induction on xs
- step case with IH $\forall x$. sorted(insort(x, ys)) = Bool sorted(ys):

```
sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))

\rightarrow sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots
```

now perform case analysis on first argument of if

• case le(x, y), i.e., $le(x, y) =_{Bool} True$

```
ightharpoonup \operatorname{sorted}(\operatorname{if}(\operatorname{True},\operatorname{Cons}(x,\operatorname{Cons}(y,ys)),\operatorname{Cons}(y,\operatorname{insort}(x,ys)))) =_{\operatorname{Bool}} \dots

ightharpoonup \operatorname{sorted}(\operatorname{Cons}(x,\operatorname{Cons}(y,ys))) =_{\operatorname{Bool}} \operatorname{sorted}(\operatorname{Cons}(y,ys))
```

$$\rightarrow$$
 and(all_le(x , Cons(y , ys)), sorted(Cons(y , ys))) = $_{\mathsf{Bool}}$ sorted(Cons(y , ys))

 $sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$

the key to resolve this final formula is the following auxiliary property

$$\vec{\forall} \operatorname{le}(x,y) \longrightarrow \operatorname{sorted}(\operatorname{\mathsf{Cons}}(y,zs)) \longrightarrow \operatorname{\mathsf{all_le}}(x,\operatorname{\mathsf{Cons}}(y,zs))$$

this property can be proved by induction on zs but it will require a transitivity property for le

Example: Soundness of insort, Final Part

- prove $\forall x, xs.$ sorted(insort(x, xs)) = $_{\mathsf{Bool}}$ sorted(xs) by ind. on xs
- step case with IH $\forall x$. sorted(insort(x, ys)) = $_{\mathsf{Bool}}$ sorted(ys):

```
sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))
\rightarrow sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) = Bool ...
```

• case $\neg le(x, y)$, i.e., $le(x, y) =_{Bool} False$

$$\mathsf{sorted}(\mathsf{if}(\mathsf{le}(x,y),\mathsf{Cons}(x,\mathsf{Cons}(y,ys)),\mathsf{Cons}(y,\mathsf{insort}(x,ys)))) =_{\mathsf{Bool}} \dots$$

sorted(if(le(
$$x, y$$
), Cons(x , Cons(y, ys)), Cons(y , insort(x, ys)))) =_{Bool} \rightsquigarrow sorted(if(False, Cons(x , Cons(y, ys)), Cons(y , insort(x, ys)))) =_{Bool} . . .

$$\Rightarrow$$
 sorted(Cons $(y, insort(x, ys))) =_{Bool}$ sorted(Cons (y, ys))

$$\leadsto \mathsf{and}(\mathsf{all_le}(y,\mathsf{insort}(x,ys)),\mathsf{sorted}(ys)) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{Cons}(y,ys))$$

 \rightarrow and (all_le(y, insort(x, ys)), sorted(insort(x, ys))) = Bool sorted(Cons(y, ys))

Part 5 - Reasoning about Functional Programs

•
$$\forall$$
 all_le $(y, \text{insort}(x, ys)) =_{\mathsf{Bool}} \mathsf{all_le}(y, \mathsf{Cons}(x, ys))$

these allow to complete this case and hence the overall proof for sort

 \rightarrow and(all_le(y, insort(x, ys)), sorted(ys)) = Bool and(all_le(y, ys), sorted(ys))

43/44

Summary

- \bullet equational properties can often conveniently be proved via induction and equational reasoning via \leadsto
- induction wrt. algorithm preferable whenever algorithms use more complex pattern structure than $c_i(x_1, \ldots, x_n)$ for all constructors c_i
- not every property can be expressed purely equational;
 e.g., Boolean connectives are sometimes required
- specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)