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Equational Reasoning and Induction



Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

• given well-defined functional program, extract set of axioms AX that are satisfied in
standard model M
• equations of defined symbols
• equivalences regarding equality of constructors
• structural induction formulas

• for proving property M |= ϕ it suffices to show AX |= ϕ

• problems: reasoning via natural deduction quite cumbersome
• explicit introduction and elimination of quantifiers
• no direct support for equational reasoning

• aim: equational reasoning
• implicit transitivity reasoning: from a =τ b =τ c =τ d conclude a =τ d
• equational reasoning in contexts: from a =τ b conclude f(a) =τ ′ f(b)

• in general: want some calculus ` such that ` ϕ implies M |= ϕ
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Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas
• for now let us restrict to universally quantified formulas
• we can formulate properties like

• ∀xs. reverse(reverse(xs)) =List xs
• ∀xs, ys. reverse(append(xs, ys)) =List append(reverse(ys), reverse(xs))
• ∀x, y. plus(x, y) =Nat plus(y, x)

but not
• ∀x. ∃y. greater(y, x) =Bool True

• universally quantified axioms
• equations of defined symbols

• ∀y. plus(Zero, y) =Nat y
• ∀x, y. plus(Succ(x), y) =Nat Succ(plus(x, y))
• . . .

• axioms about equality of constructors
• ∀x, y. Succ(x) =Nat Succ(y)←→ x =Nat y
• ∀x. Succ(x) =Nat Zero←→ false
• . . .

• but not: structural induction formulas
• ϕ[y/Zero] −→ (∀x. ϕ[y/x] −→ ϕ[y/Succ(x)]) −→ ∀y. ϕ
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Equational Reasoning and Induction

Equational Reasoning in Formulas
• so far: ↪→E replaces terms by terms using equations E of program
• upcoming:  to simplify formulas using universally quantified axioms
• formal definition: let AX be a set of axioms; then  AX is defined as

true ∧ ϕ AX ϕ ϕ ∧ true AX ϕ false ∧ ϕ AX false

¬false AX true ¬true AX false

~∀ ` =τ r ∈ AX s ↪→{`=r} s′

s =τ t AX s′ =τ t

~∀ ` =τ r ∈ AX t ↪→{`=r} t′

s =τ t AX s =τ t
′

~∀ (` =τ r ←→ ϕ) ∈ AX
`σ =τ rσ  AX ϕσ t =τ t AX true

ϕ AX ϕ′

ϕ ∧ ψ  AX ϕ′ ∧ ψ
ψ  AX ψ′

ϕ ∧ ψ  AX ϕ ∧ ψ′
ϕ AX ϕ′

¬ϕ AX ¬ϕ′

consisting of Boolean simplifications, equations, equivalences and congruences;
often subscript AX is dropped in  AX when clear from context
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Equational Reasoning and Induction

Soundness of Equational Reasoning

• we show that whenever AX is valid in the standard model M, then
• ϕ AX ψ implies M |=α ϕ←→ ψ for all α
• so in particular M |= ~∀ϕ←→ ψ

• immediate consequence: ϕ ∗AX true implies M |= ~∀ϕ
• define calculus: ` ~∀ϕ if ϕ ∗AX true

• example

plus(Zero,Zero) =Nat times(Zero, x)

 Zero =Nat times(Zero, x)

 Zero =Nat Zero

 true

and therefore M |= ∀x. plus(Zero,Zero) =Nat times(Zero, x)
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Equational Reasoning and Induction

Proving Soundness of  : ϕ ψ implies M |=α ϕ←→ ψ

by induction on  for arbitrary α

• case

ϕ ϕ′

ϕ ∧ ψ  ϕ′ ∧ ψ
• IH: M |=α ϕ←→ ϕ′ for arbitrary α
• conclude M |=α ϕ ∧ ψ

iff M |=α ϕ and M |=α ψ
iff M |=α ϕ′ and M |=α ψ (by IH)
iff M |=α ϕ′ ∧ ψ

• in total: M |=α ϕ ∧ ψ ←→ ϕ′ ∧ ψ
• all other cases for Boolean simplifications and congruences are similar
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Equational Reasoning and Induction

Proving Soundness of  : ϕ ψ implies M |=α ϕ←→ ψ

• case

~∀ (` =τ r ←→ ϕ) ∈ AX
`σ =τ rσ  ϕσ

• premise M |= ~∀ (` =τ r ←→ ϕ),
so in particular M |=β ` =τ r ←→ ϕ for β(x) = [[σ(x)]]α

• conclude M |=α `σ =τ rσ
iff [[`]]β = [[r]]β (by SL)
iff M |=β ϕ (by premise)
iff M |=α ϕσ (by SL)

• in total: M |=α `σ =τ rσ ←→ ϕσ
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Equational Reasoning and Induction

Proving Soundness of  : ϕ ψ implies M |=α ϕ←→ ψ

• case

~∀ ` =τ r ∈ AX s ↪→{`=r} s′

s =τ t s′ =τ t
• premise M |= ~∀ ` =τ r, and s = C[`σ] and s′ = C[rσ] where C is some context, i.e., term

with one hole which can be filled via [·]
• conclude [[s]]α

= [[C[`σ]]]α
= C[`σ]α

↪→

(by reverse SL)
= Cα[`σα]

↪→

= Cα[`σα

↪→

]

↪→

(∗)
= Cα[rσα

↪→

]

↪→

= Cα[rσα]

↪→

= C[rσ]α

↪→

= [[C[rσ]]]α (by reverse SL)
= [[s′]]α

• reason for (∗): premise implies
[[`]]β = [[r]]β for β(x) = [[σ(x)]]α,
hence [[`σ]]α = [[rσ]]α (by SL),
and thus, `σα

↪→

= rσα

↪→

(by reverse SL)
• in total: M |=α s =τ t←→ s′ =τ t
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Equational Reasoning and Induction

Comparing  with ↪→
• ↪→ rewrites on terms whereas  also simplifies Boolean connectives and uses axioms

about equality =τ

• ↪→ uses defined equations of program whereas  AX is parametrized by set of axioms
• in particular proven properties like ∀xs. reverse(reverse(xs)) =List xs can be added to set of

axioms and then be used for  
• this addition of new knowledge greatly improves power, but can destroy both termination

and confluence
example: adding ∀xs. xs =List reverse(reverse(xs)) to AX is bad idea

• heuristics or user input required to select subset of theorems that are used with  
• new equations should be added in suitable direction

• obvious: ∀xs. reverse(reverse(xs)) =List xs is intended direction
• direction sometimes not obvious for distributive laws

∀x, y, z. times(plus(x, y), z) =Nat plus(times(x, z), times(y, z))

reason for left-to-right: more often applicable
reason for right-to-left: term gets smaller
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Equational Reasoning and Induction

Limits of  

•  only works with universally quantified properties
• defined equations
• equivalences to simplify equalities =τ
• newly derived properties such as ∀xs. reverse(reverse(xs)) =List xs
•  can not deal with induction axioms such as the one for associativity of append (app)

(∀ys, zs. app(app(Nil, ys), zs) =List app(Nil, app(ys, zs)))

−→ (∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→
(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))))

−→ (∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs)))

• in particular,  often cannot perform any simplification without induction proving

app(app(xs, ys), zs) =List app(xs, app(ys, zs)))

cannot be simplified by  using the existing axioms
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Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

• aim: prove equality ~∀ ` =τ r

• approach:
• select induction variable x
• reorder quantifiers such that ~∀ ` =τ r is written as ∀x.ϕ
• build induction formula wrt. slide 3/71

ϕ1 −→ . . . −→ ϕn −→ ∀x. ϕ

(no outer universal quantifier, since by construction above formula has no free variables)
• try to prove each ϕi via  
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Equational Reasoning and Induction

Example: Associativity of Append

• aim: prove equality ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach:

• select induction variable xs
• reordering of quantifiers not required
• the induction formula is presented on slide 11
• ϕ1 is

∀ys, zs. app(app(Nil, ys), zs) =List app(Nil, app(ys, zs))

so we simply evaluate

app(app(Nil, ys), zs) =List app(Nil, app(ys, zs))

 app(ys, zs) =List app(Nil, app(ys, zs))

 app(ys, zs) =List app(ys, zs)

 true

RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 13/44

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Equational Reasoning and Induction

Example: Associativity of Append, Continued
• proving ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach: . . .

• ϕ2 is
∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→

(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs)))

so we try to prove the rhs of −→ via  

app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))

 app(Cons(x, app(xs, ys)), zs) =List app(Cons(x, xs), app(ys, zs))

 Cons(x, app(app(xs, ys), zs)) =List app(Cons(x, xs), app(ys, zs))

 Cons(x, app(app(xs, ys), zs)) =List Cons(x, app(xs, app(ys, zs)))

 x =Nat x ∧ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

 true ∧ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

 app(app(xs, ys), zs) =List app(xs, app(ys, zs))

6= true
• problem: we get stuck, since currently IH is unused
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula ϕ and constructor ci:

ϕi := ∀x1, . . . , xmi .

 ∧
j,τi,j=τ

ϕ[x/xj ]


︸ ︷︷ ︸

IHs for recursive arguments

−→ ϕ[x/ci(x1, . . . , xmi)]

• idea: for proving ϕi try to show ϕ[x/ci(x1, . . . , xmi)] by evaluating it to true via  ,
where each IH ϕ[x/xj ] is added as equality
• append-example

• aim:
app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs)) ∗ true

• add IH ∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs)) to axioms

• problem IH ϕ[x/xj ] is not universally quantified equation, since variable xj is free
(in append example, this would be xs)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Continued

• to solve problem, extend  to allow evaluation with equations that contain free variables

• add two new inference rules

∀~x. ` =τ r ∈ AX s ↪→{`=r} s′

s =τ t AX s′ =τ t

∀~x. ` =τ r ∈ AX t ↪→{r=`} t′

s =τ t AX s =τ t
′

where in both inference rules, only the variables of ~x may be instantiated in the equation
` = r when simplifying with ↪→; so the chosen substitution σ must satisfy σ(y) = y for
all y /∈ ~x
• the swap of direction, i.e., the r = ` in the second rule is intended and a heuristic

• either apply the IH on some lhs of an equality from left-to-right
• or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
• proving ∀xs, ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))
• approach: . . .

• ϕ2 is ∀x, xs.(∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))) −→
(∀ys, zs. app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs)))

so we try to prove the rhs of −→ via  and add

∀ys, zs. app(app(xs, ys), zs) =List app(xs, app(ys, zs))

to the set of axioms (only for the proof of ϕ2); then

app(app(Cons(x, xs), ys), zs) =List app(Cons(x, xs), app(ys, zs))

 ∗ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

 app(xs, app(ys, zs)) =List app(xs, app(ys, zs))

 true

here it is important to apply the IH only once, otherwise one would get

app(xs, app(ys, zs)) =List app(app(xs, ys), zs)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Soundness

• aim: prove M |= ϕi for

ϕi := ~∀
∧
j

ψj︸ ︷︷ ︸
IHs

−→ ψ

where we assume that ψ  ∗ true with the additional local axioms of the IHs ψj
• hence show M |=α ψ under the assumptions M |=α ψj for all IHs ψj
• by existing soundness proof of  we can nearly conclude M |=α ψ from ψ  ∗ true

• only gap: proof needs to cover new inference rules on slide 16
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Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application

• case

∀~x. ` =τ r ∈ AX s ↪→{`=r} s′

s =τ t s′ =τ t with σ(y) = y for all y /∈ ~x
• premise is M |=α ∀~x. ` =τ r (and not M |= ~∀ ` =τ r)

and s = C[`σ] and s′ = C[rσ] as before
• conclude [[s]]α = [[s′]]α as on slide 9 as main step to derive M |=α s =τ t←→ s′ =τ t
• only change is how to obtain [[`]]β = [[r]]β for β(x) = [[σ(x)]]α
• new proof

• let ~x = x1, . . . , xk
• premise implies [[`]]α[x1:=a1,...,xk:=ak] = [[r]]α[x1:=a1,...,xk:=ak] for arbitrary ai, so in particular

for ai = [[σ(xi)]]α
• it now suffices to prove that α[x1 := a1, . . . , xk := ak] = β
• consider two cases
• for variables xi we have

α[x1 := a1, . . . , xk := ak](xi) = ai = [[σ(xi)]]α = β(xi)

• for all other variables y /∈ ~x we have

α[x1 := a1, . . . , xk := ak](y) = α(y) = [[y]]α = [[σ(y)]]α = β(y)
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Equational Reasoning and Induction

Summary

• framework for inductive proofs combined with equational reasoning

• apply induction first

• then prove each case ~∀
∧
ψj −→ ψ via evaluation ψ  ∗ true where IHs ψj become local

axioms

• free variables in IHs (induction variables) may not be instantiated by  , all the other
variables may be instantiated (“arbitrary” variables)

• heuristic: apply IHs only once

• upcoming: positive and negative examples, guidelines, extensions
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Examples, Guidelines, and Extensions



Examples, Guidelines, and Extensions

Associativity of Append
• program

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))

app(Nil, ys) = ys

• formula
~∀ app(app(xs, ys), zs) =List app(xs, app(ys, zs))

• induction on xs works successfully

• what about induction on ys (or zs)?

• base case already gets stuck

app(app(xs,Nil), zs) =List app(xs, app(Nil, zs))

 app(app(xs,Nil), zs) =List app(xs, zs)

• problem: ys is argument on second position of append,
whereas case analysis in lhs of append happens on first argument

• guideline: select variables such that case analysis triggers evaluation
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Examples, Guidelines, and Extensions

Commutativity of Addition
• program

plus(Succ(x), y) = Succ(plus(x, y))

plus(Zero, y) = y

• formula
~∀ plus(x, y) =Nat plus(y, x)

• let us try induction on x

• base case already gets stuck

plus(Zero, y) =Nat plus(y,Zero)

 y =Nat plus(y,Zero)

• final result suggests required lemma: Zero is also right neutral

• ∀x. plus(x,Zero) =Nat x can be proven with our approach

• then this lemma can be added to AX and base case of commutativity-proof can be
completed
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Examples, Guidelines, and Extensions

Right-Zero of Addition
• program

plus(Succ(x), y) = Succ(plus(x, y))

plus(Zero, y) = y

• formula
~∀ plus(x,Zero) =Nat x

• only one possible induction variable: x

• base case:

plus(Zero,Zero) =Nat Zero Zero =Nat Zero true

• step case adds IH plus(x,Zero) =Nat x as axiom and we get

plus(Succ(x),Zero) =Nat Succ(x)

 Succ(plus(x,Zero)) =Nat Succ(x)

 Succ(x) =Nat Succ(x)

 true
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Examples, Guidelines, and Extensions

Commutativity of Addition

• formula

~∀ plus(x, y) =Nat plus(y, x)

• step case adds IH ∀y. plus(x, y) =Nat plus(y, x) to axioms and we get

plus(Succ(x), y) =Nat plus(y,Succ(x))

 Succ(plus(x, y)) =Nat plus(y,Succ(x))

 Succ(plus(y, x)) =Nat plus(y,Succ(x))

• final result suggests required lemma: Succ on second argument can be moved outside

• ∀x, y. plus(x,Succ(y)) =Nat Succ(plus(x, y)) can be proven with our approach
(induction on x)

• then this lemma can be added to AX and commutativity-proof can be completed
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal
• program

app(Cons(x, xs), ys) = Cons(x, app(xs, ys))

app(Nil, ys) = ys

rev(Cons(x, xs)) = app(rev(xs),Cons(x,Nil))

rev(Nil) = Nil

r(Cons(x, xs), ys) = r(xs,Cons(x, ys))

r(Nil, ys) = ys

rev fast(xs) = r(xs,Nil)

• aim: show that both implementations of reverse are equivalent, so that the naive
implementation can be replaced by the faster one

∀xs. rev fast(xs) =List rev(xs)

• applying  first yields desired lemma

∀xs. r(xs,Nil) =List rev(xs)
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Examples, Guidelines, and Extensions

Generalizations Required
• for induction for the following formula there is only one choice: xs

∀xs. r(xs,Nil) =List rev(xs)

• step-case gets stuck

r(Cons(x, xs),Nil) =List rev(Cons(x, xs))

 ∗ r(xs,Cons(x,Nil)) =List app(rev(xs),Cons(x,Nil))

 r(xs,Cons(x,Nil)) =List app(r(xs,Nil),Cons(x,Nil))

• problem: the second argument Nil of r in formula is too specific

• solution: generalize formula by replacing constants by variables

• naive replacement does not work, since it does not hold

∀xs, ys. r(xs, ys) =List rev(xs)

• creativity required
∀xs, ys. r(xs, ys) =List app(rev(xs), ys)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Continued
• proving main formula by induction on xs, since recursion is on xs

∀xs, ys. r(xs, ys) =List app(rev(xs), ys)

• base-case
r(Nil, ys) =List app(rev(Nil), ys)

 ∗ ys =List ys true

• step-case solved with associativity of append and IH added to axioms

r(Cons(x, xs), ys) =List app(rev(Cons(x, xs)), ys)

 r(xs,Cons(x, ys)) =List app(rev(Cons(x, xs)), ys)

 app(rev(xs),Cons(x, ys)) =List app(rev(Cons(x, xs)), ys)

 app(rev(xs),Cons(x, ys)) =List app(app(rev(xs),Cons(x,Nil)), ys)

 app(rev(xs),Cons(x, ys)) =List app(rev(xs), app(Cons(x,Nil), ys))

 app(rev(xs),Cons(x, ys)) =List app(rev(xs),Cons(x, app(Nil, ys)))

 app(rev(xs),Cons(x, ys)) =List app(rev(xs),Cons(x, ys)) true
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Finalized
• now add main formula to axioms, so that it can be used by  

∀xs, ys. r(xs, ys) =List app(rev(xs), ys)

• then for our initial aim we get

rev fast(xs) =List rev(xs)

 r(xs,Nil) =List rev(xs)

 app(rev(xs),Nil) =List rev(xs)

• at this point one easily identifies a missing property

∀xs. app(xs,Nil) =List xs

which is proven by induction on xs in combination with  

• afterwards it is trivial to complete the equivalence proof of the two reversal
implementations
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Examples, Guidelines, and Extensions

Another Problem
• consider the following program

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x),Succ(y)) = le(x, y)

• and the desired property

∀x. le(half(x), x) =Bool True

• induction on x will get stuck, since the step-case Succ(x) does not permit evaluation wrt.
half-equations

• better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of
half) with cases that correspond to patterns in lhss
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Examples, Guidelines, and Extensions

Induction wrt. Algorithm
• induction wrt. algorithm was informally performed on slides 4/36

• select some n-ary function f
• each f -equation is turned into one case
• for each recursive f -call in rhs get one IH

• example: for algorithm

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

the induction rule for half is

ϕ[y/Zero]

−→ ϕ[y/Succ(Zero)]

−→ (∀x. ϕ[y/x] −→ ϕ[y/Succ(Succ(x))])

−→ ∀y. ϕ
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Induction wrt. Algorithm
• induction wrt. algorithm formally defined

• let f be n-ary defined function within well-defined program
• let there be k defined equations for f
• let ϕ be some formula which has exactly n free variables x1, . . . , xn
• then the induction rule for f is

ϕind,f := ψ1 −→ . . . −→ ψk −→ ∀x1, . . . , xn. ϕ

where for the i-th f -equation f(`1, . . . , `n) = r we define

ψi := ~∀

 ∧
rDf(r1,...,rn)

ϕ[x1/r1, . . . , xn/rn]

 −→ ϕ[x1/`1, . . . , xn/`n]

where ~∀ ranges over all variables in the equation

• properties
• M |= ϕind,f ; reason: pattern-completeness and termination (SN(↪→◦D))
• heuristic: good idea to prove properties ~∀ϕ about function f via ϕf,ind
• reason: structure will always allow one evaluation step of f -invocation
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Back to Example

• consider program

half(Zero) = Zero

half(Succ(Zero)) = Zero

half(Succ(Succ(x))) = Succ(half(x))

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x),Succ(y)) = le(x, y)

• for property

∀x. le(half(x), x) =Bool True

chose induction for half (and not for le), since half is inner function call; hopefully
evaluation of inner function calls will enable evaluation of outer function calls
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(Nearly) Completing the Proof
• applying induction for half on

∀x. le(half(x), x) =Bool True

turns this problem into three new proof obligations
• le(half(Zero),Zero) =Bool True
• le(half(Succ(Zero)),Succ(Zero)) =Bool True
• le(half(Succ(Succ(x))),Succ(Succ(x))) =Bool True

where le(half(x), x) =Bool True can be assumed as IH

• the first two are easy, the third one works as follows

le(half(Succ(Succ(x))),Succ(Succ(x))) =Bool True

 le(Succ(half(x)),Succ(Succ(x))) =Bool True

 le(half(x),Succ(x)) =Bool True

• here there is another problem, namely that the IH is not applicable

• problem solvable by proving an implication like
le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True;
uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs 34/44

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

• generalization: instead of pure equalities also support implications

• simplifications with  can happen on both sides of implication,
since  yields equivalent formulas

• applying conditional equations triggers new proofs: preconditions must be satisfied
• example:

• assume axioms contain conditional equality ϕ −→ ` =τ r, e.g., from IH
• current goal is implication ψ −→ C[`σ] =τ t
• we would like to replace goal by ψ −→ C[rσ] =τ t
• but then we must ensure ψ −→ ϕσ, e.g., via ψ −→ ϕσ  ∗ true

•  must be extended to perform more Boolean reasoning

• not done formally at this point
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Equational Reasoning with Conditions, Example
• property

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

• apply induction on le
• first case

le(Zero, y) =Bool True −→ le(Zero, Succ(y)) =Bool True

 le(Zero, y) =Bool True −→ True =Bool True

 le(Zero, y) =Bool True −→ true

 true

• second case

le(Succ(x),Zero) =Bool True −→ le(Succ(x), Succ(Zero)) =Bool True

 False =Bool True −→ le(Succ(x), Succ(Zero)) =Bool True

 false −→ le(Succ(x),Succ(Zero)) =Bool True

 true
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Equational Reasoning with Conditions, Example
• property

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

• third case has IH

le(x, y) =Bool True −→ le(x, Succ(y)) =Bool True

and we reason as follows

le(Succ(x), Succ(y)) =Bool True −→ le(Succ(x), Succ(Succ(y))) =Bool True

 le(x, y) =Bool True −→ le(Succ(x),Succ(Succ(y))) =Bool True

 le(x, y) =Bool True −→ le(x,Succ(y)) =Bool True

 le(x, y) =Bool True −→ True =Bool True

 le(x, y) =Bool True −→ true

 true

• proof of property ∀x. le(half(x), x) =Bool True finished
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Final Example: Insertion Sort

• consider insertion sort

le(Zero, y) = True

le(Succ(x),Zero) = False

le(Succ(x), Succ(y)) = le(x, y)

if(True, xs, ys) = xs

if(False, xs, ys) = ys

insort(x,Nil) = Cons(x,Nil)

insort(x,Cons(y, ys)) = if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))

sort(Nil) = Nil

sort(Cons(x, xs)) = insort(x, sort(xs))

• aim: prove soundness, e.g., result is sorted

• problem: how to express “being sorted”?

• in general: how to express properties if certain primitives are not available?
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Expressing Properties
• solution: express properties via functional programs

. . . = . . .

sort(Cons(x, xs)) = insort(x, sort(xs))

algorithm above, properties for specification below

and(True, b) = b

and(False, b) = False

all le(x,Nil) = True

all le(x,Cons(y, ys)) = and(le(x, y), all le(x, ys))

sorted(Nil) = True

sorted(Cons(x, xs)) = and(all le(x, xs), sorted(xs))

• example properties (where b =Bool True is written just as b)
• sorted(insort(x, xs)) =Bool sorted(xs)
• sorted(sort(xs))

• important: functional programs for specifications should be simple;
they must be readable for validation and need not be efficient
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Example: Soundness of sort
• already assume property of insort:

∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) (∗)

speculative proofs are risky: conjectures might be wrong

• property ∀xs. sorted(sort(xs)) is shown by induction on xs

• base case:
sorted(sort(Nil))

 sorted(Nil)

 True (recall: syntax omits =Bool True)

 true

• step case with IH sorted(sort(xs)):
sorted(sort(Cons(x, xs)))

 sorted(insort(x, sort(xs)))
(∗)
 sorted(sort(xs))

 True
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Example: Soundness of insort

• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by induction on xs

• base case:

sorted(insort(x,Nil)) =Bool sorted(Nil)

 sorted(Cons(x,Nil)) =Bool sorted(Nil)

 and(all le(x,Nil), sorted(Nil)) =Bool sorted(Nil)

 and(True, sorted(Nil)) =Bool sorted(Nil)

 sorted(Nil) =Bool sorted(Nil)

 true
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Example: Soundness of insort, Step Case

• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by induction on xs

• step case with IH ∀x. sorted(insort(x, ys)) =Bool sorted(ys):

sorted(insort(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

 sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

now perform case analysis on first argument of if
• case le(x, y), i.e., le(x, y) =Bool True

sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

 sorted(if(True,Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

 sorted(Cons(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

 and(all le(x,Cons(y, ys)), sorted(Cons(y, ys))) =Bool sorted(Cons(y, ys))

the key to resolve this final formula is the following auxiliary property

~∀ le(x, y) −→ sorted(Cons(y, zs)) −→ all le(x,Cons(y, zs))

this property can be proved by induction on zs but it will require a transitivity property for le
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Example: Soundness of insort, Final Part
• prove ∀x, xs. sorted(insort(x, xs)) =Bool sorted(xs) by ind. on xs

• step case with IH ∀x. sorted(insort(x, ys)) =Bool sorted(ys):

sorted(insort(x,Cons(y, ys))) =Bool sorted(Cons(y, ys))

 sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

• case ¬le(x, y), i.e., le(x, y) =Bool False

sorted(if(le(x, y),Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

 sorted(if(False,Cons(x,Cons(y, ys)),Cons(y, insort(x, ys)))) =Bool . . .

 sorted(Cons(y, insort(x, ys))) =Bool sorted(Cons(y, ys))

 and(all le(y, insort(x, ys)), sorted(insort(x, ys))) =Bool sorted(Cons(y, ys))

 and(all le(y, insort(x, ys)), sorted(ys)) =Bool sorted(Cons(y, ys))

 and(all le(y, insort(x, ys)), sorted(ys)) =Bool and(all le(y, ys), sorted(ys))

at this point identify further required auxiliary properties
• ~∀ all le(y, insort(x, ys)) =Bool all le(y,Cons(x, ys))
• ~∀ le(x, y) =Bool False −→ le(y, x) =Bool True

these allow to complete this case and hence the overall proof for sort
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Summary

• equational properties can often conveniently be proved via induction and equational
reasoning via  

• induction wrt. algorithm preferable whenever algorithms use more complex pattern
structure than ci(x1, . . . , xn) for all constructors ci
• when getting stuck with  try to detect suitable auxiliary property;

after proving it, add it to set of axioms for evaluation

• not every property can be expressed purely equational;
e.g., Boolean connectives are sometimes required

• specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)
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