M universitat S5 2021
™ innsbruck

Program Verification

Part 5 — Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State
® given well-defined functional program, extract set of axioms AX that are satisfied in
standard model M
® equations of defined symbols
® equivalences regarding equality of constructors
® structural induction formulas
e for proving property M = ¢ it suffices to show AX | ¢
problems: reasoning via natural deduction quite cumbersome

® explicit introduction and elimination of quantifiers
® no direct support for equational reasoning

® aim: equational reasoning
® implicit transitivity reasoning: from a =, b =, ¢ =; d conclude a =, d
® equational reasoning in contexts: from a =, b conclude f(a) =,/ f(b)

® in general: want some calculus I such that - ¢ implies M = ¢
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Equational Reasoning and Induction

Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas
® for now let us restrict to universally quantified formulas
® we can formulate properties like
® Vus. reverse(reverse(zs)) =List S
® Vs, ys. reverse(append(zs, ys)) =L append(reverse(ys), reverse(xs))
® Yz, y. plus(z,y) =nat plus(y, x)
but not
® V. Jy. greater(y, x) =gool True
® universally quantified axioms
® equations of defined symbols
® Vy. plus(Zero,y) =nat ¥

® Vz,y. plus(Succ(z), y) =nat Succ(plus(z,y))
L]

* axioms about equality of constructors
® Vz,y. Succ(z) =nat Succ(y) «— & =nat ¥

® Vz. Succ(z) =nat Zero «— false
[ ]

e but not: structural induction formulas
® ply/Zero] — (Vz. ply/a] — ply/Succ(z)]) — Vy. ¢
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Equational Reasoning and Induction

Equational Reasoning in Formulas
® so far: < ¢ replaces terms by terms using equations £ of program
® upcoming: ~- to simplify formulas using universally quantified axioms
e formal definition: let AX be a set of axioms; then ~~ 4 x is defined as

true A ¢ ~ax @ @ Atrue ~>ax @ false A ¢ ~» 4 x false

—true ~» 4 x false
Ve = reAX t —{e=r} t/

SZTtWAXSZTt/

—false ~~ 4 x true

Vi=,rcAX s (=} &'

SZTtWAXSI:Tt

V(l=rr+—p) e AX
lo =; 10 ~»Ax YO

t =,1t~ax true
W~ ax Y
A~ ax o NP

o ~ax ¢
=@~ ax @

@ ~ax ¢
CAY ~ax @AY

consisting of Boolean simplifications, equations, equivalences and congruences;
often subscript AX is dropped in ~>4x when clear from context
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Equational Reasoning and Induction

Proving Soundness of ~~: ¢ ~ ¢ implies M =, ¢ +— ¢
by induction on ~~ for arbitrary «
o~
e case p AP~ @ A
® |H: M =, ¢ «— ¢ for arbitrary «
® conclude M =, o A9
iff M=o p and M =4 ¢
iff M =4 ¢’ and M =, ¢ (by IH)
iff M o o A
® intotal M, oA +— @ A

® all other cases for Boolean simplifications and congruences are similar
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Equational Reasoning and Induction
Soundness of Equational Reasoning

® we show that whenever AX is valid in the standard model M, then
® o ~ax 1 implies M =, ¢ +— o for all
® so in particular M EVp +— ¢

® immediate consequence: ¢ ~~%  true implies M = 9,9
® define calculus: gg& if @ ~% 5 true

® example

plus(Zero, Zero) =ngt times(Zero, x)
~ Zero =g times(Zero, x)
~ Zero =pat Zero

~ true

and therefore M = V. plus(Zero, Zero) =pat times(Zero, x)
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Equational Reasoning and Induction

Proving Soundness of ~: ¢ ~ 1) implies M =, ¢ «— ¢

Q(E:TTH@)EAX
® case lo =; 10 ~ @O
® premise M = 9(6 =, 7+ ),
so in particular M =5 £ =, r <— ¢ for f(z) = [o(2)]a
® conclude M =, lo =; ro
ifF [ = [l (by SL)
iff M =5 ¢ (by premise)
iff M [=q @o (by SL)
® in total: M [z, lo =, 10 +— o
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Equational Reasoning and Induction

Proving Soundness of ~+: ¢ ~ 1) implies M =, p «— ¢

Vi=,reAX s (=} &

® case s=,t~8 =1
* premise M =V{ =, 7, and s = C[lo] and s’ = C[ro] where C is some context, i.e., term
with one hole which can be filled via []
® conclude [s]q
= [Clto]]a
= Cllo)a [ (by reverse SL)
= Calloa] [ = Calloa[] |

© Calroa ] [ = Calroal] [
= Clrolaf °
= [Clro]]a (by reverse SL)
[5']a
® reason for (*): premise implies

[41s = [r]s for 5(z) = [o(2)]a

hence [¢o]s = [ro]a (by SL),

and thus, loa [ = roa [ (by reverse SL)
® intotall M, s=,t+— s =t
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. . Equational Reasoning and Induction
Limits of ~
® -~ only works with universally quantified properties

® defined equations

® equivalences to simplify equalities =,
[ ]

[ ]
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Equational Reasoning and Induction

Comparing ~ with —
® < rewrites on terms whereas ~~ also simplifies Boolean connectives and uses axioms
about equality =,
® < uses defined equations of program whereas ~ 4 x is parametrized by set of axioms

in particular proven properties like Vs. reverse(reverse(xs)) =pist s can be added to set of
axioms and then be used for ~~

this addition of new knowledge greatly improves power, but can destroy both termination
and confluence

example: adding Vas. s =|ist reverse(reverse(zs)) to AX is bad idea

® heuristics or user input required to select subset of theorems that are used with ~~

new equations should be added in suitable direction

® obvious: Vzs. reverse(reverse(zs)) =iist xs is intended direction
® direction sometimes not obvious for distributive laws

Ve, y, z. times(plus(z,y), z) =nat plus(times(z, z), times(y, z))
reason for left-to-right: more often applicable

reason for right-to-left: term gets smaller
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Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

newly derived properties such as Vus. reverse(reverse(s)) =|ist o ® aim: prove equality Ve=,r
~- can not deal with induction axioms such as the one for associativity of append (app) e approach:
(Vys, zs. app(app(Nil, ys), 5) =vix app(Nil, app(ys, zs))) ? select induction variable x
® reorder quantifiers such that V¢ =, r is written as Vz.¢
— (Y2,5.(¥ys, z5. app(app(s, ys), 25) =Lt app(s, 3pP(ys, 25))) — ® build induction formula wrt. slide 3/71
(Vys, zs. app(app(Cons(z, s), ys), z5) —s: app(Cons(z, as), app(ys, 25))))
— (Vs,ys, zs. app(app(xs, ys), 25) =List app(ws, app(ys, 2s))) 1= ... o — VX
(no outer universal quantifier, since by construction above formula has no free variables)
°

® in particular, ~» often cannot perform any simplification without induction proving

app(app(xs,ys), 28) =List app(xs, app(ys, 25)))
cannot be simplified by ~> using the existing axioms
RT (DCS @ UIBK)
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try to prove each ¢; via ~~
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Equational Reasoning and Induction

Example: Associativity of Append

® aim: prove equality Vs, ys, zs. app(app(xs,ys), zs) =List app(zs, app(ys, zs))
® approach:

® select induction variable zs

® reordering of quantifiers not required

® the induction formula is presented on slide 11

L4 ©1 is

Vys, zs. app(app(Nil, ys), zs) =vist app(Nil, app(ys, zs))
so we simply evaluate
app(app(Nil, ys), zs) =Lis app(Nil, app(ys, 2s))
~ app(ys, zs) =List app(Nil, app(ys, 25))

~~ app(ys, 25) =List apP(Y$, 25)
~» true
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

® recall structure of induction formula for formula ¢ and constructor ¢;:

/\ olz/x;]

JiTi =T

— pla/ei(zr, .., Tm,)]

IHs for recursive arguments

® idea: for proving ; try to show p[x/ci(x1,...,Tm,)] by evaluating it to true via ~,
where each IH ¢[z/z;] is added as equality
® append-example
® aim:
app(app(Cons(z, zs),ys), zs) =List app(Cons(z, zs), app(ys, zs)) ~~ true
® add IH Vys, zs. app(app(zs, ys), z8) =List app(zs, app(ys, zs)) to axioms
® problem IH p[x/x;] is not universally quantified equation, since variable z; is free
(in append example, this would be xs)
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vzs,ys, zs. app(app(xs, ys), 25) =List app(zs,app(ys, 2s))
® approach: ...

L 2 is
v Va, xs.(Vys, zs. app(app(zs,ys), 28) =vis app(zs, app(ys, 2s))) —

(Vys, zs. app(app(Cons(z, zs),ys), zs) =vist app(Cons(z, xs), app(ys, 25)))

so we try to prove the rhs of — via ~»

app(app(Cons(z, xs),ys), zs) =List app(Cons(z, zs), app(ys, 25))
~ app(Cons(z, app(zs, ys)), zs) =List app(Cons(z, zs), app(ys, zs))
~ Cons(x, app(app(zs, ys), zs)) =List app(Cons(z, zs), app(ys, zs))
~ Cons(z, app(app(zs, ys), 2s)) =tist Cons(z, app(zs,app(ys, zs)))
~ @ =Nt & A app(app(zs, ys), 25) =List app(zs, app(ys, 25))
~ true A app(app(zs,ys), z8) =List app(zs, app(ys, zs))
~~ app(app(xs, ys), z8) =List app(xs, app(ys, z5))

# true

® problem: we get stuck, since currently IH is unused
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Equational Reasoning and Induction
Integrating IHs into Equational Reasoning, Continued
® to solve problem, extend ~~ to allow evaluation with equations that contain free variables

® add two new inference rules

Vi l=,reAX s —{e=r} s’ Vi l=rreAX t =0} v

SZTtWAXsl:Tt SITtWAXSZTtl

where in both inference rules, only the variables of Z may be instantiated in the equation
£ = r when simplifying with <; so the chosen substitution o must satisfy o(y) = y for
ally ¢ &

® the swap of direction, i.e., the = £ in the second rule is intended and a heuristic

® either apply the IH on some lhs of an equality from left-to-right
® or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal
® another heuristic is to apply each IH only once
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Equational Reasoning and Induction

Example: Associativity of Append, Continued
® proving Vs, ys, zs. app(app(xs,ys), 28) =List app(zs, app(ys, zs))
® approach: ...
® s Ve, zs.(Vys, zs. app(app(zs, ys), zs) =List app(xs, app(ys, zs))) —
(Vys, zs. app(app(Cons(z, zs),ys), zs) =List app(Cons(z, zs), app(ys, 2s)))

so we try to prove the rhs of — via ~» and add

Vys, zs. app(app(zs,ys), 28) =List aPP(Ts, app(ys, 25))

to the set of axioms (only for the proof of (2); then

app(app(Cons(z, z5),ys), zs) =List app(Cons(x, 25), app(ys, 25))
~" app(app(zs,ys), 28) =List app(5,app(ys, 25))
~ app(zs, app(ys, 25)) =List 2Pp(2s, app(ys, zs))
~~ true

here it is important to apply the IH only once, otherwise one would get

app(zs, app(ys, zs)) =List app(app(zs, ys), s)
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Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application
Vi A =rr€AX sy s

® case S=,t~ 8 =1
® premise is M =, VZ. 0=, 1
and s = C[lo] and s’ = C[ro] as before
® conclude [s]o = [s']« as on slide 9 as main step to derive M =, s =, t +— &' =, ¢
® only change is how to obtain [(]z = [r]s for 5(z) = [o(z)]a
® new proof

with o(y) =y for all y ¢ &
(and not M =V 0=, )

® letZ=ux1,...,7k

® premise implies [(]a(or:=ay,....0p:=ar] = ["]afe1:=a1,...,0x:=ax] fOF arbitrary a;, so in particular
for a; = [o(xi)]a

® it now suffices to prove that afz1 :=as,..., 2k = ax] =

® consider two cases
for variables z; we have

alzy = a1, ..., xk = ag)(xi) = a; = [o(xi)]o = B(zs)
® for all other variables y ¢ ¥ we have

afer = ay, .. zk= a](y) = ay) = [W]a = [0(W)]a = B(y)
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Equational Reasoning and Induction

Integrating IHs into Equational Reasoning, Soundness

® aim: prove M = ; for
pi=V \v; — v
J

——
IHs

where we assume that ¥ ~~* true with the additional local axioms of the IHs );
® hence show M =, ¢ under the assumptions M |=, 9; for all IHs ¢);
® by existing soundness proof of ~» we can nearly conclude M |=, ¢ from ¢ ~~* true

® only gap: proof needs to cover new inference rules on slide 16
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Equational Reasoning and Induction

Summary
e framework for inductive proofs combined with equational reasoning
® apply induction first

® then prove each case V A 1); — 1) via evaluation 1 ~»* true where IHs v; become local
axioms

e free variables in IHs (induction variables) may not be instantiated by ~-, all the other
variables may be instantiated (“arbitrary” variables)

® heuristic: apply IHs only once

® upcoming: positive and negative examples, guidelines, extensions
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Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

Commutativity of Addition

® program
plus(Succ(z), y) = Succ(plus(z, y))

plus(Zero,y) =y
e formula -
Vplus(z,y) =nat plus(y, z)
® let us try induction on x

® base case already gets stuck

plus(Zero, y) =nat plus(y, Zero)
~ Yy =pat plus(y, Zero)

® final result suggests required lemma: Zero is also right neutral
® Vz. plus(z, Zero) =nat = can be proven with our approach

® then this lemma can be added to AX and base case of commutativity-proof can be
completed
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Associativity of Append

Examples, Guidelines, and Extensions

® program
app(Cons(x, 2s), ys) = Cons(x, app(ws, ys))
app(Nil, ys) = ys
e formula -
Vapp(app(zs,ys), zs) =List 2Pp(xs, app(ys, 25))
® induction on xs works successfully
e what about induction on ys (or zs)?
® base case already gets stuck
app(app(xs, Nil), zs) =List app(zs, app(Nil, zs))
~ app(app(zs, Nil), z5) =List app(zs, 25)
® problem: ys is argument on second position of append,
whereas case analysis in lhs of append happens on first argument
® guideline: select variables such that case analysis triggers evaluation
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Right-Zero of Addition

Examples, Guidelines, and Extensions

® program
plus(Succ(z),y) = Succ(plus(z,y))
plus(Zero,y) =y
e formula .
V plus(x, Zero) =nat @
® only one possible induction variable: x
® base case:
plus(Zero, Zero) =nat Zero ~> Zero =y,¢ Zero ~- true
® step case adds IH plus(x, Zero) =nat « as axiom and we get
plus(Succ(z), Zero) =nat Succ(z)
~ Succ(plus(z, Zero)) =nat Succ(z)
~ Succ(x) =Nat Succ(z)
~> true
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Examples, Guidelines, and Extensions

Commutativity of Addition
e formula

gplus(x,y) =nat plus(y, x)
® step case adds IH Vy. plus(z,y) =Nat plus(y, z) to axioms and we get

plus(Succ(z), y) =nat plus(y, Succ(x))
~ Succ(plus(z,y)) =nat plus(y, Succ(zx))
z)

~+ Succ(plus(y, z)) =nat plus(y, Succ(z))

final result suggests required lemma: Succ on second argument can be moved outside

Va,y. plus(z, Succ(y)) =nat Succ(plus(z,y)) can be proven with our approach
(induction on x)

then this lemma can be added to AX and commutativity-proof can be completed
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Examples, Guidelines, and Extensions

Generalizations Required
® for induction for the following formula there is only one choice: xs

Vas. r(xs, Nil) =g rev(zs)

® step-case gets stuck
r(Cons(z, zs), Nil) =Lt rev(Cons(z, xs))
~* r(zs, Cons(z, Nil)) =(ist app(rev(zs), Cons(z, Nil))
~ r(zs, Cons(z, Nil)) =List app(r(zs, Nil), Cons(z, Nil))

problem: the second argument Nil of r in formula is too specific
® solution: generalize formula by replacing constants by variables

® naive replacement does not work, since it does not hold
Vs, ys. r(xs,ys) =List rev(xs)

® creativity required

Vs, ys. r(zs,ys) =List app(rev(zs),ys)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal

® program
app(Cons(x, zs),ys) = Cons(z, app(zs, ys))

app(Nil, ys) = ys

rev(Cons(z, zs)) = app(rev(zs), Cons(z, Nil))
rev(Nil) = Nil

r(Cons(z, zs),ys) = r(zs, Cons(z,ys))
r(Nil,ys) = ys

rev_fast(xzs) = r(zs, Nil)

® aim: show that both implementations of reverse are equivalent, so that the naive
implementation can be replaced by the faster one

Vxs. rev_fast(zs) =Lt rev(xs)

® applying ~ first yields desired lemma
Vas. r(zs, Nil) =Lig rev(zs)
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Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Continued

® proving main formula by induction on zs, since recursion is on xs
Vs, ys. r(xs,ys) =List app(rev(zs), ys)
® base-case ] )
r(Nil, ys) =List app(rev(Nil), ys)
~" s =List YS ~ true

® step-case solved with associativity of append and IH added to axioms
r(Cons(z, zs),ys) =List app(rev(Cons(z, zs)), ys)
~ r(xs, Cons(x,ys)) =List app(rev(Cons(z, zs)),ys)
~~ app(rev(zs), Cons(x, ys)) =List app(rev(Cons(z, zs)),ys)
(rev(zs), Cons(z,ys)) =List app(app(rev(zs), Cons(z, Nil)), ys)
(rev(zs), Cons(z,ys)) =List app(rev(zs), app(Cons(z, Nil), ys))
~ app(rev(xs), Cons(x,ys)) =List app(rev(xs), Cons(x, app(Nil,ys)))
(rev(ws), Cons(

~~ app(rev(xs), Cons(x, ys)) =List app(rev(xs), Cons(x,ys)) ~ true
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Fast Implementation of Reversal, Finalized
® now add main formula to axioms, so that it can be used by ~~

Vs, ys. r(xs,ys) =List app(rev(zs), ys)
® then for our initial aim we get

rev_fast(xs) =pist rev(zs)
~ r(zs, Nil) =| s rev(zs)

~ app(rev(zs), Nil) =_ist rev(zs)
® at this point one easily identifies a missing property
Vaxs. app(zs, Nil) =List 28

which is proven by induction on xs in combination with ~~

® afterwards it is trivial to complete the equivalence proof of the two reversal

implementations
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Induction wrt. Algorithm

e induction wrt. algorithm was informally performed on slides 4/36

® select some n-ary function f
® each f-equation is turned into one case
® for each recursive f-call in rhs get one IH

® example: for algorithm

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(z))) = Succ(half(z))

the induction rule for half is

ly/Zero]
— @[y/Succ(Zero)]

— (V. ly/z] — @|y/Succ(Suce(x))])
— Yy. ¢
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Examples, Guidelines, and Extensions
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Examples, Guidelines, and Extensions

31/44

Another Problem
® consider the following program

half(Zero) = Zero
half (Succ(Zero)) = Zero
half (Succ(Succ(x))) = Succ(half(z))
le(Zero, y) = True
le(Succ(x), Zero) = False

)

le(Succ(z), Succ(y)) = le(z,y)

® and the desired property
V. le(half(z), ) =gool True

Examples, Guidelines, and Extensions

e induction on x will get stuck, since the step-case Succ(x) does not permit evaluation wrt.

half-equations

e better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of

half) with cases that correspond to patterns in lhss
RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs
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Examples, Guidelines, and Extensions

Induction wrt. Algorithm
® induction wrt. algorithm formally defined

® let f be m-ary defined function within well-defined program
® let there be k defined equations for f
® let p be some formula which has exactly n free variables z1,...,z,
® then the induction rule for f is
Gind,f = WP1 —> ... —> Yp —> VI, .., Ty P
where for the i-th f-equation f({1,...,¢,) = r we define
P; =V /\ oler/r1, .y xn/ra] | — lz1/l, ...,
> f(r1,rn)

where V ranges over all variables in the equation
® properties

® M |= @ind,s; reason: pattern-completeness and termination (SN (< o >))

® heuristic: good idea to prove properties 94,0 about function f via ¢f ing

® reason: structure will always allow one evaluation step of f-invocation
RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs
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Examples, Guidelines, and Extensions

Back to Example

® consider program

half(Zero) = Zero

e for property

RT (DCS @ UIBK)

chose induction for half (and not for le), since half is inner function call; hopefully
evaluation of inner function calls will enable evaluation of outer function calls

V. le(half(z), ) =gool True

Part 5 — Reasoning about Functional Programs
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Equational Reasoning with Conditions

RT (DCS @ UIBK)

generalization: instead of pure equalities also support implications

simplifications with ~~ can happen on both sides of implication,
since ~ yields equivalent formulas

applying conditional equations triggers new proofs: preconditions must be satisfied
example:

® assume axioms contain conditional equality ¢ — ¢ =, r, e.g., from IH

® current goal is implication v — C[lo] =, ¢

® we would like to replace goal by ) — Clro] =, t

® but then we must ensure 1) — @0, e.g., via ) — pao ~* true

~~ must be extended to perform more Boolean reasoning

not done formally at this point

Part 5 — Reasoning about Functional Programs
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(Nearly) Completing the Proof
® applying induction for half on

V. le(half(z), ) =gool True

turns this problem into three new proof obligations
® le(half(Zero), Zero) =gool True
® le(half(Succ(Zero)), Succ(Zero)) =gool True
® le(half(Succ(Succ(z))), Succ(Succ(x))) =gool True
where le(half(z), ) =gool True can be assumed as |H

® the first two are easy, the third one works as follows

le(half (Succ(Succ(z))), Succ(Succ(x))) =gool True

® here there is another problem, namely that the IH is not applicable

~> le(Succ(half(x)), Succ(Succ(z))) =pool True

~ le(half(z), Succ(z)) =gool True

® problem solvable by proving an implication like
le(z,y) =Bool True — le(x, Succ(y)) =gool True;

uses equational reasoning with conditions; covered informally only

RT (DCS @ UIBK)

Part 5 — Reasoning about Functional Programs

Equational Reasoning with Conditions, Example

® property

le(z,y) =Bool True —> le(x, Succ(y)) =gool True

® apply induction on le

e first case

® second case

RT (DCS @ UIBK)

le(Zero, y) =gool True — le(Zero, Succ(y)) =gool True

~ le(Zero, y) =gool True — True =pool True

~> le(Zero, y) =gool True — true

~> true

Examples, Guidelines, and Extensions
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le(Succ(z), Zero) =pool True — le(Succ(x), Succ(Zero)) =goo True

~~ False =pool True — le(Succ(z), Succ(Zero)) =gool True

~ false — le(Succ(z), Succ(Zero)) =gool True

~> true
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Equational Reasoning with Conditions, Example
® property

le(z,y) =Bool True — le(x, Succ(y)) =gool True
® third case has |H

le(z,y) =gool True — le(x, Succ(y)) =gool True

and we reason as follows

le(Suce(z), Succ(y)) =gool True — le(Succ(x), Succ(Succ(y))) =gool True
~ le(x, y) =Bool True — le(Succ(z), Succ(Succ(y))) =gool True
~ le(z,y) =Bool True — le(z, Succ(y)) =gool True
~ le(x, y) =Bool True — True =gool True
~ le(z, y) =Bool True —» true

~> true

® proof of property Vz. le(half(x), 2) =pgool True finished
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Expressing Properties

® solution: express properties via functional programs

sort(Cons(z, zs)) = insort(x, sort(zs))
algorithm above, properties for specification below

and(True, b) =
and(False, b) = False
all_le(z, Nil) = True

)

)=

)=

all_le(z, Cons(y, ys) nd(le(z, y), all_le(z, ys))
sorted(Nil) = True

sorted(Cons(x, xs)) = and(all_le(z, zs), sorted(zs))

® example properties (where b =pgoo| True is written just as b)
® sorted(insort(x, xs)) =gool Sorted(xs)
® sorted(sort(xs))
® important: functional programs for specifications should be simple;
they must be readable for validation and need not be efficient
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Final Example: Insertion Sort

® consider insertion sort

le(Zero, y) = True
le(Succ(z), Zero) = False
le(Succ(z), Succ(y)) = le(z, y)
if (True, zs, ys) = xs
if (False, zs, ys) = ys
insort(z, Nil) = Cons(z, Nil)

sort(N

Examples, Guidelines, and Extensions

)=
)=
insort(z, Cons(y, ys)) = (Ie(:r y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))
in
)=

sort(Cons(z, zs) |nsort(a: sort(zs))

® aim: prove soundness, e.g., result is sorted

® problem: how to express “being sorted”?

® in general: how to express properties if certain primitives are not available?

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs

Example: Soundness of sort
® already assume property of insort:

YV, xs. sorted(insort(z, xs)) =pgool sorted(zs)

speculative proofs are risky: conjectures might be wrong
® property Vas. sorted(sort(xs)) is shown by induction on xs

® base case:
sorted(sort(Nil))

~ sorted(Nil)

~> True (recall: syntax omits =pgoo True)

~> true
® step case with IH sorted(sort(xs
sorted(sort(Cons(x xs)))
~= sorted(insort(z, sort(xs)))
 sorted (sort(zs))

~ True

RT (DCS @ UIBK) Part 5 — Reasoning about Functional Programs
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Example: Soundness of insort

® prove Yz, xs. sorted(insort(x, xs)) =pool sorted(zs) by induction on xs
® base case:
sorted(insort(x, Nil)) =pgoor sorted(Nil)
~= sorted(Cons(z, Nil)) =go0 sorted(Nil)
~ and(all_le(z, Nil), sorted(Nil)) =gool sorted(Nil)
~» and(True, sorted(Nil)) =gool sorted(Nil)
~= sorted(Nil) =gl sorted(Nil)

~> true
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Example: Soundness of insort, Final Part
® prove Yz, zs. sorted(insort(z, xs)) =pool sorted(zs) by ind. on xs
® step case with |H Vz. sorted(insort(z, ys)) =gool sorted(ys):

sorted(insort(z, Cons(y, ys))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(x, Cons(y, ys)), Cons(y, insort(z,ys)))) =sool - - -

® case —le(x,y), i.e., le(z,y) =pool False

sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(z, ys)))) =gool - - -
~ sorted(if (False, Cons(x, Cons(y, ys)), Cons(y, insort(z,ys)))) =sool - - -
~~ sorted(Cons(y, insort(z, ys))) =sool sorted(Cons(y, ys))
~~ and(all_le(y, insort(x, ys)), sorted(insort(z, ys))) =sool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(ys)) =gool sorted(Cons(y, ys))
~ and(all_le(y, insort(z, ys)), sorted(ys)) =gool and(all_le(y, ys), sorted(ys))

at this point identify further required auxiliary properties
® Vallle(y, insort(z, ys)) =gool all_le(y, Cons(z, ys))
° gle(z,y) =gool False — le(y, x) =gool True
these allow to complete this case and hence the overall proof for sort
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Example: Soundness of insort, Step Case

® prove Vx, xs. sorted(insort(z, £s)) =pgool sorted(zs) by induction on zs
® step case with IH Vz. sorted(insort(x, ys)) =pool sorted(ys):
sorted(insort(z, Cons(y, ys))) =gool sorted(Cons(y, ys))
~ sorted(if (le(z, y), Cons(x, Cons(y, ys)), Cons(y, insort(z,ys)))) =sool - - -
now perform case analysis on first argument of if
® case le(z,y), i.e., le(z,y) =pool True

sorted(if (le(z, y), Cons(z, Cons(y, ys)), Cons(y, insort(x, ys)))) =gool - - -
~ sorted(if (True, Cons(z, Cons(y, ys)), Cons(y, insort(x, ys)))) =gool - - -
~ sorted(Cons(z, Cons(y, ys))) =gool sorted(Cons(y, ys))
~ and(all_le(z, Cons(y, ys)), sorted(Cons(y, ys))) =sool sorted(Cons(y, ys))

the key to resolve this final formula is the following auxiliary property
Vle(x, y) —> sorted(Cons(y, zs)) — all_le(x, Cons(y, zs))

this property can be proved by induction on zs but it will require a transitivity property for le
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Summary
® equational properties can often conveniently be proved via induction and equational
reasoning via ~~

® induction wrt. algorithm preferable whenever algorithms use more complex pattern
structure than ¢;(z1,...,x,) for all constructors ¢;

® when getting stuck with ~~ try to detect suitable auxiliary property;
after proving it, add it to set of axioms for evaluation

® not every property can be expressed purely equational;
e.g., Boolean connectives are sometimes required

® specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)
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