

Program Verification

Part 5 – Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms AX that are satisfied in standard model ${\cal M}$
 - equations of defined symbols
 - equivalences regarding equality of constructors
 - structural induction formulas
- for proving property $\mathcal{M}\models\varphi$ it suffices to show $AX\models\varphi$
- problems: reasoning via natural deduction quite cumbersome
 - explicit introduction and elimination of quantifiers
 - no direct support for equational reasoning
- aim: equational reasoning
 - implicit transitivity reasoning: from $a=_{\tau}b=_{\tau}c=_{\tau}d$ conclude $a=_{\tau}d$
 - equational reasoning in contexts: from $a=_{\tau}b$ conclude $f(a)=_{\tau'}f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$

Equational Reasoning with Universally Quantified Formulas

- for now let us restrict to universally quantified formulas
- we can formulate properties like
 - $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - $\forall xs, ys. \text{ reverse}(\texttt{append}(xs, ys)) =_{\texttt{List}} \texttt{append}(\texttt{reverse}(ys), \texttt{reverse}(xs))$

Equational Reasoning and Induction

- $\forall x, y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$
- but not

.

RT (DCS @ UIBK)

- $\forall x. \exists y. \operatorname{greater}(y, x) =_{\mathsf{Bool}} \mathsf{True}$
- universally quantified axioms
 - $\bullet\,$ equations of defined symbols
 - $\forall y. \ \mathsf{plus}(\mathsf{Zero}, y) =_{\mathsf{Nat}} y$
 - $\forall x, y. \ \mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y))$
 - ... • axioms about equality of constructors
 - $\forall x, y. \ \mathsf{Succ}(x) =_{\mathsf{Nat}} \mathsf{Succ}(y) \longleftrightarrow x =_{\mathsf{Nat}} y$
 - $\forall x. \operatorname{Succ}(x) =_{\operatorname{Nat}} \operatorname{Zero} \longleftrightarrow$ false
 - ... • but not: structural induction formulas

$$\varphi[y/\mathsf{Zero}] \longrightarrow (\forall x. \; \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(x)]) \longrightarrow \forall y. \; \varphi$$

Part 5 – Reasoning about Functional Programs

Equational Reasoning and Induction

Equational Reasoning in Formulas

Equational Reasoning and Induction

Equational Reasoning and Induction

- so far: $\hookrightarrow_{\mathcal{E}}$ replaces terms by terms using equations \mathcal{E} of program
- upcoming: \rightsquigarrow to simplify formulas using universally quantified axioms
- formal definition: let AX be a set of axioms; then \rightsquigarrow_{AX} is defined as

$$\begin{array}{c|c} \hline \mathsf{true} \land \varphi \rightsquigarrow_{AX} \varphi & \overline{\varphi} \land \mathsf{true} \rightsquigarrow_{AX} \varphi & \mathsf{false} \land \varphi \rightsquigarrow_{AX} \mathsf{false} \\ \hline \neg \mathsf{false} \rightsquigarrow_{AX} \mathsf{true} & \neg \mathsf{true} \rightsquigarrow_{AX} \mathsf{false} & \\ \hline \neg \mathsf{true} \rightsquigarrow_{AX} \mathsf{false} & \\ \hline \hline \forall \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s' & \forall \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{\ell = r\}} t' \\ \hline s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau} t & \\ \hline \forall (\ell =_{\tau} r \longleftrightarrow \varphi) \in AX & \\ \hline \ell \sigma =_{\tau} r \sigma \rightsquigarrow_{AX} \varphi \sigma & \hline t =_{\tau} t \rightsquigarrow_{AX} \mathsf{true} & \\ \hline \hline \varphi \rightsquigarrow_{AX} \varphi' & \psi \rightsquigarrow_{AX} \psi' & \varphi \land \psi & \\ \hline \varphi \land \psi \rightsquigarrow_{AX} \varphi' \land \psi & \hline \varphi \land \psi \rightsquigarrow_{AX} \varphi \land \psi' & \neg \varphi \rightsquigarrow_{AX} \neg \varphi' \end{array}$$

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript AX is dropped in \rightsquigarrow_{AX} when clear from context

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Soundness of Equational Reasoning

 ${\ensuremath{\,\bullet\,}}$ we show that whenever AX is valid in the standard model ${\ensuremath{\mathcal M}},$ then

•
$$\varphi \rightsquigarrow_{AX} \psi$$
 implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
• so in particular $\mathcal{M} \models \vec{\forall} \varphi \longleftrightarrow \psi$

- immediate consequence: $\varphi \rightsquigarrow_{AX}^*$ true implies $\mathcal{M} \models \vec{\forall} \varphi$
- define calculus: $\vdash \vec{\forall} \, \varphi$ if $\varphi \rightsquigarrow^*_{AX}$ true
- example

$$plus(Zero, Zero) =_{Nat} times(Zero, x)$$

$$\Rightarrow Zero =_{Nat} times(Zero, x)$$

$$\Rightarrow Zero =_{Nat} Zero$$

$$\Rightarrow true$$

and therefore $\mathcal{M} \models \forall x$. plus(Zero, Zero) =_{Nat} times(Zero, x)

5/44 RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Equational Reasoning and Induction

6/44

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

• case
$$\frac{\varphi \rightsquigarrow \varphi'}{\varphi \land \psi \rightsquigarrow \varphi' \land \psi}$$

• IH: $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi'$ for arbitrary α
• conclude $\mathcal{M} \models_{\alpha} \varphi \land \psi$
iff $\mathcal{M} \models_{\alpha} \varphi$ and $\mathcal{M} \models_{\alpha} \psi$
iff $\mathcal{M} \models_{\alpha} \varphi'$ and $\mathcal{M} \models_{\alpha} \psi$ (by IH)
iff $\mathcal{M} \models_{\alpha} \varphi' \land \psi$

• in total:
$$\mathcal{M} \models_{\alpha} \varphi \land \psi \longleftrightarrow \varphi' \land \psi$$

• all other cases for Boolean simplifications and congruences are similar

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

• case
$$\frac{\vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi) \in AX}{\ell \sigma =_{\tau} r \sigma \leadsto \varphi \sigma}$$

• premise $\mathcal{M} \models \vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi)$,
so in particular $\mathcal{M} \models_{\beta} \ell =_{\tau} r \longleftrightarrow \varphi$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_{\alpha}$
• conclude $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma$
iff $\llbracket \ell \rrbracket_{\beta} = \llbracket r \rrbracket_{\beta}$ (by SL)
iff $\mathcal{M} \models_{\beta} \varphi$ (by premise)
iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by SL)
• in total: $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma \longleftrightarrow \varphi \sigma$

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ implies \mathcal{M} • case $\frac{\vec{\forall} \ell =_{\tau} r \in AX s \hookrightarrow_{\{\ell=r\}} s'}{s =_{\tau} t \rightsquigarrow s' =_{\tau} t}$ • premise $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$, and $s = C[\ell\sigma]$ and $s' =$ with one hole which can be filled via $[\cdot]$ • conclude $[s]_{\alpha}$ $= [C[\ell\sigma]]_{\alpha} (by reverse SL)$ $= C\alpha[\ell\sigma\alpha] \downarrow = C\alpha[\ell\sigma\alpha] \downarrow$ $= C[\ell\sigma] \alpha \downarrow$ $= C[r\sigma] \alpha \downarrow$ $= [C[r\sigma]]_{\alpha} (by reverse SL)$ $= [C[r\sigma]]_{\alpha} (by reverse SL)$ $= [s']_{\alpha}$ • reason for (*): premise implies $[\ell]_{\beta} = [rr]_{\beta} \text{ for } \beta(x) = [\sigma(x)]_{\alpha},$ hence $[\ell\sigma]_{\alpha} = [r\sigma]_{\alpha} (by SL),$ and thus, $\ell\sigma\alpha\downarrow = r\sigma\alpha\downarrow$ (by reverse SL) • in total: $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$	$\models_{\alpha} \varphi \longleftrightarrow \psi$ = $C[r\sigma]$ where C is some context, i.e., term	ion Comparing • → rewrit about eq • → uses o • in pa axior • this and exam • heuri • new	$\begin{array}{l} \qquad \qquad$	ms ms set of tion
RT (DCS @ UIBK) Part 5 – Reasoning about Functio	nal Programs 9/	/44 RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	10/44

- \rightsquigarrow only works with universally quantified properties
 - defined equations
 - equivalences to simplify equalities $=_{\tau}$
 - newly derived properties such as $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - \rightsquigarrow can not deal with induction axioms such as the one for associativity of append (app)

```
(\forall ys, zs. app(app(Nil, ys), zs) =_{List} app(Nil, app(ys, zs)))
```

```
 \longrightarrow (\forall x, xs.(\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow 
 (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs))))
```

- $\longrightarrow (\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs)))$
- $\bullet\,$ in particular, $\rightsquigarrow\,$ often cannot perform any simplification without induction proving

$$app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)))$$

cannot be simplified by \leadsto using the existing axioms

RT (DCS @ UIBK)

11/44

Equational Reasoning and Induction

Equational Reasoning and Induction

Induction in Combination with Equational Reasoning

• aim: prove equality $\vec{\forall} \ell =_{\tau} r$

• approach:

- select induction variable x
- reorder quantifiers such that $\vec{\forall}\,\ell =_\tau r$ is written as $\forall x.\varphi$
- build induction formula wrt. slide 3/71

 $\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi$

(no outer universal quantifier, since by construction above formula has no free variables) • try to prove each φ_i via \rightsquigarrow

Equation Determines the set of t	Example: Associativity of Append, Continued • proving $\forall xs, ys, zs. app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ • φ_2 is $\forall x, xs.(\forall ys, zs. app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))) \rightarrow (\forall ys, zs. app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs)))$ so we try to prove the rhs of \rightarrow via \rightsquigarrow $app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs))$ $\Rightarrow app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs))$ $\Rightarrow app(Cons(x, app(xs, ys)), zs) =_{List} app(Cons(x, xs), app(ys, zs))$ $\Rightarrow Cons(x, app(app(xs, ys), zs)) =_{List} app(Cons(x, xs), app(ys, zs))$ $\Rightarrow Cons(x, app(app(xs, ys), zs)) =_{List} cons(x, app(xs, app(ys, zs)))$ $\Rightarrow x =_{Nat} x \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\Rightarrow true \land app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$
Part 5 – Reasoning about Functional Programs 13/44	RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs 14/4

Equational Reasoning and Induction

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor c_i :

$$\varphi_i := \forall x_1, \dots, x_{m_i}. \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{IHs for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$

- idea: for proving φ_i try to show $\varphi[x/c_i(x_1, \ldots, x_{m_i})]$ by evaluating it to true via \rightsquigarrow , where each IH $\varphi[x/x_i]$ is added as equality
- append-example
 - aim:

 $\mathsf{app}(\mathsf{app}(\mathsf{Cons}(x,xs),ys),zs) =_{\mathsf{List}} \mathsf{app}(\mathsf{Cons}(x,xs),\mathsf{app}(ys,zs)) \rightsquigarrow^* \mathsf{true}$

- add IH $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$ to axioms
- problem IH $\varphi[x/x_j]$ is not universally quantified equation, since variable x_j is free (in append example, this would be xs)

Integrating IHs into Equational Reasoning, Continued

- $\bullet\,$ to solve problem, extend \rightsquigarrow to allow evaluation with equations that contain free variables
- add two new inference rules

$$\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell=r\}} s'}{s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau} t} \qquad \frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{r=\ell\}} t'}{s =_{\tau} t \rightsquigarrow_{AX} s =_{\tau} t'}$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell = r$ when simplifying with \hookrightarrow ; so the chosen substitution σ must satisfy $\sigma(y) = y$ for all $y \notin \vec{x}$

- the swap of direction, i.e., the $r=\ell$ in the second rule is intended and a heuristic
 - either apply the IH on some lhs of an equality from left-to-right
 - $\ensuremath{\,^\circ}$ or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once

Equational Reasoning and Induction

Example: Associativity of Append, Continued

Equational Reasoning and Induction

Equational Reasoning and Induction

• proving
$$\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

• φ_2 is $\forall x, xs.(\forall ys, zs. app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))) \longrightarrow (\forall ys, zs. app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs)))$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow and add

 $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

to the set of axioms (only for the proof of φ_2); then

$$app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs))$$

$$\rightsquigarrow^* \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

$$\rightsquigarrow \operatorname{app}(xs, \operatorname{app}(ys, zs)) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

$$\rightsquigarrow$$
 true

here it is important to apply the IH only once, otherwise one would get

$$app(xs, app(ys, zs)) =_{List} app(app(xs, ys), zs)$$

Part 5 – Reasoning about Functional Programs

RT (DCS @ UIBK)

Integrating IHs into Equational Reasoning, Soundness

• aim: prove $\mathcal{M} \models \varphi_i$ for

$$\varphi_i := \vec{\forall} \underbrace{\bigwedge_{j} \psi_j}_{\text{IHs}} \psi_j \longrightarrow \psi$$

where we assume that $\psi \rightsquigarrow^*$ true with the additional local axioms of the IHs ψ_i

• hence show $\mathcal{M} \models_{\alpha} \psi$ under the assumptions $\mathcal{M} \models_{\alpha} \psi_j$ for all IHs ψ_j

• framework for inductive proofs combined with equational reasoning

• upcoming: positive and negative examples, guidelines, extensions

variables may be instantiated ("arbitrary" variables)

• by existing soundness proof of \rightsquigarrow we can nearly conclude $\mathcal{M} \models_{\alpha} \psi$ from $\psi \rightsquigarrow^*$ true

• only gap: proof needs to cover new inference rules on slide 16

out Functional Programs	17/44	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	18/44

Soundness of Partially Quantified Equation Application

• case $\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'}{s =_{\tau} t \rightsquigarrow s' =_{\tau} t} \text{ with } \sigma(y) = y \text{ for all } y \notin \vec{x}$ • premise is $\mathcal{M} \models_{\alpha} \forall \vec{x}. \ \ell =_{\tau} r$ (and not $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$) and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ as before • conclude $[\![s]\!]_{\alpha} = [\![s']\!]_{\alpha}$ as on slide 9 as main step to derive $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$ • only change is how to obtain $[\![\ell]\!]_{\beta} = [\![r]\!]_{\beta}$ for $\beta(x) = [\![\sigma(x)]\!]_{\alpha}$ • new proof • let $\vec{x} = x_1, \dots, x_k$ • premise implies $[\![\ell]\!]_{\alpha[x_1:=a_1,\dots,x_k:=a_k]} = [\![r]\!]_{\alpha[x_1:=a_1,\dots,x_k:=a_k]}$ for arbitrary a_i , so in particular for $a_i = [\![\sigma(x_i)]\!]_{\alpha}$ • it now suffices to prove that $\alpha[x_1 := a_1,\dots,x_k := a_k] = \beta$ • consider two cases • for variables x_i we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](x_i) = a_i = \llbracket \sigma(x_i) \rrbracket_{\alpha} = \beta(x_i)$$

• for all other variables $y \notin \vec{x}$ we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](y) = \alpha(y) = \llbracket y \rrbracket_\alpha = \llbracket \sigma(y) \rrbracket_\alpha = \beta(y)$$

RT (DCS @ UIBK)

19/44

RT (DCS @ UIBK)

Summary

axioms

apply induction first

• heuristic: apply IHs only once

• then prove each case $\forall \Lambda \psi_i \longrightarrow \psi$ via evaluation $\psi \rightsquigarrow^*$ true where IHs ψ_i become local

• free variables in IHs (induction variables) may not be instantiated by \sim , all the other

Examples, Guidelines, and Extensions

Associativity of Append

• program

$$\begin{split} & \mathsf{app}(\mathsf{Cons}(x,xs),ys) = \mathsf{Cons}(x,\mathsf{app}(xs,ys)) \\ & \mathsf{app}(\mathsf{Nil},ys) = ys \end{split}$$

 $\vec{\forall} \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

formula

Right-Zero of Addition

- induction on xs works successfully
- what about induction on ys (or zs)?
- base case already gets stuck

 $app(app(xs, Nil), zs) =_{l ist} app(xs, app(Nil, zs))$ \rightarrow app(app(xs, Nil), zs) =_{l ist} app(xs, zs)

- problem: *ys* is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation

Part 5 - Reasoning about Functional Programs

22/44

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

 $plus(Zero, y) =_{Nat} plus(y, Zero)$ $\rightsquigarrow y =_{\mathsf{Nat}} \mathsf{plus}(y, \mathsf{Zero})$

- final result suggests required lemma: Zero is also right neutral
- $\forall x. \text{ plus}(x, \text{Zero}) =_{\text{Nat}} x$ can be proven with our approach
- then this lemma can be added to AX and base case of commutativity-proof can be completed

 program plus(Succ(x), y) = Succ(plus(x, y))plus(Zero, y) = y formula $\vec{\forall} \mathsf{plus}(x, \mathsf{Zero}) =_{\mathsf{Nat}} x$ • only one possible induction variable: x • base case: $plus(Zero, Zero) =_{Nat} Zero \rightsquigarrow Zero =_{Nat} Zero \rightsquigarrow true$ • step case adds IH $plus(x, Zero) =_{Nat} x$ as axiom and we get $plus(Succ(x), Zero) =_{Nat} Succ(x)$ \rightarrow Succ(plus(x, Zero)) =_{Nat} Succ(x)

$$\rightsquigarrow \mathsf{Succ}(x) =_{\mathsf{Nat}} \mathsf{Succ}(x)$$

```
\rightarrow true
```

Part 5 - Reasoning about Functional Programs

24/44

RT (DCS @ UIBK)

Commutativity of Addition

program

formul

• let us

Examples, Guidelines, and Extensions

RT (DCS @ UIBK)

Examples, Guidelines, and Extensions

Commutativity of Addition

• formula

$$\vec{\forall} \operatorname{\mathsf{plus}}(x,y) =_{\mathsf{Nat}} \operatorname{\mathsf{plus}}(y,x)$$

• step case adds IH $\forall y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$ to axioms and we get

$$plus(Succ(x), y) =_{Nat} plus(y, Succ(x))$$

$$\rightsquigarrow Succ(plus(x, y)) =_{Nat} plus(y, Succ(x))$$

$$\rightsquigarrow Succ(plus(y, x)) =_{Nat} plus(y, Succ(x))$$

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y. \text{ plus}(x, \text{Succ}(y)) =_{\text{Nat}} \text{Succ}(\text{plus}(x, y))$ can be proven with our approach (induction on x)
- ${\ensuremath{\,^\circ}}$ then this lemma can be added to AX and commutativity-proof can be completed

```
RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs 25/44 RT (DCS @ UIBK) Part 5 - Reasoning about Functional Programs
```

Examples, Guidelines, and Extensions

Generalizations Required

• for induction for the following formula there is only one choice: xs

$$\forall xs. r(xs, Nil) =_{List} rev(xs)$$

step-case gets stuck

$$\begin{split} \mathsf{r}(\mathsf{Cons}(x, xs), \mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(\mathsf{Cons}(x, xs)) \\ & \rightsquigarrow^* \mathsf{r}(xs, \mathsf{Cons}(x, \mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{Nil})) \\ & \rightsquigarrow \mathsf{r}(xs, \mathsf{Cons}(x, \mathsf{Nil})) =_{\mathsf{List}} \mathsf{app}(\mathsf{r}(xs, \mathsf{Nil}), \mathsf{Cons}(x, \mathsf{Nil})) \end{split}$$

• problem: the second argument Nil of r in formula is too specific

- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

$$\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{List}} \mathsf{rev}(xs)$$

creativity required

 $\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Fast Implementation of Reversal

program

$$\begin{aligned} & \mathsf{app}(\mathsf{Cons}(x,xs),ys) = \mathsf{Cons}(x,\mathsf{app}(xs,ys)) \\ & \mathsf{app}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}(\mathsf{Cons}(x,xs)) = \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})) \\ & \mathsf{rev}(\mathsf{Nil}) = \mathsf{Nil} \\ & \mathsf{r}(\mathsf{Cons}(x,xs),ys) = \mathsf{r}(xs,\mathsf{Cons}(x,ys)) \\ & \mathsf{r}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}_\mathsf{fast}(xs) = \mathsf{r}(xs,\mathsf{Nil}) \end{aligned}$$

• aim: show that both implementations of reverse are equivalent, so that the naive implementation can be replaced by the faster one

 $\forall xs. \operatorname{rev}_{\mathsf{fast}}(xs) =_{\mathsf{List}} \operatorname{rev}(xs)$

• applying ~> first yields desired lemma

 $\forall xs. \ \mathsf{r}(xs, \mathsf{Nil}) =_{\mathsf{List}} \mathsf{rev}(xs)$

Fast Implementation of Reversal, Continued

• proving main formula by induction on xs, since recursion is on xs

 $\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$

base-case

 $r(Nil, ys) =_{List} app(rev(Nil), ys)$ $\rightsquigarrow^* ys =_{List} ys \rightsquigarrow true$

• step-case solved with associativity of append and IH added to axioms

 $\begin{aligned} \mathsf{r}(\mathsf{Cons}(x, xs), ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{r}(xs, \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x, xs)), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{Nil})), ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{app}(\mathsf{Cons}(x, \mathsf{Nil}), ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{app}(\mathsf{Nil}, ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, \mathsf{app}(\mathsf{Nil}, ys))) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), \mathsf{Cons}(x, ys)) \rightarrow \mathsf{true} \\ & \mathsf{Part} \, \mathsf{5} - \mathsf{Reasoning about Functional Programs} \end{aligned}$

26/44

Examples, Guidelines, and Extensions

Fast Implementation of Reversal, Finalized

• now add main formula to axioms, so that it can be used by \rightsquigarrow

$$\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

• then for our initial aim we get

 $rev_fast(xs) =_{list} rev(xs)$ $\rightsquigarrow \mathbf{r}(xs, \mathbf{Nil}) =_{\mathbf{i} \in \mathbf{r}} \mathbf{rev}(xs)$ \rightarrow app(rev(xs), Nil) =_{l ist} rev(xs)

• at this point one easily identifies a missing property

$$\forall xs. \operatorname{app}(xs, \operatorname{Nil}) =_{\operatorname{List}} xs$$

which is proven by induction on xs in combination with \rightsquigarrow

• afterwards it is trivial to complete the equivalence proof of the two reversal implementations

RT (DCS @ UIBK)

RT (DCS @ UIBK)

```
Part 5 - Reasoning about Functional Programs
```

Another Problem

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

consider the following program

half(Zero) = Zerohalf(Succ(Zero)) = Zerohalf(Succ(Succ(x))) = Succ(half(x))le(Zero, y) = Truele(Succ(x), Zero) = Falsele(Succ(x), Succ(y)) = le(x, y)

and the desired property

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

- induction on x will get stuck, since the step-case Succ(x) does not permit evaluation wrt. half-equations
- better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of half) with cases that correspond to patterns in lhss Part 5 – Reasoning about Functional Programs
- RT (DCS @ UIBK) 29/44

Examples, Guidelines, and Extensions

30/44

Induction wrt. Algorithm

- induction wrt. algorithm was informally performed on slides 4/36
 - select some *n*-ary function *f*
 - each *f*-equation is turned into one case
 - for each recursive *f*-call in rhs get one IH
- example: for algorithm

the induction rule for half is

$$\begin{array}{l} \varphi[y/\mathsf{Zero}] \\ \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Zero})] \\ \longrightarrow (\forall x. \ \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Succ}(x))]) \\ \longrightarrow \forall y. \ \varphi \\ & \\ \mathsf{Part 5-Reasoning about Functional Programs} \end{array}$$

Induction wrt. Algorithm

- induction wrt. algorithm formally defined
 - let *f* be *n*-ary defined function within well-defined program
 - let there be k defined equations for f
 - let φ be some formula which has exactly *n* free variables x_1, \ldots, x_n
 - then the induction rule for f is

$$\varphi_{ind,f} := \psi_1 \longrightarrow \ldots \longrightarrow \psi_k \longrightarrow \forall x_1, \ldots, x_n. \varphi$$

where for the *i*-th *f*-equation $f(\ell_1, \ldots, \ell_n) = r$ we define

$$\psi_i := \vec{\forall} \left(\bigwedge_{r \ge f(r_1, \dots, r_n)} \varphi[x_1/r_1, \dots, x_n/r_n] \right) \longrightarrow \varphi[x_1/\ell_1, \dots, x_n/\ell_n]$$

where $\vec{\forall}$ ranges over all variables in the equation

- properties
 - $\mathcal{M} \models \varphi_{ind,f}$; reason: pattern-completeness and termination $(SN(\hookrightarrow \circ \supseteq))$
 - heuristic: good idea to prove properties $\vec{\forall} \varphi$ about function f via $\varphi_{f,ind}$
 - reason: structure will always allow one evaluation step of *f*-invocation

RT (DCS @ UIBK) 31/44

Part 5 – Reasoning about Functional Programs

32/44

Examples, Guidelines, and Extensions

Back to Example

- consider program
- half(Zero) = Zero half(Succ(Zero)) = Zero half(Succ(Succ(x))) = Succ(half(x)) le(Zero, y) = True le(Succ(x), Zero) = False le(Succ(x), Succ(y)) = le(x, y)
- for property

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

chose induction for half (and not for le), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

RT (DCS @ UIBK)

```
Part 5 – Reasoning about Functional Programs
```

```
33/44
```

```
(Nearly) Completing the Proof
```

applying induction for half on

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

turns this problem into three new proof obligations

- le(half(Zero), Zero) =_{Bool} True
- le(half(Succ(Zero)), Succ(Zero)) = Bool True
- le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True where le(half(x), x) =_{Bool} True can be assumed as IH
- the first two are easy, the third one works as follows

 $le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True$ $\rightsquigarrow le(Succ(half(x)), Succ(Succ(x))) =_{Bool} True$ $\rightsquigarrow le(half(x), Succ(x)) =_{Bool} True$

- here there is another problem, namely that the IH is not applicable
- problem solvable by proving an implication like
- $le(x,y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True;$
- uses equational reasoning with conditions; covered informally only
- 44 RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with → can happen on both sides of implication, since → yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
 - assume axioms contain conditional equality $\varphi \longrightarrow \ell =_{\tau} r$, e.g., from IH
 - current goal is implication $\psi \longrightarrow C[\ell \sigma] =_\tau t$
 - we would like to replace goal by $\psi \longrightarrow C[r\sigma] =_\tau t$
 - but then we must ensure $\psi\longrightarrow\varphi\sigma,$ e.g., via $\psi\longrightarrow\varphi\sigma\rightsquigarrow^*$ true
- ~> must be extended to perform more Boolean reasoning
- not done formally at this point

Equational Reasoning with Conditions, Example

• property

$$le(x,y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True$$

- apply induction on le
- first case

$$\begin{split} &\mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Zero},\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{true} \\ & \rightsquigarrow \mathsf{true} \end{split}$$

second case

 $\mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{False} =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{false} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True}$

 $\rightsquigarrow \mathsf{true}$

34/44

Examples, Guidelines, and Extensions

Examples, Guidelines, and Extensions Examples, Guidelines, and Extensions Equational Reasoning with Conditions, Example **Final Example: Insertion Sort** • property consider insertion sort $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True$ le(Zero, y) = Truele(Succ(x), Zero) = False third case has IH le(Succ(x), Succ(y)) = le(x, y) $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True$ if(True, xs, ys) = xsand we reason as follows if(False, xs, ys) = ysinsort(x, Nil) = Cons(x, Nil) $le(Succ(x), Succ(y)) =_{Bool} True \longrightarrow le(Succ(x), Succ(Succ(y))) =_{Bool} True$ insort(x, Cons(y, ys)) = if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys))) $\rightsquigarrow \operatorname{le}(x,y) =_{\operatorname{Bool}} \operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x),\operatorname{Succ}(\operatorname{Succ}(y))) =_{\operatorname{Bool}} \operatorname{True}$ sort(Nil) = Nil $\rightsquigarrow \operatorname{le}(x, y) =_{\operatorname{Bool}} \operatorname{True} \longrightarrow \operatorname{le}(x, \operatorname{Succ}(y)) =_{\operatorname{Bool}} \operatorname{True}$ sort(Cons(x, xs)) = insort(x, sort(xs)) $\rightsquigarrow le(x, y) =_{Bool} True \longrightarrow True =_{Bool} True$ $\rightsquigarrow le(x, y) =_{Bool} True \longrightarrow true$ • aim: prove soundness, e.g., result is sorted → true • problem: how to express "being sorted"? • in general: how to express properties if certain primitives are not available? • proof of property $\forall x$. le(half(x), x) =_{Bool} True finished RT (DCS @ UIBK) Part 5 – Reasoning about Functional Programs RT (DCS @ UIBK) 37/44 Part 5 - Reasoning about Functional Programs 38/44 Examples, Guidelines, and Extensions Examples, Guidelines, and Extensions **Expressing Properties** Example: Soundness of sort solution: express properties via functional programs • already assume property of insort: $\ldots = \ldots$ $\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)$ (*)sort(Cons(x, xs)) = insort(x, sort(xs))speculative proofs are risky: conjectures might be wrong algorithm above, properties for specification below • property $\forall xs. \text{ sorted}(\text{sort}(xs))$ is shown by induction on xsand (True, b) = b• base case: and (False, b) = Falsesorted(sort(Nil))

```
\begin{aligned} \mathsf{all\_le}(x,\mathsf{Nil}) &= \mathsf{True} \\ \mathsf{all\_le}(x,\mathsf{Cons}(y,ys)) &= \mathsf{and}(\mathsf{le}(x,y),\mathsf{all\_le}(x,ys)) \\ \mathsf{sorted}(\mathsf{Nil}) &= \mathsf{True} \\ \mathsf{sorted}(\mathsf{Cons}(x,xs)) &= \mathsf{and}(\mathsf{all\_le}(x,xs),\mathsf{sorted}(xs)) \end{aligned}
```

- example properties (where $b =_{Bool} True$ is written just as b)
 - $sorted(insort(x, xs)) =_{Bool} sorted(xs)$
 - sorted(sort(xs))
- important: functional programs for specifications should be simple; they must be readable for validation and need not be efficient

Part 5 – Reasoning about Functional Programs

39/44 RT (DCS @ UIBK)

 $\stackrel{(*)}{\leadsto} \mathsf{sorted}(\mathsf{sort}(xs))$

 \rightsquigarrow True (recall: syntax omits $=_{\text{Bool}}$ True)

 $\operatorname{sorted}(\operatorname{sort}(\operatorname{Cons}(x, xs)))$

 \rightsquigarrow sorted(insort(x, sort(xs)))

 \rightarrow sorted(Nil)

 \rightarrow true

• step case with IH sorted(sort(*xs*)):

$\mathsf{Examples},$ Guidelines, and $\mathsf{Extensions}$

			Example: Sound	ness of insort, Step Case		
Example: Soundness of insort • prove $\forall x, xs$. sorted(insort(x, xs)) = _{Bool} sorted(xs) by induction on xs • base case: sorted(insort(x, Nil)) = _{Bool} sorted(Nil) \Rightarrow sorted(Cons(x, Nil)) = _{Bool} sorted(Nil) \Rightarrow and(all_le(x, Nil), sorted(Nil)) = _{Bool} sorted(Nil) \Rightarrow and(True, sorted(Nil)) = _{Bool} sorted(Nil) \Rightarrow sorted(Nil) = _{Bool} sorted(Nil) \Rightarrow true			• prove $\forall x, xs.$ sorted(insort(x, xs)) = _{Bool} sorted(xs) by induction on xs • step case with IH $\forall x.$ sorted(insort(x, ys)) = _{Bool} sorted(ys): sorted(insort($x, Cons(y, ys)$)) = _{Bool} sorted($Cons(y, ys)$) \rightsquigarrow sorted(if(le(x, y), Cons($x, Cons(y, ys)$), Cons($y, insort(x, ys)$))) = _{Bool} now perform case analysis on first argument of if • case le(x, y), i.e., le(x, y) = _{Bool} True sorted(if(le(x, y), Cons($x, Cons(y, ys)$), Cons($y, insort(x, ys)$))) = _{Bool} \rightsquigarrow sorted(if(True, Cons($x, Cons(y, ys)$), Cons($y, insort(x, ys)$))) = _{Bool} \rightsquigarrow sorted(if(True, Cons($x, Cons(y, ys)$), Cons($y, insort(x, ys)$))) = _{Bool} \rightsquigarrow sorted(Cons($x, Cons(y, ys)$)) = _{Bool} sorted(Cons(y, ys)) \rightsquigarrow and(alLle($x, Cons(y, ys)$), sorted(Cons(y, ys))) = _{Bool} sorted(Cons(y, ys)) the key to resolve this final formula is the following auxiliary property $\vec{\forall} le(x, y) \longrightarrow$ sorted(Cons(y, zs)) \longrightarrow alLle($x, Cons(y, zs)$)			
RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	41/44	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	42/44	
Example: Sound • prove $\forall x, xs.$ s	The sector of t	and Extensions	Summary	Exampl	es, Guidelines, and Extensions	
• step case with	sorted(insort(x, ys)) = Bool sorted(ys): sorted(insort(x, cons(y, ys))) = Bool sorted(Cons(y, ys))		Summary			
~~	$\Rightarrow \text{ sorted}(\text{if}(\text{le}(x, y), \text{Cons}(y, gs))) =_{\text{Bool}} \text{sorted}(\text{cons}(y, gs))) =_{\text{Bool}} \dots$		 equational properties can often conveniently be proved via induction and equational reasoning via <> 			
• case $\neg le(x)$	$(y), \text{ i.e., } le(x, y) =_{Bool} False$ $sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\Rightarrow sorted(if(False, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\Rightarrow sorted(Cons(y, insort(x, ys))) =_{Bool} sorted(Cons(y, ys))$ $\Rightarrow and(all_le(y, insort(x, ys)), sorted(insort(x, ys))) =_{Bool} sorted(Cons(y, ys))$ $\Rightarrow and(all_le(y, insort(x, ys)), sorted(ys)) =_{Bool} sorted(Cons(y, ys))$		 induction wrt. structure than when getting s after proving it not every prop e.g., Boolean c 	algorithm preferable whenever algorithms use more complex $c_i(x_1, \ldots, x_n)$ for all constructors c_i tuck with \rightsquigarrow try to detect suitable auxiliary property; , add it to set of axioms for evaluation erty can be expressed purely equational; onnectives are sometimes required	: pattern	
at this poir • $\vec{\forall}$ all_le • $\vec{\forall}$ le (x)	$ \begin{array}{l} & \longrightarrow \text{ and (all_le}(y, \text{insort}(x, ys)), \text{ sorted}(ys)) =_{\text{Bool}} \text{ and (all_le}(y, ys), \text{ sorted}(ys)) \\ & \text{nt identify further required auxiliary properties} \\ & e(y, \text{insort}(x, ys)) =_{\text{Bool}} \text{ all_le}(y, \text{Cons}(x, ys)) \\ & y) =_{\text{Bool}} \text{ False} \longrightarrow \text{le}(y, x) =_{\text{Bool}} \text{ True} \\ \end{array} $		 specify propert 	les of functional programs (e.g., sort) as functional program	is (e.g., sorted)	
these allow RT (DCS @ UIBK)	r to complete this case and hence the overall proof for sort Part 5 - Reasoning about Functional Programs	43/44	RT (DCS @ UIBK)	Part 5 – Reasoning about Functional Programs	44/44	