M universitat S5 2021
™ innsbruck

Imperative Programs

Program Verification

Part 6 — Verification of Imperative Programs

René Thiemann

Department of Computer Science

Imperative Programs Imperative Programs

Commands and Programs

Imperative Programs .
P 8 e commands C consist of

® we here consider a small imperative programming language o assignments . A
® it consists of 5156_766
z:=e€cC
® arithmetic expressions A over some set of variables V ;
® if-then-else
bebB {01,02} cc
nez reV {ereoa} CA @€ {+,-,%} :
f bthen C) else Cy €C
neA zeA e10er €A * ! ?
® sequential execution
® Boolean expressions B {gh g2} QCC
1;02 €
c € {true, false} {e1,e2} C A ©e{=,<,<=,!=} .
B e 0B ® while-loops beB CecC
beB {b1,b2} CB © € {ax,11} while b {C} €C
'beB by ®by € B ® no-operation

skip e C
® curly braces are added for disambiguation, e.g. consider
¢ commands C while x <5 {x:=x+2} ;y:=y-1

® a program P is just a command C
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 3/66 RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 4/66

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss20/pv/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Imperative Programs

Verification

® partial correctness predicate via Hoare-triples: |= (¢|) P ()
® semantic notion
meaning: whenever initial state satisfies ¢,
and execution of P terminates,
then final state satisfies 1)
@ is called precondition, ¥ is postcondition
here, formulas may range over program variables and logical variables
clearly, = requires semantic of commands

® Hoare calculus: I (o)) P (9]

® syntactic calculus (similar to natural deduction)
® sound: whenever = (@) P (¢]) then = (¢ P ()

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 5/66

Imperative Programs

Semantics — Commands

® semantics of commands is given via small-step-semantics
defined as relation < C (C x (V — Z))?

(x:=e,a) = (skip, afz := [€]a])

[6]a = true
(if b then C; else Cy,a) — (C4,a)
[b]o = false

(if b then C4 else Cy,a) <= (Cy,)
(Cl>a) — (Civﬁ)
(01;027a) — (Ci,CQ,B)

(skip; C, o) — (C,)

[b] o = true
(while b C,a) — (C;while b C, &)
[b] o = false

(while b C,a) — (skip, a)

® (skip,) is normal form

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 7/66

Semantics — Expressions

® state is evaluation a: V — Z
® semantics of arithmetic and Boolean expressions are defined as
* [Ja:A—=Z
e.g., if a(x) =5 then [6 %z + 1], =31
® []a: B — {true,false}
e.g., if a(x) =5 then [6*z + 1 < 20], = false

® we omit the straight-forward recursive definitions of [-], here

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Semantics — Programs
® we can formally define = () P (¢)) as

Vo, . a = o — (P,a) =" (skip,f) — B =¥

e example specification: (z > 0) P (y -y < z|
e if initially x > 0, after running the program P,
the final values of = and y must satisfy y -y < x
® nothing is required if initially z < 0
® nothing is required if program does not terminate
® specification is satisfied by program P defined as
y :=0

® specification is satisfied by program P defined as

y := 0;

while (y * y < x) {
y:=y+1

I

y:=y -1

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Imperative Programs

6/66

Imperative Programs

8/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Imperative Programs

Program Variables and Logical Variables

® consider program Fact

y :=1;

while (x != 0) {
y =y *x
x :=x -1

}

e specification for factorial: does |= (z > 0| Fact (y = «!]) hold?
¢ if a(z) =6 and (Fact, o) —* (skip,) then 5(y) = 720 = 6!
® problem: 3(x) =0, so y = x! does not hold for final values
® hence (£ (z > 0)) Fact (y = x!)), since specification is wrong

® solution: store initial values in logical variables

® in example: introduce logical variable x(
E (z =z Az > 0| Fact (y = zo!)

via logical variables we can refer to initial values

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 9/66

Hoare Calculus

A Calculus for Program Verification
® aim: syntax directed calculus to reason about programs
® Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ...)

® present calculus as overview now, then explain single rules

Fe) Cin) 1+ (nl) C2 (9]
F () Cr1; C2 ()

Fplz/e]) z == e ()
Flenb) Ci(v) F e -b)Co(¥)
F (@) if b then C; else Cs (¢)

Flenb) C (el N
F (@) while b C (o A b))
Fe—¢ FDCWD) EY —9
F (o) C ()

® read rules bottom up: in order to get lower part, prove upper part
RT (DCS @ UIBK)

composition

assignment

if-then-else

hile

implication

Part 6 — Verification of Imperative Programs 11/66

Hoare Calculus

Hoare Calculus

Composition Rule

F(e)Ci(n) + (n) C2(¥)
F (el Cr; C2 (¥

composition

® applicability: whenever command is sequential composition C1; Co
® precondition is ¢ and aim is to show that v holds after execution

® rationale: find some midcondition 77 such that execution of C} guarantees 1, which can
then be used as precondition to conclude 1) after execution of Co

® automation: finding suitable 7 is usually automatic, see later slides

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 12/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hoare Calculus

Assignment Rule

assignment

Eplz/el) z :=e(p)
® applicability: whenever command is an assignment = :=e¢
® to prove ¢ after execution, show p[z/e] before execution
® substitution seems to be on wrong side

® effect of assignment is substitution x/e, so shouldn't rule be F (@) = := e (
No, this reversed rule would be wrong

plz/e])?

® assume before executing x := 5, the value of = is 6
® before execution ¢ = (z = 6) is satisfied, but after execution ¢[z/e] = (5 = 6) is not satisfied

® correct argumentation works as follows

® if we want to ensure ¢ after the assignment then we need to ensure that the resulting
situation (p[z/e]) holds before
® correct examples
e H(2=2)z:=2(z=2)
e H(2=4)z:=2(z=4)
o (2—y>2)a:=2(x—y > %)
® applying rule is easy when read from right to left: just substitute

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 13/66

Hoare Calculus

While Rule

F e A D) Cle)
F () while b C (¢ A —b|

) while

® applicability: only rule that handles while-loop
® key ingredient: loop invariant ¢
® rationale
® o is precondition, so in particular satisfied before loop execution
F (e Ab) C () ensures, that when entering the loop, ¢ will be satisfied after one execution
of the loop body C
in total, ¢ will be satisfied after each loop iteration
® hence, when leaving the loop, ¢ and —b are satisfied
while-rule does not enforce termination, partial correctness!

® automation

® not automatic, since usually ¢ is not provided and postcondition is not of form ¢ A —b;
example: F (z =z Az > 0] Fact (y = zo!)
® finding suitable ¢ is hard and needs user guidance

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 15/66

Hoare Calculus
If-Then-Else Rule

Fenb) Ci(y) F (e A-b)Ca(9)
F (o)) if b then C; else Cs (v)

if-then-else

® applicability: whenever command is an if-then-else
o effect:

® the preconditions in the two branches are strengthened by adding the corresponding
(negated) condition b of the if-then-else

® often the addition of b and —b is crucial to be able to perform the proofs for the
Hoare-triples of C; and Cs, respectively

® rationale: if b is true in some state, then the execution will choose C7 and we can add b
as additional assumption; similar for other case

® applying rule is trivial from right to left

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 14/66

Hoare Calculus
Implication Rule

Fe—¢ FNCW) E¢v'—9
Fle) C ()

implication

® applicability: every command; does not change command

® rationale: weakening precondition or strengthening postcondition is sound
® remarks

® only rule which does not decompose commands
® application relies on prover for underlying logic, i.e., one which can prove implications
® three main applications
® simplify conditions that arise from applying other rules in order to get more readable proofs,
eg., replaccx+1=y—2byx=y—3
® prepare invariants, e.g., change postcondition from % to some formula v’ of form x A —b
® core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 16/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Hoare Calculus

Example Proof

F(y-z) (-1 =a0!Az—1>0)y =y *x(y - (z— 1) =xzo! Az—12>0)
Fly-al=aolAe>0Ac#0)y =y xx(y-(@— Dl =ao! Aw—1>0) prfy

Fy-a!=ap! A >0Ax#0)y i=y *x; x i=x - 1(y-a! =z0' Az > 0)
F(y-a!'=x0! Az >0)while x =0 {y i=y *x; x i=x -1} (y-z' =x0! Az > 0A -z #0)
prfy F(y-a!=xo! Az >0)while x != 0 {y :=y *x x; x := x - 1} (y = zo!)

b (z=z0Az>0)y := 1;while x != 0 {y :=y * x; x := x - 1} (y = zo!)

where prf; is the following proof

F(l-a!l=zp! Az >0y :=1(y-a! =z9! Az > 0|
F(z=xzo Az >0)y :=1(y-x! ==zo! Ax > 0|

and prf, is the following proof

Fly-(z—1)!'=20!'Ax—1>0)x :=x - 1(y-z! =zo! Az >0

® only creative step: invention of loop invariant y - z! = zo! Ax >0

® quite unreadable, introduce proof tableaux
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 17/66

Proof Tableaux

Problems in Presentation of Hoare Calculus

® proof trees become quite large even for small examples

® reason: lots of duplication, e.g., in composition rule

Fle)Ci(n) = (n) C2(¥)
F () C1;C2 (¥)

composition

every formula (¢, 1, ¥) occurs twice

® aim: develop better representation of Hoare-calculus proofs

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 19/66

Proof Tableaux

Proof Tableaux

® main ideas

® write program commands line-by-line
® interleave program commands with midconditions

® structure
(o)
Cy;
(1)
Cy;
(2]

Ch
(n

where none of the Cj is a sequential execution

® idea: each midcondition ¢; should hold after execution of C;
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Proof Tableaux

20/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Weakest Preconditions

(i)
Cit1;
(pit1)

® problem: how to find all the midconditions ¢;?
® solution

® assume ;11 (and of course C; 1) is given
® then try to compute @; as weakest precondition,
i.e., ; should be logically weakest formula satisfying

E (ei Ci (wir1)

® we will see, that such weakest preconditions can for many commands be computed
automatically

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Constructing the Proof Tableau — Assignment

® for the assignment, the weakest precondition is computed via

(elz/el)

()]

® application is completely automatic: just substitute

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Proof Tableaux

21/66

Proof Tableaux

23/66

Constructing the Proof Tableau

e aim: verify F (¢f) C1;. .

® approach: compute formulas ¢,, 1, ..., ¢, e.g., by taking weakest preconditions

and check = ¢}, — ¢
this last check corresponds to an application of the implication-rule

(o))
Cr;
(=3)

Cn* 13

(en-1)
Cn

(ISOHD

Proof Tableaux

® next: consider the various commands how to compute a suitable formula ¢; given Cjy;
and ;41

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs

Constructing the Proof Tableau — Implication

® represent implication-rule by writing two consecutive formulas

whenever =19 — ¢

® application
® simplify formulas

® close proof tableau at the top, to turn given precondition into computed formula at top of
program, e.g., = ¢, — ¢ on slide 22

e example proof of F (jy =

RT (DCS @ UIBK)

~
i

y*y

y+1

()
(D

2)y ==y *xy; x :=y+ 1(z=5)
(y=2)

(y-y=4) (closing proof tableau at top)
(y =4) (optional simplification step)
(y+1=5)

(= =5)

Part 6 — Verification of Imperative Programs

22/66

Proof Tableaux

24/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Tableaux Proof Tableaux

Example with Destructive Updates An Invalid Example
® assume we want to calculate u = x + y via the following program P ® consider the following invalid tableau
(true) (true)
(z+y=z+y) (z+1=2+1)
z = X
x :=x +1
(z+y=2+y) (z=2+1)
z =z +y
(z=z+y) ® if the tableau were okay, then the result would be the arithmetic property x = = + 1,
u =z a formula that does not hold for any number x
(u=2z+y) ® problem in tableau

® assignment rule was not applied correctly
® reason: substitution has to replace all variables

® the midconditions have been inserted fully automatic ® corrected version
® hence we easily conclude (true)) P (u = = + gy (z+1=@+1)+1)
® note: although the tableau is constructed bottom-up, it also makes sense to read it x:i=x+1
top-down (z==z+1)
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 25/66 RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 26/66
. Proof Tableaux . Proof Tableaux
Constructing the Proof Tableau — If-Then-Else Example with If-Then-Else
® aim: calculate ¢ such that ® consider non-optimal code to compute the successor
(true))
F (¢) if b then C; else Cs () ((z4+1)-1=0—1=z+DA((z+1)—1#0—z+1=ga+1))
. a:=x+1;
can be derived ((a—1=0—1=z+1)A(a—1#0—a=z+1))
® applying our procedure recursively, we get if (a - 1 = 0) then {
e formula o1 such that - (1)) Cy (9] is derivable (1=xz+1)
e formula ¢y such that F (¢2)) C2 (9] is derivable y =1
® then weakest precondition for if-then-else is formula (y==z+1) (formula copied to end of then-branch)
} else {
@::(b—>(p1)/\(ﬁb—)¢2) (jla=z+1)
y = a
e formal justification that ¢ is sound (y==x+1) (formula copied to end of else-branch)
}
F (e1) C1 (%) F (@2 C2 (%) (v=2+1)

FleAb) Cr(e) F (e A=b) Co (9]

" (o) 1£ b then Cy else Cs () ® |arge formula obtained in 2nd line must be proven in underlying logic

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 27/66 RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 28/66

® insertion of midconditions is completely automatic

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Tableaux

Applying the While Rule

F(nAb)C (n
F (n)) while b C (n A —b))

while

® et us consider applicability in combination with implication-rule for arbitrary setting: how

to derive the following?)
= () while b C ()
solution: find invariant 7 such that

*kEe—n
e =(C(nd
* EnAb—1y
*EnA-b—
® notes
® invariant 1 has to be satisfied at beginning and end of loop-body, but not in between
® invariant often captures the core of an algorithm:
it describes connection between variables throughout execution
® finding invariant is not automatic, but for seeing the connection
it often helps to execute the loop a few rounds

precondition implies invariant

handle loop body recursively, produces v
7 is indeed invariant

invariant and —b implies postcondition

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 29/66

Proof Tableaux

Schema to Find Loop Invariant

® to create a Hoare-triple for a while-loop
= () while b C ()
find 17 such that
*kEe—n
e (D C(nb
® =EnAb—~
* =EnpA-b—1
® approach to find n
guess initial 7, e.g., based on a few loop executions
check = ¢ — n and = n A =b — ; if not successful modify 7
compute «y by bottom-up generation of - (| C (n)
check EnAb — v
if last check is successful, proof is done
6. otherwise, adjust n
® note: if is not known for checking = ¢ — 1, then instead perform bottom-up
propagation of commands before while-loop (starting with 1) and then use precondition
of whole program

RT (DCS @ UIBK)

precondition implies invariant

handle loop body recursively, produces v
7 is invariant

invariant and —b implies postcondition

oL

Part 6 — Verification of Imperative Programs 31/66

Proof Tableaux

Applying the While Rule — Soundness

F(n Ab) C (n)

- () while b C (n A —b) "Nl

® |et us consider applicability in combination with implication-rule for arbitrary setting: how

to derive the following?]
= (p)while b C (¥)

solution: find invariant 7 such that

° Ep— precondition implies invariant
e = (vDC(n) handle loop body recursively, produces
® EnpAb— 7 is indeed invariant
* EnpA-b—) invariant and —b implies postcondition

® soundness proof
(v C(n)

F (nAb)C(n)
F (n) while b C (n A —b))
= () while b C ()

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 30/66

Proof Tableaux

Verification of Factorial Program — Initial Invariant
® program P:y := 1; while x > 0 {y :=y * x; x := x - 1}
® aim: - (z =z Az >0) P(y = xo!

e for guessing initial invariant, execute a few iterations to compute 6!

iteration zy T ¥y x!
0 6 6 1 720
1 6 5 6 120
2 6 4 30 24
3 6 3 120 6
4 6 2 360 2
5 6 1 720 1

observations
® column z! was added since computing z! is aim
® multiplication of y and z! stays identical: y - z! = z!
® hence use y - z! = xo! as initial candidate of invariant
® alternative reasoning with symbolic execution
® iny we store xg- (xg— 1) ... (x+ 1) =xzo!/2!,

so multiplying with z! we get y - 2! = ¢!

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 32/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Verification of Factorial Program — Testing Initial Invariant

e initial invariant: n = (y - z! = zo!)
® potential proof tableau

(z=2z0Nz>0)

(1-z!==o0!) (implication verified)
y :=1;
(nD
while (x > 0) {
(nAz>0)
y 1=y * x;
x :=x-1
(nD
}
(InA=-z>0)
(y = zo!) (implication does not hold)

® problem: condition =z > 0 (z < 0) does not enforce x = 0 at end

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs

Larger Example — Minimal-Sum Section

® assume extension of programming language: read-only arrays

(writ
® user
® probl

ing into arrays requires significant extension of calculus)

is responsible for proper array access

em definition

given array a[0],...,a[n — 1] of length n,

a section of a is a continuous block afi],...,a[j]with 0 <i<j<n

® define S; ; as sum of section

S@j = a[z} +--+ a[]]

® section (i,) is minimal, if S; ; < S,/ j+ for all sections (¢, j') of a
e example: consider array [—7,15,—1,3,15,—6,4, —5]

[3,15, —6] and [—6] are sections, but [3,—6,4] is not

® there are two minimal-sum sections: [—7] and [—6,4, —5]

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs

Proof Tableaux

33/66

Proof Tableaux

35/66

Verification of Factorial Program — Strengthening Invariant

® strengthened invariant: n = (y - ! = 29! Az > 0)
® potential proof tableau

y :=1;

(z=z0Nz>0)
(1-zl=x0l Az >0)

(nD
while (x > 0) {
(nAz>0)
(y-z) - (z—1) =zl Az —12>0)
Y=y oxox;
(ly-(z=1)!=ao!lAz—-12>0)
x :=x -1
(nD
}
(n A -z >0)
(y = zo!)

(implication verified)

(implication verified)

(implication verified)

® proof completed, since all implications verified (e.g. by SMT solver)

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs

Minimal-Sum Section — Tasks

® write a program that computes sum of minimal section

® write a specification that makes " compute sum of minimal section” formal

® show that program satisfies the formal specification

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs

Proof Tableaux

34/66

Proof Tableaux

36/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Minimal-Sum Section — Challenges

® trivial algorithm

® compute all sections (O(n?))
® compute all sums of these sections and find the minimum
® results in O(n?) algorithm

® aim: O(n)-algorithm which reads the array only once

® consequence: proof required that it is not necessary to explicitly compute all O(n

sections
® example: consider array [—8,3,—65, 20,45, —100, —8, 17, —4, —14]
® when reading from left-to-right a promising candidate might be [—8,3, —65],
but there also is the later [-100, —8], so how to decide what to take?

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Minimal-Sum Section — Specification

® we split the specification in two parts via two Hoare-triples
® Sp; specifies that the value of s is smaller than the sum of any section

(true) Min_Sum (Vi,j. 0 <i<j<n— s<S; ;)
® Sp, specifies that there exists some section whose sum is s

)

true|) Min_Sum (3i,j. 0<i<j<nAs=S;,
.

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Proof Tableaux

%)

37/66

Proof Tableaux

39/66

Proof Tableaux

Minimal-Sum Section — Algorithm

® idea of algorithm

k: index that passes array from left-to-right
s: minimal-sum of all sections seen so far
t: minimal-sum of all sections that end at position k — 1

® algorithm Min_Sum

k :=1;

t := al0];

s := al0];

while (k '= n) {
t := min(t + alk], alk]);
s := min(s, t);
k =k +1

}

® correctness not obvious, so let us better prove it

RT (DCS @ UIBK)

Part 6 — Verification of Imperative Programs 38/66

Proof Tableaux

Minimal-Sum Section — Proving Sp;

k :=
t =
s :=
whil

t

s

k
}

RT (DCS @ UIBK)

1;

al0];

al0];

e (k '=n) {

:= min(t + alk], alk]);
= min(s, t);

=k + 1

Sp1 : (true)) Min_Sum (Vi,j. 0 <i < j<n — s < 8]

find candidate invariant

® invariant often similar to postcondition
® invariant expresses relationships that are valid at beginning of each loop-iteration

suitable invariant is Inv(s, k) defined as

VZ,]0§Z§]<I<‘—>S§SZJ

Part 6 — Verification of Imperative Programs 40/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

(Invi(al0], 1)) (true statement)

k :=1;

(Inv1(a[0], k))
t := al[0];

(Inv1(a[0], k))
s := al[0];

(Invi(s, k))
while (k !'= n) {
(Invi(s, k) ANk #n))
(Invy (min(s, min(t + alk], alk])), k + 1))
t := min(t + alk], alkl);
(Invy (min(s, t), k + 1))
min(s, t);

(Invi(s, k+ 1))

(does not hold, no info on t)

2]
L[}

k =k +1;
(Invi(s, k))

(Invi(s, k) A=k # nl)

(Invi(s,n)) (implication verified)

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 41/66

(Invi(al0],1) A Inve(al0], 1))
k :=1;
(Inv1(al0], k) A Inva(al0], k))
t := al[0];
(Invi(al0], k) A Inva(t, k))
s := al0];
(Invi(s, k) A Inva(t, k))
while (k != n) {
(Invi(s, k) A Inva(t, k) Nk # nl
(Invy (min(s, min(t + alk], a[k])), k + 1) A Inve(min(t + a[k], a[k]), k + 1)) (implication verified)
t := min(t + alk]l, alkl);
(Invi(min(s,t), k + 1) A Inva(t, k + 1))
s := min(s, t);
(Invi(s, bk + 1) Allnva(t, k + 1))
k =k +1;
(Invi(s, k) A Inva(t, k))

(true statement)

(Invi(s, k) N Inva(t, k) A -k # n))

(Invi(s,n))
RT (DCS @ UIBK)

(implication verified)
Part 6 — Verification of Imperative Programs 43/66

Proof Tableaux

Minimal-Sum Section — Strengthening Invariant

k :=1;
t := al0];
s := al[0];

while (k !'= n) {
t := min(t + alk], alk]l);
s := min(s, t);
k:=k+1

}

Sp1 : (true) Min_Sum (¥i,j. 0 <i<j<n — s<5;;)
® suitable invariant for s is Invi(s, k) defined as

VZ,]0§Z§]</€—>S§SZ’]

® define similar invariant for t: Invs(t, k) defined as

Vi.0§i<k—>t§5ivk,1

® now try strengthened invariant Inv(s, k) A Inva(t, k)

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 42/66

Proof Tableaux

Minimal-Sum Section — Proving the Implications

® invariants
® Invi(s,k):=Vi,j. 0<i<j<k—s<S5;;
i Im}z(t, k) =Vi.0<i<k—t< Siykfl
® implications
® true — Invi(a[0],1) A Inva(al0],1)
® because of the conditions of the quantifiers, by fixing £k = 1 we only have to consider section
(0,0), i.e, we show a[0] < Sp,0 = al0]
® let 0 < k < n where n is length of array a; then Invy(s, k) A Inva(t, k) A k # n implies both
Inve(min(t + alk], alk]), k + 1) and Invy (min(s, min(t + a[k], alk])), k + 1);
proof
® pick any 0 <i < k + 1; we show min(t + a[k], a[k])) < Six; if i < k then
Sik = Si,k—1 + alk], so we use Inva(t, k) to get t < S; r—1 and thus
min(t + alk], alk])) <t + alk] < Si k-1 + alk] = Sik;
otherwise, i = k and we have min(¢ + alk], a[k]) < a[k] = S,k
® pickany0<i<j<k+1;
we need to show min(s, min(¢ + alk], alk])) < Si j;
if j = k then the result follows from the previous statement;
otherwise j < k and the result follows from Invi (s, k)

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 44/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proof Tableaux

Proof Tableaux — Summary

RT (DCS @ UIBK)

we have proven soundness of non-trivial algorithm Min_Sum
with gaps
® we only proved Spi, but not Sps

® |emma on previous slide demanded 0 < k < n which does not follow from loop-condition
k # n; a proper fix would require a strengthened invariant which includes bounds on &

main reasoning (proving the implications on previous slide) was done purely in logic with
no reference to program
such an approach is often conducted in verification of programs
® there is a verification condition generator (VCG)
® VCG converts assertions in programs (invariants) into logical formulas;
here: Hoare-calculus handles program statements,
verification conditions are instances of implication-rule
® verification conditions are passed to SMT-solver, theorem prover, etc.,
to finally show correctness
® problem: in case SMT-solver fails, user needs to understand failure to adapt invariants,
assertions, etc.

Part 6 — Verification of Imperative Programs 45/66

Termination of Imperative Programs

Adding Termination to Calculus

RT (DCS @ UIBK)

since while-loops are only source of non-termination in presented imperative language, it
suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before
recall: total correctness = partial correctness + termination
previous while-rule already proved partial correctness
only task: extend existing while-rule to additionally prove termination

idea of ensuring termination: use variants

® a variant (or measure) is an integer expression;

® this integer expression strictly decreases in every loop iteration and
® at the same time the variant stays non-negative;

® conclusion: there cannot be infinitely many loop iterations

Part 6 — Verification of Imperative Programs 47/66

Termination of Imperative Programs

A While-Rule For Total Correctness
® while-rule for partial correctness

F (e Ab) C (el
F (@) while b C (o A b))

while

® extended while-rule for total correctness

FleAbAey=e>0)C(pAey>e>0)
F (e Ae>0)while b C (¢ A —b)

while-total

where

® ¢ is variant expression before execution of C'

® ¢ is variant expression after execution of C'

® ¢ is fresh logical variable, used to store the value of ¢ before: ey = e

® hence, postcondition ey > ¢ enforces decrease of e when executing C

® non-negativeness is added three times, even in precondition of while

® ¢ is of type integer so that SN {(x,y) € Z X Z | x > y > 0} can be used as underlying
terminating relation: each loop iteration corresponds to a step ([€]ayues [€laune) in this

relation

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs

Termination of Imperative Programs

48/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Termination of Imperative Programs

Applying While-Total
FlpAbAeg=e>0)C(pAey>e>0)

X while-total
F (e Ae>0)while b C (e A b))
® application
® ¢ is fresh logical variable, so nothing to choose
® variant e has to be chosen, but this is often easy
® yhile (x <5) { ... x :=x+ 1 ...} issameas
while (65 -x>0) { ... x:=x+1...},s0e=5—z
® yhile (y >= x) { ... y :=y -2 ...} issameas
while (y —x>=0) { ... y:=y -2 ...},s0e=y—x (+2)
® yhile (x '=y) { ... y:=y+ 1 ...}issameas
while (x -~y =0 { ... y:=y+1 ...},s0e=x—y

® checking the condition is then easily possible via proof tableau, in the same way as for the
while-rule for partial correctness

® all side-conditions e > 0 can completely be eliminated by choosing e = max(0, ¢’) for some
€', but then proving ey > e will become harder as it has to deal with max

® invariant ¢ can be taken unchanged from partial correctness proof

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 49/66

Termination of Imperative Programs

Remarks on Total Correctness of Factorial Program
® precondition x > 0 was added automatically from termination proof
® in fact, the program does not terminate on negative inputs

e for factorial program (and other imperative programs) Hoare-calculus permits to prove
local termination, i.e., termination on certain inputs

® in contrast, for functional program we always considered
universal termination, i.e., termination of all inputs

® termination proofs can also be performed stand-alone
(without partial correctness proof):
just prove postcondition “true” with while-total-rule:

= (¢l) P (true)

implies termination of P on inputs that satisfy ¢, so
F (true]) P (true)

shows universal termination of P

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 51/66

Termination of Imperative Programs

Total Correctness of Factorial Program
® red parts have been added for termination proof with variant z — z
(true Az > 0]
(1=0'Az—02>0)

(new termination condition on x)

y :=1;
(ly=0'Az—02>0)
z := 0;
(ly=2z'Az—2>0)
while (x !'= z) {
(ly=z2'Az#zNeo=a—2>0)
(ly-(z+1)=(+1)!Aeo >z —(2+1) >0 (more reasoning)
z =z + 1;
(y-z=2'Ney >z —2>0)
yi=y*z;
(ly=2'Neg >a—2>0)

(new condition added)

(new condition added)

(new condition added)

(y = 2! Az # 2)
ly==!)
RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 50/66

Soundness of Hoare-Calculus

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Soundness of Hoare-Calculus
Soundness of Hoare-Calculus

® so far, we have two notions of soundness

® = (¢)) P () : via semantic of imperative programs, i.e., whenever « = ¢ and
(P,a) —* (skip, B) then B = v must hold
® (o)) P(v): syntactic, what can be derived via Hoare-calculus rules

® missing: soundness of calculus, i.e.,

F (gl P () implies |= () P ()

e formal proof is based on big-step semantics — (see exercises):
(P,) —* (skip, B) is turned into (P,) — 3

® soundness of the calculus is then established by the following property, which is proven by
induction wrt. the Hoare-calculus rules for arbitrary a, 3:

Fle)C) —akEe—(Ca) =B —BEY

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 53/66

Soundness of Hoare-Calculus

Proving - (o) C (¢) — aEFv — (Coa) =8 — BEY
Case 2: composition-rule
F (el C1; Ca (4]) since (@) C1(n) and E (n) C2 (¥)
® |H-1: Vo, B.aEp — (C1,a) > 8 — BEN
IH-2: Vo, B.a Enp — (Co,a) = 8 — B EY
® assume o = and (C1;Ca,) = B
from the latter and the definition of —, there must be « such that (Cy,a) — 7 and
(Ca,y) = B
by using IH-1 (choose « and « in V), obtain v =7
by using IH-2 (choose vy and 8 in V), obtain 8 | ¢

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 55/66

Soundness of Hoare-Calculus

Proving - (o) C (¢) —akEp — (C,a) > — B EW
Case 1: implication-rule
F () C(¥) since = o — ¢, F (') C ('), and ¢ — 2
e IH:Va,B.aF¢ — (C,a) - 8 — BEY
® assume o = ¢ and (C,a) — 8
e then by = ¢ — ¢’ conclude a = ¢’
® in combination with IH get 8 = ¢/
with = ¢/ —) conclude 8 = ¢

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 54/66

Soundness of Hoare-Calculus

Proving - (@] C (

Case 3: if-then-else-rule
F (¢]) if b then O else Oy (¥
since F (o A b)) C1 (9) and F (¢ A —b) C2 ()

® |H-1: Vo, B.aEpANb— (Cr,a) > 8 — B EY
IH-2: Vo, B.aE @ A—b— (Co,a) = 8 — BEY
® assume o = ¢ and (if b then C else Cy,a) — 3

V) —akEe— (Cia) = 8 — Y

e perform case analysis on [b],
® wlog. we only consider the case [b], = true where

® from a |= ¢ conclude a = A b
® from (if b then C; else Cy,) — 8 conclude (Cy,a) — 3

® by using IH-1 get 3 =

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 56,/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Soundness of Hoare-Calculus

Proving - (¢|) C (

Case 4: assignment-rule
F)z :=e(¢) since o = [z/e]

® assume o = p and (z :=e,a) =

(0]

) —akEe—(Cia)=»B—BEFY

® by definition of —, conclude 8 = afz := [e]4]
® hence assumption a = ¢ is equivalent to

° a1/ by unrolling p-equality
* afz:=[e]a] E ¢ by substitution lemma for formulas
* BEY by unrolling 3-equality

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 57/66

Soundness of Hoare-Calculus

Summary of Soundness of Hoare-Calculus

® since Hoare-calculus rules and semantics are formally defined, it is possible to verify
soundness of the calculus

® proof requires inner induction for while-loop,
since big-step semantics of while-command refers to itself

® here: only soundness of Hoare-calculus for partial correctness

® possible extension: total correctness

® define semantic notion =yoq (@) C (¥]) stating total correctness
® prove that Hoare-calculus with while-total is sound wrt. E=¢otal

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 59/66

Soundness of Hoare-Calculus
Proving - (¢|) C (
Case 5: while-rule
F (¢|) while b C' () since F (@ Ab) C’ (¢|) and p = p A —b
e (outer) IH: Vo, B.alEpAb— (C',a) = B— B E
® we now prove o = ¢ — (while b C') = 8 — B E
by an inner induction on a wrt. —, but for fixed b, C’, 3, ¢, ¥
® case 1: (while b C',a) — 8
since [b], = false and S =«
® in this case conclude f=a EpA-b=1
® case 2: (while b C') = 8
since [b]o = true, (C’,a) — v and (while b C",y) — 8
innerIH: v = — B9

°

® assume a = ¢
® hencea = oAb
L]
L]

V) —akFe—(Ca)=8—0F9

by outer IH (choose « and v in V) get v = ¢
then inner IH yields 8 |= ¢

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 58,/66

Programming by Contract

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming by Contract

Programming by Contract — Idea

® Hoare-triple (¢|) P (4| may be seen as a contract between supplier and consumer of
program P

® supplier insists that consumer invokes P only on states satisfying ¢
® supplier promises that after execution of P formula 1 holds

® validation of Hoare-triples with Hoare-calculus can be seen as
validation of contracts for method- or procedure-calls

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 61/66

Programming by Contract
Modified Example

® consider procedure where ... is program Fact on slide 9
void factorial_proc (int x) { ... }
® example contract

procedure name: factorial_proc

input: int x
assumes: x>0
guarantees: y = x!
modifies only: y

® remarks

® 9 is no longer local variable, but global

® procedure has no return value

® guarantees are expressed via global variables and parameters
(and if required, logical variables)

modification of global variable y visible in contract

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 63/66

Programming by Contract

Example

® consider method where . .. is program Fact on slide 9

int factorial (int x) { int y; .; return y }

® example contract

method name: factorial
input: int x
output: int
assumes: x >0
guarantees: result = x!

modifies only: local variables
® remarks

® return-value of method is referred to as result in contract

® since x is local parameter (call-by-value) and y is local variable,
there will be no impact on global variables;

® for procedures and call-by-reference variables, one usually wants to know whether
modifications take place

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 62/66

Programming by Contract

Invoking Methods
® assume we want to write method for binomial coefficients

(1) = e

49)

to compute chance of lotto-jackpot 1 : (6

® int binom (int n, int k) {
return factorial(n) / (factorial(k) * factorial (m-k))
}
® programming-by-contract also demands contracts for new methods
® in example, we need to ensure that preconditions of factorial-invocations are met

method name: binom

inputs: int n, int k

output: int

assumes: n>0, k>0, n>k

result = n choose k
local variables

guarantees:
modifies only:

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 64/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Programming by Contract

Programming by Contract — Advantages

® in the same way as methods help to structure larger programs, contracts for these
methods help to verify larger programs

® reason: for verifying code invoking method m, it suffices to look at contract of m —
without looking at implementation of m
® positive effects
® add layer of abstraction
® easy to change implementation of m as long as contract stays identical
® verification becomes more modular
® example: for invocation of min in minimal-sum section it does not matter whether
® min is built-in operator which is substituted as such, or
® min is user-defined method that according to the contract computes the mathematical
min-operation
implementation can be ignored for caller, but developer needs to verify it against contract
int min(int x, int y) {
int z;
if x <= y then z := x else z := y;
return z }

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 65/66

Summary — Verification of Imperative Programs

® covered

® syntax and semantic of small imperative programming language

® Hoare-calculus to verify Hoare-triples (¢|) P ()

® proof tableaux and automation:
Hoare-calculus is VCG that converts program logic into implications (verification conditions)
that must be shown in underlying logic

® proofs are mostly automatic, except for loop invariants

® soundness of Hoare-calculus
programming by contracts: abstract from concrete method-implementations, use contracts

® not covered

® heap-access, references, arrays, etc.: extension to separation logic, memory model
® bounded integers: reasoning engine for bit-vector-arithmetic
® multi-threading

RT (DCS @ UIBK) Part 6 — Verification of Imperative Programs 66/66

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Imperative Programs
	Hoare Calculus
	Proof Tableaux
	Termination of Imperative Programs
	Soundness of Hoare-Calculus
	Programming by Contract
	

