Available Projects

René Thiemann

April 26, 2022

Contents

1 Matching First-Order Terms (1 person) 1
1.1 Terms and Substitutions 1
1.2 Soundness 2
1.3 Matchers 2
1.4 Completeness 3
2 BIGNAT - Natural Numbers of Arbitrary Size (1 person) 3
2.1 Representation 3
2.2 Addition 4
2.3 Multiplication 4
3 The Euclidean Algorithm - Inductively (1 person) 5
3.1 Soundness 5
3.2 Completeness 5
4 Tseitin Transformation (2 persons) 6
4.1 Syntax and Semantics 6
4.2 Conjunctive Normal Forms 7
4.3 Tseitin Transformation 7
4.4 Fresh Variables 8
5 A Compiler for the Register Machine from Hell (2 persons) 9
5.1 A Compiler 10
5.2 Compiler Verification 10
6 Congruence Closure (2 persons) 11
6.1 Definition of Algorithm 11
6.2 Completeness of CCA 13
6.3 Soundness of CCA 14
6.4 Correctness of CCA 14
7 Propositional Logic (2 persons) 14
7.1 Syntax and Semantics 15
7.2 Natural Deduction 15
7.3 Soundness 16
7.4 Completeness 17

1 Matching First-Order Terms (1 person)

A matching algorithm for first-order terms computes tries to compute a substitution that witnesses that one (list of) term(s) is an instance of another. In this project you will implement and verify a matching algorithm.

```
theory Project-Matching
    imports Main
begin
```


1.1 Terms and Substitutions

First-order terms are either variables or function symbols applied to a list of argument terms:
type-synonym $i d=$ string
datatype term $=$ Var id \mid Fun id term list
A substitution is a mapping from variables to terms.
type-synonym subst $=i d \Rightarrow$ term option
Define a function subst that applies a substitution to a given term. Variables that are not part of the substitution should be left untouched.

```
fun subst :: subst }=>\mathrm{ term }=>\mathrm{ term
    where
        subst \sigma t = undefined
```

Define a function vars that computes the set of variables occurring in a given term.

```
fun vars :: term }=>\mathrm{ id set
    where
        vars t= undefined
```

Define a matching algorithm that, given two lists of terms $t s$ and $u s$, and an initial substitution σ, computes (if possible) a substitution τ that makes the $t s$ equal to $u s$:

```
map (subst \(\tau\) ) ts \(=u s\)
fun match \(::\) term list \(\Rightarrow\) term list \(\Rightarrow\) subst \(\Rightarrow\) subst option
    where
    match ts us \(\sigma=\) undefined
```

Show that the domain dom of a substitution computed by match is contained in the union of the domain of the initial substitution σ with the variables occurring in $t s$.

```
lemma match-Some-dom:
    assumes match ts us \sigma=Some \tau
    shows dom \tau\subseteqdom \sigma\cup\bigcup(set (map vars ts))
    sorry
```


1.2 Soundness

Prove that match is sound.
You will need an auxiliary result on the relationship between the initial substitution σ and the resulting substitution τ. To this end the order $\left(\subseteq_{m}\right)$ should be useful.
lemma match-sound:
assumes match ts us $\sigma=$ Some τ
shows map (subst τ) ts $=u s$
sorry

1.3 Matchers

Define the set of matchers of two given lists of terms $t s$ and $u s$.
Here, a matcher for $t s$ and $u s$ is any substitution σ that makes $t s$ equal to $u s$ and is defined at least on all variables of $t s$.

```
definition matchers \(::\) term list \(\Rightarrow\) term list \(\Rightarrow\) subst set
    where
    matchers ts us \(=\) undefined
```

Prove the following equations for matchers (after suitably replacing whatever).
lemma matchers-simp [simp]:
matchers [] ($u \# u s$) $=$ whatever
matchers ($t \# t s$) [] = whatever
matchers (Var $x \# t s)(u \# u s)=$ whatever
matchers (Fun f ts \#tss) (Var y \# us) $=$ whatever
matchers (Fun fts \# tss) (Fun gus \# uss) = whatever
length ts \neq length $u s \Longrightarrow$ matchers ts us $=$ whatever
length ss $=$ length $u s \Longrightarrow$ matchers $(s s @ t s)(u s @ v s)=$ whatever
sorry

1.4 Completeness

Prove that match is complete, that is, if match ts us $\sigma=$ None then there is no extension of σ that is a matcher of $t s$ and $u s$.
lemma match-complete:

```
assumes match ts us \sigma=None
shows matchers ts us \cap{\tau.\sigma\subseteq}\mp@subsup{\subseteq}{m}{}\tau}={
sorry
end
```


2 BIGNAT - Natural Numbers of Arbitrary Size (1 person)

Hardware platforms have a limit on the largest number they can represent. This is usually fixed by the bit lengths of registers and ALUs used.
In order to be able to perform calculations that require arbitrarily large numbers, the provided arithmetic operations need to be extended in order for them to work on an abstract data type representing numbers of arbitrary size.
In this project you will build and verify an implementation for BIGNAT, an abstract data type representing natural numbers of arbitrary size.
(Adapted from http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf)
theory Project-BIGNAT
imports Main
begin

2.1 Representation

A BIGNAT is represented by a list of natural numbers in a range supported by the target machine. In our case, this will be all natural numbers smaller than a given base b.
Note: Natural numbers in Isabelle are of arbitrary size.

```
type-synonym bignat = nat list
```

Define a function valid that takes a base and checks if a given BIGNAT is valid.

```
fun valid :: nat }=>\mathrm{ bignat }=>\mathrm{ bool
    where
        valid b n = undefined
```

Define a function val that takes a BIGNAT and its corresponding base, and returns the natural number represented by the BIGNAT.

```
fun val \(::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) nat
    where
        val \(b n=\) undefined
```


2.2 Addition

Define a function $a d d$ that adds two BIGNATs with the same base. Make sure that your algorithm preserves the validity of the BIGNAT representation.

```
fun \(a d d::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) bignat \(\Rightarrow\) bignat
    where
        add \(b m n=\) undefined
```

Using val, verify formally that your add function computes the sum of two BIGNATs correctly.

```
lemma val-add: val b (add b m n) = val b m + val b n
    sorry
```

Using valid, verify formally that your function add preserves the validity of the BIGNAT representation.

```
lemma valid-add:
    assumes valid b m and valid b n
    shows valid b (add b m n)
    sorry
```


2.3 Multiplication

Define a function mult that multiplies two BIGNATs with the same base. You may use $a d d$, but not so often as to make the solution trivial. Make sure that your algorithm preserves the validity of the BIGNAT representation.

```
fun mult \(::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) bignat \(\Rightarrow\) bignat
    where
        mult \(b\) m \(n=\) undefined
```

Using val, verify formally that your mult function computes the product of two BIGNATs correctly.
lemma val-mult: val b (m ult $b m n$) $=$ val $b m *$ val $b n$ sorry

Using valid, verify formally that your mult function preserves the validity of the BIGNAT representation.

```
lemma valid-mult:
    assumes valid b m}\mathrm{ and valid b n
    shows valid b (mult b m n)
    sorry
end
```


3 The Euclidean Algorithm - Inductively (1 person)

In this project you will develop and verify an inductive specification of the Euclidean algorithm.
(Adapted from http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf)

```
theory Project-GCD
    imports Main
begin
```

Define the set $g c d$ of triples (a, b, g) such that g is the greatest common divisor of a and b inductively.
Your definition should closely follow the Euclidean algorithm, which repeatedly subtracts the smaller from the larger number, until one of them is zero (at this point, the other number is the greatest common divisor).

```
inductive-set gcd :: (nat }\times\mathrm{ nat }\times\mathrm{ nat) set
```

Show that the greatest common divisor as given by $g c d$ is indeed a divisor.
lemma gcd-divides: $(a, b, g) \in g c d \Longrightarrow g$ dvd $a \wedge g$ dvd b
sorry

3.1 Soundness

Show that the greatest common divisor as given by $g c d$ is greater than or equal to any other common divisor.

```
lemma gcd-greatest:
    assumes (a,b,g)\ingcd
        and 0<a\vee0<b
        and d dvd a
        and d dvd b
    shows d\leqg
    sorry
```


3.2 Completeness

So far, you have only shown that $g c d$ is correct, but there might still be values a and b such that there is no g with $(a, b, g) \in g c d$.
Thus, show completeness of your specification. First prove the following result by course-of-value recursion, that is, using ($\bigwedge n . \forall m<n$. ?P $m \Longrightarrow$ $? P n) \Longrightarrow ? P$? n. (Inside the induction make a case analysis corresponding to the different clauses of the algorithm.)
lemma gcd-defined-aux:

$$
a+b \leq n \Longrightarrow \exists g .(a, b, g) \in g c d
$$

sorry

```
lemma gcd-defined: \existsg. (a,b,g)\ingcd
    sorry
end
```


4 Tseitin Transformation (2 persons)

Since most SAT solvers insist on formulas in conjunctive normal form (CNF) as input, but in general the CNF of a given formula may be exponentially larger, there is interest in efficient transformations that produce a small equisatisfiable CNF for a given formula. Probably the earliest and most well-known of these transformation is due to Tseitin.
In this project you will implement a two-step transformation of propositional formulas into equisatisfiable CNFs and formally prove results about the complexity and that the resulting CNFs are indeed equisatisfiable to the original formula.

```
theory Project-Tseitin-Fresh
    imports Main
begin
```


4.1 Syntax and Semantics

For the purposes of this project propositional formulas (with atoms of an arbitrary type) are restricted to the following (functionally complete) connectives:

```
datatype 'a form=
    Bot - the "always false" formula
    | Top - the "always true" formula
    |ar 'a - propositional variables
    | Neg 'a form - negation
    | Disj 'a form 'a form - disjunction
    Conj 'a form 'a form - conjunction
```

Define a function eval that evaluates the truth value of a formula with respect to a given truth assignment $\alpha:: ' a \Rightarrow b o o l$.

```
fun eval :: (' }a=>\mathrm{ bool ) = ' 'a form }=>\mathrm{ bool
    where
        eval \alpha \varphi = undefined
```

Define a predicate sat that captures satisfiable formulas.

```
definition sat :: 'a form }=>\mathrm{ bool
    where
        sat }\varphi\longleftrightarrow\mathrm{ undefined
```


4.2 Conjunctive Normal Forms

Literals are positive or negative variables.
datatype 'a literal $=P^{\prime} a \mid N^{\prime} a$
A clause is a disjunction of literals, represented as a list of literals.
type-synonym 'a clause $=$ 'a literal list
A CNF is a conjunction of clauses, represented as list of clauses.
type-synonym 'a cnf $=$ ' a clause list
Implement a function of-cnf that, given a CNF (of 'a cnf, computes a logically equivalent formula (of 'a form).
fun of-cnf :: 'a cnf \Rightarrow 'a form
where
of-cnf cs $=$ undefined

4.3 Tseitin Transformation

The idea of Tseitin's transformation is to assign to each subformula φ a label a_{φ} and use the following definitions

- $a_{\perp} \longleftrightarrow \perp$
- $a_{\top} \longleftrightarrow \top$
- $a_{\neg \varphi} \longleftrightarrow \neg \varphi$
- $a_{\varphi \vee \psi} \longleftrightarrow(\varphi \vee \psi)$
- $a_{\varphi \wedge \psi} \longleftrightarrow(\varphi \wedge \psi)$
to recursively compute clauses tseitin φ such that $a_{\varphi} \wedge \operatorname{tseitin} \varphi$ and φ are equisatisfiable (that is, the former is satisfiable iff the latter is).
Define a function tseitin that computes the clauses corresponding to the above idea.

```
fun tseitin :: 'a form \(\Rightarrow\) ('a form) cnf
    where
        tseitin \(\varphi=\) undefined
```

Prove that $a_{\varphi} \wedge$ tseitin φ are equisatisfiable.
lemma tseitin-equisat:
sat $($ of-cnf $([P \varphi] \#$ tseitin $\varphi)) \longleftrightarrow$ sat φ
sorry

Prove linear bounds on the number of clauses and literals by suitably replacing n and num-literals below:

lemma tseitin-num-clauses:

length $($ tseitin $\varphi) \leq n *$ size φ
sorry
lemma tseitin-num-literals:
num-literals $($ tseitin $\varphi) \leq n *$ size φ
sorry

4.4 Fresh Variables

One of the problems in the tseitin transformation above is that the type of propositional variables is changed from ' a to ' a form.
Define a function to rename variables in a CNF.

```
fun rename-cnf :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a c n f \Rightarrow{ }^{\prime} b\) cnf
    where
        rename-cnff cs \(=\) undefined
```

Think of a property such that renaming preserves satisfiability. Note that injectivity is already defined in Isabelle (inj or inj-on.)
lemma property $f c s \Longrightarrow$ sat $(o f-c n f(r e n a m e-c n f f c s)) \longleftrightarrow$ sat (of-cnf cs) sorry
Next, we define a tseitin transformation which does not change the type of propositional variables.

```
definition tseitin-fresh :: 'your-type form \(\Rightarrow\) 'your-type cnf where
    tseitin-fresh \(\varphi=\) (let
    \(c s=\left[\begin{array}{ll}P & \varphi\end{array}\right] \#\) tseitin \(\varphi\);
    renaming \(=\) undefined
    in rename-cnf renaming cs)
```

Implement a corresponding renaming function such that the following soundness property can be proved. Here, you also need to change the type-variable 'your-type, where for this project it is perfectly fine to use a concrete type which has infinitely many elements, e.g., nat or int or string.
lemma tseitin-fresh: sat $\varphi \longleftrightarrow$ sat (of-cnf (tseitin-fresh φ)) sorry
Your function definitions should be executable.
definition X :: 'your-type where $X=$ undefined
definition Y :: 'your-type where $Y=$ undefined
definition Z :: 'your-type where $Z=$ undefined
definition test-form :: 'your-type form where
test-form $=\operatorname{Neg}(\operatorname{Conj}(\operatorname{Disj}(\operatorname{Neg}(\operatorname{Var} X))(\operatorname{Var} Z))(\operatorname{Neg}(\operatorname{Var} Y)))$
The Isabelle command value (code) tseitin-fresh test-form should succeed.
end

5 A Compiler for the Register Machine from Hell (2 persons)

Processors from Hell has released its next-generation RISC processor RMfH. It features an infinite bank of registers R_{0}, R_{1}, \ldots holding unbounded integers. Register R_{0} plays the role of the accumulator and is the implicit source or destination register of all instructions. Any other register involved in an instruction must be distinct from R_{0}, which is enforced by implicitly incrementing its index.
There are four instructions
$L D I i$ has the effect $R_{0}:=i$
$L D n$ has the effect $R_{0}:=R_{n+1}$
$S T n$ has the effect $R_{n+1}:=R_{0}$
$A D D n$ has the effect $R_{0}:=R_{0}+R_{n+1}$
were i is an integer and n a natural number.
In this project you will implement and verify a compiler for the Register Machine from Hell (RMfH).
(Adapted from https://isabelle.in.tum.de/exercises/advanced/regmachine/ ex.pdf)
theory Project-Register-Machine-from-Hell imports Main
begin
Define a data type of instructions and an execution function exec that takes an instruction and a state and returns the new state.

```
type-synonym state \(=\) nat \(\Rightarrow\) int
datatype instr \(=\) Undefined
fun exec :: instr \(\Rightarrow\) state \(\Rightarrow\) state
    where
        exec \(i s=\) undefined
```

Extend exec to lists of instructions:

```
fun execute \(::\) instr list \(\Rightarrow\) state \(\Rightarrow\) state
    where
        execute is \(s=\) undefined
```

The engineers of $P f H$ soon got tired of writing assembly language code and designed their own high-level programming language of arithmetic expressions. An expression can be

- an integer constant,
- one of the variables v_{0}, v_{1}, \ldots, or
- the sum of two expressions

Define a data type of expressions and an evaluation function that takes an expression and a state and returns the resulting value. Because this is a clean language, there is no implicit increment going on: the value of v_{n} in state s is simply $s n$.
datatype expr $=$ Undefined
fun value :: expr \Rightarrow state \Rightarrow int
where
value e $s=$ undefined

5.1 A Compiler

You have been recruited to write a compiler from expr to instr list. You remember your compiler course and decide to emulate a stack machine using free registers, that is, registers not used by the expression you are compiling. Implement a compiler compile :: expr \Rightarrow nat \Rightarrow instr list where the second argument is the index of the first free register that can be used to store intermediate results. The result of an expression should be returned in R_{0}. Because R_{0} is the accumulator, you decide on the following compilation scheme: v_{i} will be held in R_{i+1}.

```
fun compile :: expr }=>\mathrm{ nat }=>\mathrm{ instr list
    where
        compile e k}=\mathrm{ undefined
```


5.2 Compiler Verification

Although you are convinced about the correctness of your compiler, the boss of PfH (which coincides with the lecturer of interactive theorem proving) actually wants you to verify the compiler. Below is a sketch of the correctness statement.
However, there is definitely a precondition missing because k should be large enough not to interfere with any of the variables in e. Moreover, you have some lingering doubts about having the same s on both sides despite the index shift between variables and registers. But because all your definitions are executable, you hope that Isabelle will spot any incorrect propositions before you even start its proofs. What worries you most is the number of auxiliary lemmas it may take to prove your proposition.

lemma

```
    execute (compile e k) s 0 = value e s
    sorry
end
```


6 Congruence Closure (2 persons)

We consider a set ground equations GE such as

- $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{h}(\mathrm{b})$
- $\mathrm{f}(\mathrm{b})=\mathrm{b}$
- $g(a)=b$
and are interested in the question whether a particular equation is implied GE. For instance the sequence of equality-steps
- $\mathrm{f}(\mathrm{h}(\mathrm{b}))=\mathrm{f}(\mathrm{f}(\mathrm{g}(\mathrm{a})))=\mathrm{f}(\mathrm{f}(\mathrm{b}))=\mathrm{f}(\mathrm{b})$
proves that $f(h(b))=f(b)$ follows from E.
Whereas it is easy to validate a given sequence of equality-steps, the problem is to detect whether such a sequence exists for a given equation. To this end, the congruence closure algorithm has been developed which should be partially verified in this project.

Basic knowledge of term rewriting is helpful for this project. The describtion of the algorithm is based on Franz Baader and Tobias Nipkow, Term Rewriting and All That, Chapter 4.3.

```
theory Project-Congruence-Closure
    imports
        Main
begin
```


6.1 Definition of Algorithm

We start by definining ground terms where the type of symbols are just strings.

```
type-synonym symbol = string
datatype trm = Fun symbol trm list
```

type-synonym eqs $=(t r m \times t r m)$ set

Define the set of subterms of a term, e.g., the subterms of $\mathrm{f}(\mathrm{g}(\mathrm{a}), \mathrm{b})$ would be $\{f(g(a), b), g(a), a, b\}$.

$$
\text { fun subt }:: \operatorname{trm} \Rightarrow \text { trm set where }
$$

$$
\text { subt }(\text { Fun } f t s)=\text { undefined }
$$

Prove two useful lemmas about subterms.
lemma self-subt: $u \in$ subt u sorry
lemma subt-trans: $s \in$ subt $t \Longrightarrow t \in$ subt $u \Longrightarrow s \in$ subt u sorry
For a set of ground-equalities, the congruence closure algorithm is in particular interested in all subterms that occur in the equalities.
definition subt-eqs where subt-eqs $G E=\bigcup((\lambda(l, r)$. subt $l \cup$ subt $r)$ ' $G E)$
From now on fix a specific set of ground-equalities GE.

```
context
    fixes GE :: eqs
begin
```

Define an equality step where one can either replace one side of an equation in GE by the other side (a root-step), or where one can apply a step in a context.

```
inductive-set estep :: trm rel where
    root: undefined \(\Longrightarrow\) undefined \(\in\) estep
\(\mid\) ctxt \(:(s, t) \in\) estep \(\Longrightarrow(\) Fun \(f\) (before @ \(s \#\) after), Fun \(f\) (before @ \(t \#\) after \()\) )
\(\in\) estep
```

The other important definition is the Cong-operation which given a set of equalities derives new equalities of these by reflexivity, symmetry, transitivity or context.

```
inductive-set Cong :: eqs \(\Rightarrow\) eqs for \(E\) where
    C-keep: eq \(\in E \Longrightarrow e q \in \operatorname{Cong} E\)
| C-refl: \((t, t) \in\) Cong \(E\)
C-sym: \((s, t) \in E \Longrightarrow(t, s) \in \operatorname{Cong} E\)
C-trans: \((s, t) \in E \Longrightarrow(t, u) \in E \Longrightarrow(s, u) \in \operatorname{Cong} E\)
\(\mid C\)-cong: length ss \(=\) length \(t s \Longrightarrow(\forall i<\) length ts. \((s s!i, t s!i) \in E) \Longrightarrow(\) Fun
\(f\) ss, Fun \(f t s) \in\) Cong \(E\)
```

Let us now fix to terms s and t where we are interested in whether GE implies $\mathrm{s}=\mathrm{t}$.
context
fixes $s t:: ~ t r m$
begin
In the congruence closure algorithm one only is interested in equalities of terms in S .
definition S where $S=$ subt $s \cup$ subt $t \cup$ subt-eqs $G E$
definition CongS where CongS $E=C o n g E \cap(S \times S)$

CCA defines the equalities that are obtained in the i-th iteration of the congruence closure algorithm, which iteratively applies the local.CongS operation starting from $G E$.
definition $C C A$ where $C C A \quad i=(C o n g S \leadsto$ i) $G E$
Prove the following simple inclusions.
lemma $G E-S: G E \subseteq S \times S$ sorry
lemma $G E-C C A: G E \subseteq C C A$ i sorry

6.2 Completeness of CCA

The crucial result of the congruence closure algorithm is given in the following lemma on the completeness of the algorithm: if the algorithm has stabilized in the i-th iteration, then all equations in local. $S \times$ local. S that can be derived with arbitrary many steps are also contained in the equalities of CCA.

```
lemma esteps-imp-CCA: assumes CongS (CCA i) = CCA i
    shows (u,v) \in estep```\cap(S\timesS)\longrightarrow(u,v) \inCCA i
proof
```

The proof is by induction on the number of steps and then by the size of the starting term u. This is expressed as follows in Isabelle.

```
assume \((u, v) \in\) estep \({ }^{*} \cap(S \times S)\)
then obtain \(n\) where \(*: u \in S v \in S(u, v) \in\) estep \(\sim_{n}\)
    by (auto simp: rtrancl-power)
obtain \(m\) where \(m=(n\),size \(u)\) by auto
with \(*\) show \((u, v) \in C C A i\)
proof (induction \(m\) arbitrary: \(u\) v \(n\) rule: wf-induct \([\) OF wf-measures \([o f[f s t, s n d]]]\) )
    case ( \(1 m u v n\) )
```

For handling the induction, we first convert the deriviation into a function which gives us all intermediate terms via function w .
from 1 (4)[unfolded relpow-fun-conv] obtain w
where $w: w 0=u w n=v(\forall i<n .(w i, w(S u c i)) \in$ estep $)$ by auto
And the proof now proceeds by case-analysis on whether any of these steps was a root step or whether all steps are non-root.
show ?case sorry
qed
qed
Next, completeness of CCA is easily established

```
lemma esteps-imp-CCA-st: assumes CongS (CCA i) =CCA \(i\)
    shows \((s, t) \in\) estep \({ }^{*} \longrightarrow(s, t) \in C C A i\)
    sorry
```


6.3 Soundness of CCA

The crucial step to prove soundness is the following lemma, which might require some further auxiliary lemmas.
lemma Cong-esteps: $E \subseteq$ estep ${ }^{*} \Longrightarrow$ Cong $E \subseteq$ estep ${ }^{*}$ sorry
But you can easily verify that $? E \subseteq$ estep $^{*} \Longrightarrow$ Cong ? $E \subseteq$ estep* * is the key to prove soundness of CCA.
lemma CCA-imp-esteps: $C C A i \subseteq$ estep ${ }^{\wedge}$ sorry

6.4 Correctness of CCA

Having soundness and completeness, correctness is simple.

```
theorem congruence-closure-correct: assumes CongS (CCA i) = CCA i
    shows \((s, t) \in\) estep \({ }^{*} * \longleftrightarrow(s, t) \in C C A i\)
    sorry
```

The precondition local.CongS (local.CCA i) $=$ local.CCA i can be discharged proving termination of the congruence closure algorithm which just computes the least i such that the precondition is satisfied. The existence of such an i follows from the fact that CCA i is increasing with increasing i and CCA i is bounded by the finite set of terms $S \times \mathrm{S}$. Proving termination formally is not part of this project.
end
end
end

7 Propositional Logic (2 persons)

Soundness and completeness of a logic establish that the syntactic notion of provability is equivalent to the semantic notation of logical entailment.
In this project you will formally prove soundness and completeness of a specific set of natural deduction rules for propositional logic.

```
theory Project-Logic
    imports Main
begin
```


7.1 Syntax and Semantics

Propositional formulas are defined by the following data type (that comes with some syntactic sugar):
type-synonym $i d=$ string
datatype form $=$
Atom id

```
| Bot \(\left(\perp_{p}\right)\)
| Neg form ( \(\neg_{p}\) - [68] 68)
| Conj form form (infixr \(\wedge_{p} 67\) )
| Disj form form (infixr \(\vee_{p}\) 67)
| Impl form form (infixr \(\rightarrow_{p} 66\) )
```

Define a function eval that evaluates the truth value of a formula with respect to a given truth assignment.

```
fun eval \(::(\) id \(\Rightarrow\) bool \() \Rightarrow\) form \(\Rightarrow\) bool
    where
    eval \(v \varphi \longleftrightarrow\) undefined
```

Using eval, define semantic entailment of a formula from a list of formulas.

```
definition entails :: form list }=>\mathrm{ form }=>\mathrm{ bool (infix }\models51
    where
    \Gamma \models \varphi \longleftrightarrow u ~ u n d e f i n e d ~
```


7.2 Natural Deduction

The natural deduction rules we consider are captured by the following inductive predicate proves $P \varphi$, with infix syntax $P \vdash \varphi$, that holds whenever a formula φ is provable from a list of premises P.

```
inductive proves (infix \(\vdash 58\) )
    where
        premise: \(\varphi \in\) set \(P \Longrightarrow P \vdash \varphi\)
    |conjI: \(P \vdash \varphi \Longrightarrow P \vdash \psi \Longrightarrow P \vdash \varphi \wedge_{p} \psi\)
    | conjE1: \(P \vdash \varphi \wedge_{p} \psi \Longrightarrow P \vdash \varphi\)
    | conjE2: \(P \vdash \varphi \wedge_{p} \psi \Longrightarrow P \vdash \psi\)
    | impI: \(\varphi \# P \vdash \psi \Longrightarrow P \vdash\left(\varphi \rightarrow_{p} \psi\right)\)
    | impE: \(P \vdash \varphi \Longrightarrow P \vdash \varphi \rightarrow_{p} \psi \Longrightarrow P \vdash \psi\)
    | disjI1: \(P \vdash \varphi \Longrightarrow P \vdash \varphi \vee_{p} \psi\)
    | disjI2: \(P \vdash \psi \Longrightarrow P \vdash \varphi \vee_{p} \psi\)
    |disjE: \(P \vdash \varphi \vee_{p} \psi \Longrightarrow \varphi \# P \vdash \chi \Longrightarrow \psi \# P \vdash \chi \Longrightarrow P \vdash \chi\)
    | negI: \(\varphi \# P \vdash \perp_{p} \Longrightarrow P \vdash \neg_{p} \varphi\)
    \(\mid n e g E: P \vdash \varphi \Longrightarrow P \vdash \neg_{p} \varphi \Longrightarrow P \vdash \perp_{p}\)
    |botE: \(P \vdash \perp_{p} \Longrightarrow P \vdash \varphi\)
    | dnegE: \(P \vdash{\neg p \neg_{p} \varphi \Longrightarrow P \vdash \varphi}\)
```

Prove that \vdash is monotone with respect to premises, that is, we can arbitrarily extend the list of premises in a valid prove.

```
lemma proves-mono:
    assumes }P\vdash\varphi\mathrm{ and set P}\subseteq\mathrm{ set Q
    shows }Q\vdash
    sorry
```

Prove the following derived natural deduction rules that might be useful later on:

```
lemma dnegI:
    assumes }P\vdash
    shows P}\vdash\mp@subsup{\neg}{p}{}\mp@subsup{\neg}{p}{}
    sorry
lemma pbc:
    assumes }\mp@subsup{\neg}{p}{}\varphi#P\vdash\mp@subsup{\perp}{p}{
    shows }P\vdash
    sorry
lemma lem:
    P\vdash\varphi\vee, 疎\varphi
    sorry
lemma neg-conj:
    assumes }\chi\in{\varphi,\psi}\mathrm{ and }P\vdash\mp@subsup{\neg}{p}{}
    shows }P\vdash\mp@subsup{\neg}{p}{}(\varphi\mp@subsup{\wedge}{p}{}\psi
    sorry
lemma neg-disj:
    assumes }P\vdash\mp@subsup{\neg}{p}{}\varphi\mathrm{ and }P\vdash\mp@subsup{\neg}{p}{}
    shows }P\vdash\mp@subsup{\neg}{p}{}(\varphi\mp@subsup{\vee}{p}{}\psi
    sorry
lemma trivial-imp:
    assumes }P\vdash
    shows }P\vdash\varphi\mp@subsup{->}{p}{}
    sorry
lemma vacuous-imp:
    assumes }P\vdash\mp@subsup{\neg}{p}{}
    shows }P\vdash\varphi\mp@subsup{->}{p}{}
    sorry
lemma neg-imp:
    assumes }P\vdash\varphi\mathrm{ and }P\vdash\mp@subsup{\neg}{p}{}
    shows }P\vdash\mp@subsup{\neg}{p}{}(\varphi\mp@subsup{->}{p}{}\psi
    sorry
```


7.3 Soundness

Prove soundness of \vdash with respect to \vDash.
lemma proves-sound:
assumes $P \vdash \varphi$
shows $P \models \varphi$
sorry

7.4 Completeness

Prove completeness of \vdash with respect to \vDash in absence of premises.
lemma prove-complete-Nil:
assumes [] $\models \varphi$
shows [] $\vdash \varphi$
sorry
Now extend the above result to also incorporate premises.
lemma proves-complete:
assumes $P \models \varphi$
shows $P \vdash \varphi$
sorry
Conclude that semantic entailment is equivalent to provability.
lemma entails-proves-conv:
$P \models \varphi \longleftrightarrow P \vdash \varphi$
sorry
end

