\setminus -++/

Lean and its Type System

Fabian Schaub

June 13, 2022

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

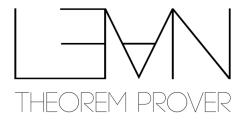
Outline

- About Lean
- Programming Language

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Type System
- Theorem Proving

About Lean



► Launched 2013 by Leonardo de Moura @ Microsoft Research

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Pure functional progamming language
- Latest version: Lean 4

Functions

Pure functions def name := "Anshalm" def greet (n : String) : String := s!"Hello, {n}!"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Functions

Pure functions def name := "Anshalm" def greet (n : String) : String := s!"Hello, {n}!"

```
Monadic expressions and Do-Notation
def doGreet : IO Unit :=
pure (greet name) >>= λ g => IO.println g
def main : IO Unit := do
let g ← pure (greet name)
IO.println g
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Functions

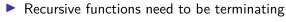
Pure functions def name := "Anshalm" def greet (n : String) : String := s!"Hello, {n}!"

```
    Monadic expressions and Do-Notation
```

```
def doGreet : IO Unit := 
pure (greet name) >>= \lambda g => IO.println g
```

```
def main : IO Unit := do
    let g ← pure (greet name)
    IO.println g
```

```
Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"
```

Show termination by hand

The Language Recursive Functions

Recursive functions need to be terminating

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Show termination by hand
- Use partial recursive function
 - Type has to be non-empty

Recursive Functions Cont.

Recursive Functions

```
-- fails with 'fail to show termination'
def loop1 (a : Nat) : Nat :=
  match a with
  | 0 => a
  | _ => loop1 (a - 1)
```

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Recursive Functions Cont.

Recursive Functions

```
-- fails with 'fail to show termination'
def loop1 (a : Nat) : Nat :=
  match a with
  | 0 => a
  | _ => loop1 (a - 1)
```

```
-- define a partial function
partial def loop2 (cond : Nat -> Bool) (a : Nat) :
    Nat :=
    if cond a then a else loop2 cond (a - 1)
```

・ロト・西・・田・・田・・日・

The Language Data Types

Data Types

inductive Weekday where

sunday	: Weekday
monday	: Weekday

structure Point (α : Type u) where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- $\mathtt{x} : \alpha$
- y: α


```
Inductive Data Types
```

```
inductive Tree (\alpha : Type u) where
| node : Tree \alpha -> \alpha -> Tree \alpha -> Tree \alpha
| leaf : Tree \alpha
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Type Classes

```
Type Classes
  class Add (a : Type) where
     add : a \rightarrow a \rightarrow a
   instance : Add Nat where
     add x y := x + y
   instance [Add \alpha] : Add (Maybe \alpha) where
     add x y :=
       match x with
       | Maybe.nothing => Maybe.nothing
       | Maybe.just a =>
         match y with
          | Maybe.nothing => Maybe.nothing
          | Maybe.just b => Maybe.just (a + b)
  def double [Add \alpha] (a : \alpha) : \alpha :=
     Add.add a a
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Programming

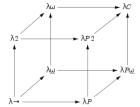
Leans Type System builds on the Calculus of Constructions (λ_C) with Inductive Types (Calculus of Inductive Constructions).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Type System

Leans Type System builds on the Calculus of Constructions (λ_C) with Inductive Types (Calculus of Inductive Constructions).

- ► λ_{\rightarrow} Simply Typed LC
- ▶ λ_2 Polymorphism
- ▶ λ_P Dependent Types
- $\lambda_{\underline{\omega}}$ (inductive) Type Constructors



Type System λ_2 - Polymorphism

$$\begin{array}{rcl} \textit{compose} & : & \forall \alpha. \forall \beta. \forall \gamma. (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma \\ & \equiv \\ & \\ \texttt{def compose} & (\alpha \ \beta \ \gamma \ : \ \texttt{Type}) & (\texttt{g} \ : \ \beta \to \gamma) & (\texttt{f} \ : \ \alpha \to \beta) & (\texttt{x} \\ & : \ \alpha) \ : \ \gamma \ := \\ & \\ & \\ \texttt{g} & (\texttt{f} \ \texttt{x}) \end{array}$$

`

1

<u>،</u> ،

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Type System λ_P - Dependent Types

```
foo : (\Pi a : String . B)
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

```
Type System \lambda_{\underline{\omega}} - (inductive) Type Constructors
```

```
inductive Maybe (α : Type u) where
| just : α -> Maybe α
| nothing : Maybe α

def isJust (α : Type u) (a : Maybe α) : Bool :=
match a with
| Maybe.just _ => true
| _ => false
```

・ロト・西ト・西ト・日・ うらぐ

- Infinite hierarchy of universes
- Each type therein is denoted by Type (u : Nat)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► Type is syntactic sugar for Type 0

Type System

- Infinite hierarchy of universes
- Each type therein is denoted by Type (u : Nat)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Type is syntactic sugar for Type 0
- Int Nat Bool ... : Type

Type System

- Infinite hierarchy of universes
- Each type therein is denoted by Type (u : Nat)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Type is syntactic sugar for Type 0
- Int Nat Bool ... : Type
- A "special" type: Prop : Type

- Propositions are encoded with Prop : Type
- Prop is closed under the arrow constructor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Propositions are encoded with Prop : Type
 Prop is closed under the arrow constructor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

-- the Proposition Type variable (a b c : Prop)

-- useful Type Constructors
#check a ∧ b -- Prop
#check a ∨ b -- Prop

```
Proof a proposition by finding a suitable term.
```

```
variable {p : Prop}
variable {q : Prop}
```

-- proof a theorem by providing a term of its type theorem t1 : $p \rightarrow q \rightarrow p$:= fun hp : p => fun hq : q => hp

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof a proposition by finding a suitable term.

```
variable {p : Prop}
variable {q : Prop}
```

-- proof a theorem by providing a term of its type theorem t1 : $p \rightarrow q \rightarrow p$:= fun hp : p => fun hq : q => hp

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

NOTE: theorem is logically equivalent to def.

With axiom name : proposition we define axioms.

```
With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}
theorem t1 (hp : p) (hq : q) : p := hp
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}
theorem t1 (hp : p) (hq : q) : p := hp
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

-- define an axiom axiom myaxiom : p

```
With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}
theorem t1 (hp : p) (hq : q) : p := hp
-- define an axiom
```

axiom myaxiom : p

-- Modus Ponens corresponds to β -reduction theorem t2 : q \rightarrow p := t1 myaxiom

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We define further theorems.

```
variable {p : Prop}
variable {q : Prop}
```

-- define an and introduction rule
theorem and_intro : p -> q -> p \lambda q :=
fun hp hq => \lambda hp, hq \lambda

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We define further theorems.

```
variable {p : Prop}
variable {q : Prop}
```

-- define an and introduction rule
theorem and_intro : p -> q -> p \lambda q :=
fun hp hq => \lambda hp, hq \lambda

-- define and symmetry rule theorem and_symmetry (h : p \wedge q) : q \wedge p := and_intro h.right h.left

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem Proving Tactics

```
Additionally, Lean has a tactics mode

theorem program_mode (p q : Prop) (hp : p) (hq : q) : p \land q :=

And.intro hp hq
```

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
Additionally, Lean has a tactics mode

theorem program_mode (p q : Prop) (hp : p) (hq : q) : p \land q :=

And.intro hp hq
```

```
theorem tactics_mode (p q : Prop) (hp : p) (hq : q) : p ^
   q := by
   apply And.intro
   exact hp
   exact hq
```


Proving (Part 1)


```
Implementing Proposition Constructors
```

Propositions are implemented using inductive types.

```
inductive False : Prop
inductive True : Prop where
  | intro : True
inductive And (a b : Prop) : Prop where
  | intro : a \rightarrow b \rightarrow And a b
inductive Or (a b : Prop) : Prop where
  | inl : a \rightarrow Or a b
  | inr : b \rightarrow Or a b
inductive Exists {\alpha : Type u} (q : \alpha \rightarrow Prop) : Prop where
   | intro : \forall (a : \alpha), g a \rightarrow Exists g
  -- \exists x : \alpha, p \text{ is syntactic sugar for}
  -- Exists (fun x : \alpha \Rightarrow p)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

inductive Nat where

| zero : Nat

| succ : Nat ightarrow Nat

Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

inductive Nat where

| zero : Nat | succ : Nat \rightarrow Nat

#check @Nat.rec : {motive : Nat \rightarrow Sort u} \rightarrow motive Nat.zero \rightarrow ((n : Nat) \rightarrow motive n \rightarrow motive (Nat.succ n)) \rightarrow (t : Nat) \rightarrow motive t

Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where | zero : Nat | succ : Nat \rightarrow Nat #check @Nat.rec : {motive : Nat \rightarrow Sort u} \rightarrow motive Nat.zero \rightarrow ((n : Nat) \rightarrow motive n \rightarrow motive (Nat.succ n)) \rightarrow (t : Nat) \rightarrow motive t #check @Nat.recOn : {motive : Nat \rightarrow Sort u} \rightarrow (t : Nat)

- \rightarrow motive Nat.zero
- ightarrow ((n : Nat) ightarrow motive n ightarrow motive (Nat.succ n))

ightarrow motive t

Proving (Part 2)

References I

Lean Manual.

```
https://leanprover.github.io/lean4/doc/.
[Online; accessed 13-Jun-2022].
```

Theorem Proving in Lean 4.

https:

//leanprover.github.io/theorem_proving_in_lean4/.
[Online; accessed 13-Jun-2022].

 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The lean theorem prover (system description). In International Conference on Automated Deduction, pages 378–388. Springer, 2015.

References II

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In International Conference on Automated Deduction, pages 625–635. Springer, 2021.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you for your attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ