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About Lean

▶ Launched 2013 by Leonardo de Moura @ Microsoft Research
▶ Pure functional progamming language
▶ Latest version: Lean 4



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Recursive Functions

▶ Recursive functions need to be terminating
▶ Show termination by hand

▶ Use partial recursive function
▶ Type has to be non-empty
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The Language
Recursive Functions Cont.

▶ Recursive Functions
-- fails with ’fail to show termination’
def loop1 (a : Nat) : Nat :=

match a with
| 0 => a
| _ => loop1 (a - 1)

-- define a partial function
partial def loop2 (cond : Nat -> Bool) (a : Nat) :

Nat :=
if cond a then a else loop2 cond (a - 1)
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The Language
Data Types

▶ Data Types
inductive Weekday where

| sunday : Weekday
| monday : Weekday
| . . .

structure Point (α : Type u) where
x : α
y : α



The Language
Inductive Data Types

▶ Inductive Data Types
inductive Tree (α : Type u) where

| node : Tree α -> α -> Tree α -> Tree α
| leaf : Tree α



The Language
Type Classes

▶ Type Classes
class Add (a : Type) where

add : a -> a -> a
instance : Add Nat where

add x y := x + y

instance [Add α] : Add (Maybe α) where
add x y :=

match x with
| Maybe.nothing => Maybe.nothing
| Maybe.just a =>

match y with
| Maybe.nothing => Maybe.nothing
| Maybe.just b => Maybe.just (a + b)

def double [Add α] (a : α) : α :=
Add.add a a



Demo

Programming



Type System

Leans Type System builds on the Calculus of Constructions (λC )
with Inductive Types (Calculus of Inductive Constructions).

▶ λ→ - Simply Typed LC
▶ λ2 - Polymorphism
▶ λP - Dependent Types
▶ λω - (inductive) Type Constructors
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Type System
λ2 - Polymorphism

compose : ∀α.∀β.∀γ.(β → γ)→ (α→ β)→ α→ γ

≡
def compose (α β γ : Type) (g : β → γ) (f : α → β) (x

: α) : γ :=
g (f x)



Type System
λP - Dependent Types

foo : (Πa : String . B)

≡
def foo (s : String) : Type := match s with

| "String" => String
| "Nat" => Nat
| _ => Bool



Type System
λω - (inductive) Type Constructors

inductive Maybe (α : Type u) where
| just : α -> Maybe α
| nothing : Maybe α

def isJust (α : Type u) (a : Maybe α) : Bool :=
match a with
| Maybe.just _ => true
| _ => false



Type System
Universes

▶ Infinite hierarchy of universes
▶ Each type therein is denoted by Type (u : Nat)

▶ Type is syntactic sugar for Type 0

▶ Int Nat Bool . . . : Type

▶ A “special” type: Prop : Type
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Theorem Proving

▶ Propositions are encoded with Prop : Type

▶ Prop is closed under the arrow constructor

-- the Proposition Type
variable (a b c : Prop)

-- useful Type Constructors
#check a ∧ b -- Prop
#check a ∨ b -- Prop
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Theorem Proving

Proof a proposition by finding a suitable term.
variable {p : Prop}
variable {q : Prop}

-- proof a theorem by providing a term of its type
theorem t1 : p → q → p := fun hp : p => fun hq : q => hp

NOTE: theorem is logically equivalent to def.
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Theorem Proving

With axiom name : proposition we define axioms.

variable {p : Prop}
variable {q : Prop}

theorem t1 (hp : p) (hq : q) : p := hp

-- define an axiom
axiom myaxiom : p

-- Modus Ponens corresponds to β-reduction
theorem t2 : q → p := t1 myaxiom
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Theorem Proving

We define further theorems.
variable {p : Prop}
variable {q : Prop}

-- define an and introduction rule
theorem and_intro : p -> q -> p ∧ q :=

fun hp hq => ⟨hp, hq⟩

-- define and symmetry rule
theorem and_symmetry (h : p ∧ q) : q ∧ p := and_intro

h.right h.left
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Theorem Proving
Tactics

Additionally, Lean has a tactics mode
theorem program_mode (p q : Prop) (hp : p) (hq : q) : p ∧

q :=
And.intro hp hq

theorem tactics_mode (p q : Prop) (hp : p) (hq : q) : p ∧
q := by

apply And.intro
exact hp
exact hq
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Demo

Proving (Part 1)



Theorem Proving
Implementing Proposition Constructors

Propositions are implemented using inductive types.
inductive False : Prop

inductive True : Prop where
| intro : True

inductive And (a b : Prop) : Prop where
| intro : a → b → And a b

inductive Or (a b : Prop) : Prop where
| inl : a → Or a b
| inr : b → Or a b

inductive Exists {α : Type u} (q : α → Prop) : Prop where
| intro : ∀ (a : α), q a → Exists q
-- ∃ x : α, p is syntactic sugar for
-- Exists (fun x : α => p)



Theorem Proving
Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where
| zero : Nat
| succ : Nat → Nat

#check @Nat.rec
: {motive : Nat → Sort u}
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ (t : Nat) → motive t

#check @Nat.recOn
: {motive : Nat → Sort u}
→ (t : Nat)
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ motive t
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Proving (Part 2)
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Thank you for your attention!


