
Lean and its Type System

Fabian Schaub

June 13, 2022



Outline

▶ About Lean
▶ Programming Language
▶ Type System
▶ Theorem Proving



About Lean

▶ Launched 2013 by Leonardo de Moura @ Microsoft Research
▶ Pure functional progamming language
▶ Latest version: Lean 4



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Functions

▶ Pure functions
def name := "Anshalm"
def greet (n : String) : String := s!"Hello, {n}!"

▶ Monadic expressions and Do-Notation
def doGreet : IO Unit :=

pure (greet name) >>= λ g => IO.println g

def main : IO Unit := do
let g ← pure (greet name)
IO.println g

▶ Evaluating Expressions
#check greet name -- String
#eval greet name -- "Hello, Anshalm!"



The Language
Recursive Functions

▶ Recursive functions need to be terminating
▶ Show termination by hand

▶ Use partial recursive function
▶ Type has to be non-empty



The Language
Recursive Functions

▶ Recursive functions need to be terminating
▶ Show termination by hand

▶ Use partial recursive function
▶ Type has to be non-empty



The Language
Recursive Functions Cont.

▶ Recursive Functions
-- fails with ’fail to show termination’
def loop1 (a : Nat) : Nat :=

match a with
| 0 => a
| _ => loop1 (a - 1)

-- define a partial function
partial def loop2 (cond : Nat -> Bool) (a : Nat) :

Nat :=
if cond a then a else loop2 cond (a - 1)



The Language
Recursive Functions Cont.

▶ Recursive Functions
-- fails with ’fail to show termination’
def loop1 (a : Nat) : Nat :=

match a with
| 0 => a
| _ => loop1 (a - 1)

-- define a partial function
partial def loop2 (cond : Nat -> Bool) (a : Nat) :

Nat :=
if cond a then a else loop2 cond (a - 1)



The Language
Data Types

▶ Data Types
inductive Weekday where

| sunday : Weekday
| monday : Weekday
| . . .

structure Point (α : Type u) where
x : α
y : α



The Language
Inductive Data Types

▶ Inductive Data Types
inductive Tree (α : Type u) where

| node : Tree α -> α -> Tree α -> Tree α
| leaf : Tree α



The Language
Type Classes

▶ Type Classes
class Add (a : Type) where

add : a -> a -> a
instance : Add Nat where

add x y := x + y

instance [Add α] : Add (Maybe α) where
add x y :=

match x with
| Maybe.nothing => Maybe.nothing
| Maybe.just a =>

match y with
| Maybe.nothing => Maybe.nothing
| Maybe.just b => Maybe.just (a + b)

def double [Add α] (a : α) : α :=
Add.add a a



Demo

Programming



Type System

Leans Type System builds on the Calculus of Constructions (λC )
with Inductive Types (Calculus of Inductive Constructions).

▶ λ→ - Simply Typed LC
▶ λ2 - Polymorphism
▶ λP - Dependent Types
▶ λω - (inductive) Type Constructors



Type System

Leans Type System builds on the Calculus of Constructions (λC )
with Inductive Types (Calculus of Inductive Constructions).

▶ λ→ - Simply Typed LC
▶ λ2 - Polymorphism
▶ λP - Dependent Types
▶ λω - (inductive) Type Constructors



Type System
λ2 - Polymorphism

compose : ∀α.∀β.∀γ.(β → γ)→ (α→ β)→ α→ γ

≡
def compose (α β γ : Type) (g : β → γ) (f : α → β) (x

: α) : γ :=
g (f x)



Type System
λP - Dependent Types

foo : (Πa : String . B)

≡
def foo (s : String) : Type := match s with

| "String" => String
| "Nat" => Nat
| _ => Bool



Type System
λω - (inductive) Type Constructors

inductive Maybe (α : Type u) where
| just : α -> Maybe α
| nothing : Maybe α

def isJust (α : Type u) (a : Maybe α) : Bool :=
match a with
| Maybe.just _ => true
| _ => false



Type System
Universes

▶ Infinite hierarchy of universes
▶ Each type therein is denoted by Type (u : Nat)

▶ Type is syntactic sugar for Type 0

▶ Int Nat Bool . . . : Type

▶ A “special” type: Prop : Type



Type System
Universes

▶ Infinite hierarchy of universes
▶ Each type therein is denoted by Type (u : Nat)

▶ Type is syntactic sugar for Type 0

▶ Int Nat Bool . . . : Type

▶ A “special” type: Prop : Type



Type System
Universes

▶ Infinite hierarchy of universes
▶ Each type therein is denoted by Type (u : Nat)

▶ Type is syntactic sugar for Type 0

▶ Int Nat Bool . . . : Type

▶ A “special” type: Prop : Type



Theorem Proving

▶ Propositions are encoded with Prop : Type

▶ Prop is closed under the arrow constructor

-- the Proposition Type
variable (a b c : Prop)

-- useful Type Constructors
#check a ∧ b -- Prop
#check a ∨ b -- Prop



Theorem Proving

▶ Propositions are encoded with Prop : Type

▶ Prop is closed under the arrow constructor

-- the Proposition Type
variable (a b c : Prop)

-- useful Type Constructors
#check a ∧ b -- Prop
#check a ∨ b -- Prop



Theorem Proving

Proof a proposition by finding a suitable term.
variable {p : Prop}
variable {q : Prop}

-- proof a theorem by providing a term of its type
theorem t1 : p → q → p := fun hp : p => fun hq : q => hp

NOTE: theorem is logically equivalent to def.



Theorem Proving

Proof a proposition by finding a suitable term.
variable {p : Prop}
variable {q : Prop}

-- proof a theorem by providing a term of its type
theorem t1 : p → q → p := fun hp : p => fun hq : q => hp

NOTE: theorem is logically equivalent to def.



Theorem Proving

With axiom name : proposition we define axioms.

variable {p : Prop}
variable {q : Prop}

theorem t1 (hp : p) (hq : q) : p := hp

-- define an axiom
axiom myaxiom : p

-- Modus Ponens corresponds to β-reduction
theorem t2 : q → p := t1 myaxiom



Theorem Proving

With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}

theorem t1 (hp : p) (hq : q) : p := hp

-- define an axiom
axiom myaxiom : p

-- Modus Ponens corresponds to β-reduction
theorem t2 : q → p := t1 myaxiom



Theorem Proving

With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}

theorem t1 (hp : p) (hq : q) : p := hp

-- define an axiom
axiom myaxiom : p

-- Modus Ponens corresponds to β-reduction
theorem t2 : q → p := t1 myaxiom



Theorem Proving

With axiom name : proposition we define axioms.
variable {p : Prop}
variable {q : Prop}

theorem t1 (hp : p) (hq : q) : p := hp

-- define an axiom
axiom myaxiom : p

-- Modus Ponens corresponds to β-reduction
theorem t2 : q → p := t1 myaxiom



Theorem Proving

We define further theorems.
variable {p : Prop}
variable {q : Prop}

-- define an and introduction rule
theorem and_intro : p -> q -> p ∧ q :=

fun hp hq => ⟨hp, hq⟩

-- define and symmetry rule
theorem and_symmetry (h : p ∧ q) : q ∧ p := and_intro

h.right h.left



Theorem Proving

We define further theorems.
variable {p : Prop}
variable {q : Prop}

-- define an and introduction rule
theorem and_intro : p -> q -> p ∧ q :=

fun hp hq => ⟨hp, hq⟩

-- define and symmetry rule
theorem and_symmetry (h : p ∧ q) : q ∧ p := and_intro

h.right h.left



Theorem Proving
Tactics

Additionally, Lean has a tactics mode
theorem program_mode (p q : Prop) (hp : p) (hq : q) : p ∧

q :=
And.intro hp hq

theorem tactics_mode (p q : Prop) (hp : p) (hq : q) : p ∧
q := by

apply And.intro
exact hp
exact hq



Theorem Proving
Tactics

Additionally, Lean has a tactics mode
theorem program_mode (p q : Prop) (hp : p) (hq : q) : p ∧

q :=
And.intro hp hq

theorem tactics_mode (p q : Prop) (hp : p) (hq : q) : p ∧
q := by

apply And.intro
exact hp
exact hq



Demo

Proving (Part 1)



Theorem Proving
Implementing Proposition Constructors

Propositions are implemented using inductive types.
inductive False : Prop

inductive True : Prop where
| intro : True

inductive And (a b : Prop) : Prop where
| intro : a → b → And a b

inductive Or (a b : Prop) : Prop where
| inl : a → Or a b
| inr : b → Or a b

inductive Exists {α : Type u} (q : α → Prop) : Prop where
| intro : ∀ (a : α), q a → Exists q
-- ∃ x : α, p is syntactic sugar for
-- Exists (fun x : α => p)



Theorem Proving
Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where
| zero : Nat
| succ : Nat → Nat

#check @Nat.rec
: {motive : Nat → Sort u}
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ (t : Nat) → motive t

#check @Nat.recOn
: {motive : Nat → Sort u}
→ (t : Nat)
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ motive t



Theorem Proving
Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where
| zero : Nat
| succ : Nat → Nat

#check @Nat.rec
: {motive : Nat → Sort u}
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ (t : Nat) → motive t

#check @Nat.recOn
: {motive : Nat → Sort u}
→ (t : Nat)
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ motive t



Theorem Proving
Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where
| zero : Nat
| succ : Nat → Nat

#check @Nat.rec
: {motive : Nat → Sort u}
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ (t : Nat) → motive t

#check @Nat.recOn
: {motive : Nat → Sort u}
→ (t : Nat)
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ motive t



Theorem Proving
Induction

Inductive types have an inductive type definition:

Type.rec and Type.recOn

inductive Nat where
| zero : Nat
| succ : Nat → Nat

#check @Nat.rec
: {motive : Nat → Sort u}
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ (t : Nat) → motive t

#check @Nat.recOn
: {motive : Nat → Sort u}
→ (t : Nat)
→ motive Nat.zero
→ ((n : Nat) → motive n → motive (Nat.succ n))
→ motive t



Demo

Proving (Part 2)



References I

Lean Manual.
https://leanprover.github.io/lean4/doc/.
[Online; accessed 13-Jun-2022].

Theorem Proving in Lean 4.
https:
//leanprover.github.io/theorem_proving_in_lean4/.
[Online; accessed 13-Jun-2022].

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van
Doorn, and Jakob von Raumer.
The lean theorem prover (system description).
In International Conference on Automated Deduction, pages
378–388. Springer, 2015.

https://leanprover.github.io/lean4/doc/
https://leanprover.github.io/theorem_proving_in_lean4/
https://leanprover.github.io/theorem_proving_in_lean4/


References II

Leonardo de Moura and Sebastian Ullrich.
The lean 4 theorem prover and programming language.
In International Conference on Automated Deduction, pages
625–635. Springer, 2021.



Thank you for your attention!


