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Introduction

Agda is

• a dependently typed functional programming language
• an interactive system for writing and checking proofs
• based on Martin-Löf’s intuitionistic type theory
• a total language
• implemented in Haskell
• primarily designed to be a programming language

It has an Emacs interface which assists the programmer in writing
the program.
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Programming with Dependent
Types



Syntax for Dependent Types

For the product type
Πx : A.B

we write
(x : A) → B.

Instead of ? and �, a sort system is used

Set0 ∈ Set1 ∈ Set2 ∈ · · ·

where the sort Set is an abbreviation of Set0 and contains the
so-called small types.
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Polymorphism

How to emulate polymorphism with dependent types?

• no type variables in Agda
• no full polymorphism in the sense of λ2
• no ?, but sorts Seti

Instead of

id : 'a -> 'a

we define

id : (A : Set) -> A -> A
id A x = x
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Implicit Arguments

• in Agda, type inference is undecidable
• types have to be stated explicitly
• for easy cases, it is possible to leave out information
• implicit arguments do not have to be supplied

id : {A : set} -> A -> A
id x = x

In simple enough cases, we can therefore use polymorphism as in
Hindley-Milner type systems.
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Vectors of Length n

With a type of vectors of a given length

data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (succ n)

we can define safe versions of head and tail:

head : {A : Set} {n : Nat} -> Vec A (succ n) -> A
head (x :: _) = x

tail : {A : Set} {n : Nat} ->
Vec A (succ n) -> Vec A n

tail (_ :: xs) = xs
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Vectors of Length n (cont’d)

With a data type for pairs

data _X_ (A B : Set) : Set where
<_,_> : A -> B -> A X B

we can also define a version of zip which type checks iff both
arguments have the same length:

zip : {A B : Set} {n : Nat} ->
Vec A n -> Vec B n -> Vec (A X B) n

zip [] [] = []
zip (x :: xs) (y :: ys) = < x , y > :: zip n xs ys
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Propositions as Types in Agda



Short recap

• in intuitionistic logic, a proposition is interpreted as the set of
its proofs

• furthermore, a proposition is true iff a proof exists
• according to the Curry-Howard correspondence, a (functional)
program is just a proof of its type

• and computation corresponds to proof normalization

In the following, we show that untyped intuitionistic predicate logic
with equality can be realized in Agda.
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The connective ∧

data _/\_ (A B : Set) : Set where
<_,_> : A -> B -> A /\ B

The constructor is the introduction rule and the two elimination
rules are defined as follows:

fst : {A B : Set} -> A /\ B -> A
fst < a , b > = a

snd : {A B : Set} -> A /\ B -> B
snd < a , b > = b
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The connective ∨

data _\/_ (A B : Set) : Set where
inl : A -> A \/ B
inr : B -> A \/ B

The two constructors are the introduction rules, the elimination rule
is defined as follows:

case : {A B C : Set} -> A \/ B ->
(A -> C) -> (B -> C) -> C

case (inl a) d e = d a
case (inr b) d e = e b
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The constants > and ⊥

> is always provable (by the unit element <>) and ⊥ has no proof,
therefore the corresponding set of programs is empty.

data True : Set where
<> : True

data False : Set where

⊥-elimination states that if we derived ⊥, everything follows. Since
there is no way to construct an element of type ⊥, there is nothing to
define.

nocase : {A : Set} -> False -> A
nocase ()

10



The connectives→ and ∧

As in the λ-calculus, we obtain the properties of→ simply by
function abstraction and application.

Hence, we use Agda’s built-in -> for→.

Furthermore, we can define ¬φ ≡ φ → ⊥, so

Not : Set -> Set
Not A = A -> False
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Universal quantification

Since Agda uses dependent types, ∀-introduction and ∀-elimination
are just dependent function abstraction/application:

Forall : (A : Set) -> (B : A -> Set) -> Set
Forall A B = (x : A) -> B x
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Existential quantification

The BHK interpretation states that a proof of ∃x : A.B consist of an
element a : A together with a proof B[x := a]:

data Exists (A : Set) (B : A -> Set) : Set where
[_,_] : (a : A) -> B a -> Exists A B

From the elimination rules, the witness and the corresponding proof
can be obtained:

dfst : {A : Set} {B : A -> Set} -> Exists A B -> A
dfst [ a , b ] = a

dsnd : {A : Set} {B : A -> Set} ->
(p : Exists A B) -> B (dfst p)

dsnd [ a , b ] = b
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Equality

Equality introduction is quite simple:

data _==_ {A : Set} : A -> A -> Set where
refl : (a : A) -> a == a

The elimination rule allows to substitute equals for equals:

subst : {A : Set} -> {C : A -> Set} -> {a' a'' : A} ->
a' == a'' -> C a' -> C a''

subst (refl a) c = c
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An Example



The with Construct

We write

f p with d
... | q1 = e1

:
... | qn = en

to perform an exhaustive pattern match on d where q1 – qn are the
patterns.

This construct is not a basic type-theoretic construct and we do not
look into the implementation details.
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Sorted Binary Trees with Correctness Proof

See live demo
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Further Reading

This presentation is largely based on Dependent Types at Work by
Ana Bove and Peter Dybjer.

More detailed information can be found here:

• The Agda Wiki
• Ulf Norell’s PhD thesis
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https://www.cse.chalmers.se/~peterd/papers/DependentTypesAtWork.pdf
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf


Questions?
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