
ACL2
Interactive Theorem Proving

Michael Plattner

Introduction

What is ACL2

ACL2 is a logic and programming language in which you can model computer
systems, together with a tool to help you prove properties of those models.
"ACL2" denotes "A Computational Logic for Applicative Common Lisp".

Common Lisp

• logic of ACL2 is based on Common Lisp

• Common Lisp is the standard list processing programming language

• ACL2 formalizes only a subset of Common Lisp

1

Applications

Formal Verification

• tools to formally verify hardware and software systems

• augmenting traditional testing with proof

• interactive theorem provers

Organisation

• IBM - floating point divide and square root

• AMD - verify floating point operations with IEEE 754

• Sun Java Virtual Machine - bytecode verifier

2

Logic of ACL2

Mathematical Logic

• formal system of formulas (axioms) and rules

• deriving theorems

• proof is a derivation of a theorem with a proof tree

According to ACL2, some strengths among ITPs

• proof automation

• proof debugging utilities

• Fast execution

• Documentation

3

Basic ACL2 Demo

(+ 3 4)

(defun f (x)

(+ x 10))

(f 3)

(* (f 0) (f 1))

(cons 1 (cons 2 nil))

'(1 2)

(consp '(1 2))

(car '(1 2))

(cdr '(1 2))

7

Since F is non-recursive,

its admission is trivial....

13

110

(1 2)

(1 2)

T

1

(2)

4

http://new.proofpad.org/

ACL2 Demo

(defun app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

(app '(1 2) '(a b c))

(app '(1 2)

(app '(a b c) '(4 5)))

(app (app '(1 2) '(a b c))

'(4 5))

(thm

(equal (app (app x y) z)

(app x (app y z))))

The admission of APP is trivial,

using the relation O< ...

(1 2 A B C)

(1 2 A B C 4 5)

(1 2 A B C 4 5)

*1 (the initial Goal, a key checkpoint) is pushed for proof by induction.

5

Guiding proofs

• Q is important lemma to prove P

• user first proves Q

• Q is found by failed prove of P

6

Rules

Theorem

• proven theorem converted into one or more rules

• stored in a database

• proving theorems leads to control over ACL2s automation

• rewrite rule is most common rule

7

ACL2 System architecture

8

Demo 2

(include-book "arithmetic/top" ; include a "community book"

:dir :system)

(defthm sum-to-n-rewrite ; Prove and store a rewrite rule

; to replace sum-to-n(n) by n(n+1)/2.

(implies (natp n)

(equal (sum-to-n n)

(/ (* n (+ n 1))

2))))

(thm ; proof succeeds immediately

(implies (natp k)

(equal (sum-to-n (* 2 k))

(* k (+ (* 2 k) 1)))))

9

Logical Foundations

Logic

• first-order logic with induction

• ACL2 theories extend a given ground-zero theory

• peano arithmetic with ϵ− 0 induction

• extended with data types

five common Lisp datatypes

• the precisely represented, unbounded numbers (integers, rationals, and the
complex numbers with rational components)

• the characters with ASCII codes between 0 and 255

• strings of such characters

• symbols (including packages)

• conses (closure under a pairing operation)
10

Evolving Theories

Conservative extensions

Suppose theory T1 extends theory T0 . Then T1 is a conservative extension of
theory T0 if every theorem of T1 in the language of T0 is a theorem of T0 .

ACL2 extensions

• ACL2 extensions are by definition conservative

• even recursive definitions, because termination has to be proven

New concepts

• sometimes new concepts for proofs needed

• also program verification may need additional concepts

• must be done conservatively in order to believe results

11

Thank you for your attention!

Michael Plattner

Formal Verification

Translator

• using a translator → map programs to acl2 functions

• called shallow embedding

Interpreter

• run instruction for a number of calls

• called deep embedding

(defun mc (s n)

(if (zp n) ; n is 0

s (mc (single-step s) (- n 1)))) ; run one instruction

1

Hardware verification

2

Hardware verification

3

Hardware verification

(lookup 'z (mc (s 'mult 5 7) 29)) ; ACL2 computes 35

4

Hardware verification

(lookup 'z (mc (s 'mult 5 y) 29)) ; we get (+ y y y y y).

5

Hardware verification

Theorem. MC 'mult is a multiplier

(implies (and (natp x)

(natp y))

(equal (lookup 'z (mc (s 'mult x y) (mclk x)))

(* x y))).

6

ACL2 Online Manual
Link

ACL2 Intro
Link

Implementation of a Computational Logic
Link

7

https://www.cs.utexas.edu/users/moore/acl2/v8-4/combined-manual/index.html?topic=ACL2____TOP
https://www.cs.utexas.edu/users/kaufmann/talks/acl2-intro-2015-04/acl2-intro.pdf
https://www.cs.utexas.edu/users/kaufmann/talks/acl2-for-logicians/acl2-comp-logic.pdf

	Bookmark Title
	Overview
	Introduction
	Basic ACL2 Demo
	Proofs and rules
	Demo 02
	Logical Foundations

	Thanks
	Appendix

