Lastname: _____

Firstname: _____

Matriculation Number:

Exercise	Points	Score
Single Choice (20 minutes)	12	
Well-Definedness of Functional Programs (45 minutes)	34	
Verification of Functional Programs (40 minutes)	30	
Verification of Imperative Programs (35 minutes)	24	
Σ	100	

- The intended time for a regular paper exam would be 100 minutes, so 1 point = 1 minute. Because of the sequentiality of the exam, extra-time was added for each exercise.
- The available points per exercise are written in the margin.
- Write on the printed exam and use extra blank sheets if more space is required.
- Your answers can be written in English or German.
- Upload the solution for each exercise as a single PDF-file into OLAT. Use convert or similar programs to combine multiple images into one PDF, if required.

Exercise 1: Single Choice (20 minutes)

For each statement indicate whether it is true (\checkmark) or false (\bigstar). Giving the correct answer is worth 3 points, giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

- 1. ____ Well-definedness of functional programs is undecidable.
- 2. ____ A calculus \vdash is complete w.r.t. some semantic property \models if and only if it is satisfied, that for all formulas φ , whenever $\vdash \varphi$ then $\models \varphi$.
- 3. Consider a functional program and let P be a set of dependency pairs, all having the shape $f^{\sharp}(\ldots) \rightarrow f^{\sharp}(\ldots)$. Whenever the set of usable equations of P is non-empty, then the subterm-criterion cannot be applied on P, i.e., it will not be possible to delete any pair of P.
- 4. ____ The algorithm for pattern disjointness invokes the unification algorithm.

Exercise 2: Well-Definedness of Functional Programs (45 minutes)

Consider the following functional program that implements quick-sort.

data Nat = Zero : Nat	(1)	
$ $ Succ : Nat \rightarrow Nat	(2)	
data List = Nil : List	(3)	
$ $ Cons : Nat $ imes$ List \rightarrow List	(4)	
append(Nil, xs) = xs	(5)	
append($Cons(x, xs), ys$) = $Cons(x, append(xs, ys))$	(6)	
expected (cons(w,wo), go) = cons(w, uppend(wo, go)) expected (cons(w,wo)) = True	(7)	
le(Succ(x), Zero) = False	(8)	
le(Succ(x), Succ(y)) = le(x, y)	(9)	
first(Pair(xs, ys)) = xs	(0) (10)	
second(Pair(xs, ys)) = ys	(11)	
$add_pair(y, True, Pair(ls, hs)) = Pair(Cons(y, ls), hs)$	(11) (12)	
$\operatorname{add}_{\operatorname{pair}}(y,\operatorname{False},\operatorname{Pair}(ls,hs)) = \operatorname{Pair}(ls,\operatorname{Cons}(y,hs))$	(12) (13)	
partition(x, Nil) = Pair(Nil, Nil)	(10) (14)	
$partition(x, Cons(y, ys)) = add_pair(y, le(y, x), partition(x, ys))$	(11) (15)	
$q_sort(Nil) = Nil$	(16)	
$q_sort(Cons(x, xs)) = append(q_sort(first(partition(x, xs))), Cons(x, q_sort(second(partition(x, xs)))))$ (17)		

(a) Complete missing type informations in the program:

- Add missing data type definitions via data.
- $\bullet\,$ Provide a suitable type for each of the functions first, add_pair, partition, and q_sort.

The result should be a well-defined functional program – assuming suitable types for the other functions le, append, second in the program.

34

VO Program Verification	Exam 1	June 23, 2021

(b) Compute all dependency pairs of add_pair, partition and q_sort. Indicate which of these pairs can be removed by the subterm-criterion. (8)

(c) Compute the set of usable equations w.r.t. the dependency pairs of q_sort^{\sharp} . It suffices to mention the indices of the equations. (6)

(d) Prove termination of q-sort by completing the following polynomial interpretation p.

$$p_{q_sort^{\sharp}}(xs) = xs$$

$$p_{Cons}(x, xs) = 1 + xs$$

$$p_{Nil} = 0$$

Hints:

- You only need numbers 0 and 1 in the polynomial interpretation.
- Use intuition and don't try to compute the constraints symbolically.
- It makes sense to start filling in suitable interpretations by looking at the constraints of the dependency pairs for q_sort^{\sharp} first, and then look at the constraints of the usable equations from the previous part.

Exercise 3: Verification of Functional Programs (40 minutes)

Consider the following functional program on natural numbers and Booleans.

 $\begin{aligned} \mathsf{plus}(\mathsf{Zero}, y) &= y\\ \mathsf{plus}(\mathsf{Succ}(x), y) &= \mathsf{plus}(x, \mathsf{Succ}(y))\\ \mathsf{even}(\mathsf{Zero}) &= \mathsf{True}\\ \mathsf{even}(\mathsf{Succ}(\mathsf{Zero})) &= \mathsf{False}\\ \mathsf{even}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{even}(x) \end{aligned}$

Prove that the formula

 $\forall x. \operatorname{even}(\operatorname{plus}(x, x)) =_{\mathsf{Bool}} \operatorname{True}$

is a theorem in the standard model by using induction and equational reasoning via \sim .

- Briefly state on which variable(s) you perform induction, and which induction scheme you are using.
- Write down each case explicitly and also write down the IH that you get, including quantifiers.
- You will need at least one further auxiliary property. Write down this property and prove it in the same way in that you have to prove the main property.
- You may write just b instead of $b =_{\mathsf{Bool}} \mathsf{True}$ within your proofs. For example, the property you have to prove can be written just as $\forall x. \mathsf{even}(\mathsf{plus}(x, x)).$

page 7 of 9

cise 4: Verification of Imperative Programs (35 minutes) ider the following program P where at the end x will store the logarithm of z w.r.t. basis b .
0; 1; e (y < z) { := x + 1; := y * b;
Construct a proof tableau for proving partial correctness. Here, we only consider that an upper-bou of the logarithm is computed: $b^x \ge z$. (b > 0)
x = 0;
y = 1;
while (y < z) {
x := x + 1;
y : = y * b;
}

(| b^x >= z |)

The program terminates whenever $b > 1$ and a suitable variant e to prove termination is $max(z - y, 0)$. Complete the proof tableau below to prove termination formally. Hint: In order to prove that the variant	(
decreases in every loop iteration, you will have to find an invariant on b and y such that $y < y \cdot b.$ (b > 1)	
x = 0;	
y = 1;	
while (y < z) {	
x := x + 1;	

y : = y * b;

}