Last Name: \qquad
First Name: \qquad
Matriculation Number:

Exercise	Points	Score
Single Choice	6	
Well-Definedness of Functional Programs	31	
Verification of Functional Programs	36	
Verification of Imperative Programs	27	
\sum	100	

- The time limit for the exam is 100 minutes, so 1 point $=1$ minute.
- The available points per exercise are written in the margin.
- Write on the printed exam for Exercises 1 and 4 and use blank sheets for the rest.
- Your answers can be written in English or German.

Exercise 1: Single Choice

For each statement indicate whether it is true $(\boldsymbol{\checkmark})$ or false (\boldsymbol{X}). Giving the correct answer is worth 3 points, giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).
\qquad The property that a functional program P is well-defined is a necessary criterion to ensure that the semantics of P is well-defined.
2. \qquad Whenever termination of a functional program can be proven solely by the subterm criterion, then termination can also be proven solely by the size-change principle.

Exercise 2: Well-Definedness of Functional Programs

Consider the following functional program where shuffle converts binary trees into lists and shuffles the order of the elements.

$$
\begin{align*}
\operatorname{append}(\operatorname{Nil}, x s) & =x s \tag{1}\\
\operatorname{append}(\operatorname{Cons}(x, x s), y s) & =\operatorname{Cons}(x, \operatorname{append}(x s, y s)) \tag{2}\\
\operatorname{mirror}(\operatorname{Leaf}) & =\operatorname{Leaf} \tag{3}\\
\operatorname{mirror}(\operatorname{Node}(\ell, x, r)) & =\operatorname{Node}(\operatorname{mirror}(r), x, \operatorname{mirror}(\ell)) \tag{4}\\
\operatorname{shuffle}(\operatorname{Node}(\ell, x, r)) & =\operatorname{append}(\operatorname{shuffle}(\operatorname{mirror}(r)), \operatorname{Cons}(x, \operatorname{shuffle}(\operatorname{mirror}(\ell)))) \tag{5}
\end{align*}
$$

(a) Turn the program into a well-defined functional program (without considering termination).

- Add all missing data type definitions via data.

Note: there is no unique solution.

- Provide a suitable type for the functions mirror and shuffle, assuming a suitable type for append.
- If the program is not pattern-disjoint or not pattern-complete, then modify the equations and/or add new equations to obtain a pattern-disjoint and pattern-complete program.
(b) Compute all dependency pairs of mirror and shuffle. Indicate which of these pairs can be removed by
the subterm-criterion.
(c) Compute the set of usable equations w.r.t. the dependency pairs of shuffle ${ }^{\sharp}$. It suffices to mention the
indices of the equations.
(d) Prove termination of shuffle by completing the following polynomial interpretation p.

Exercise 3: Verification of Functional Programs
Consider the following functional program on natural numbers and lists of natural numbers, where the wellknown data-type definitions for Nat and List have been omitted. Observe that the definition of plus is not the standard one.

$$
\begin{aligned}
\operatorname{plus}(x, \text { Zero }) & =x \\
\operatorname{plus}(x, \operatorname{Succ}(y)) & =\operatorname{plus}(\operatorname{Succ}(x), y) \\
\operatorname{sumlist}(\text { Nil }) & =\text { Zero } \\
\operatorname{sumlist}(\operatorname{Cons}(x, x s)) & =\operatorname{plus}(x, \operatorname{sumlist}(x s)) \\
\operatorname{listsum}(\text { Nil }) & =\text { Zero } \\
\operatorname{listsum}(\operatorname{Cons}(x, \text { Nil })) & =x \\
\operatorname{listsum}(\operatorname{Cons}(x, \operatorname{Cons}(y, x s))) & =\operatorname{listsum}(\operatorname{Cons}(\operatorname{plus}(x, y), x s))
\end{aligned}
$$

Prove that the formula

$$
\begin{equation*}
\forall x s . \text { listsum }(x s)=N_{\text {Nat }} \text { sumlist }(x s) \tag{A}
\end{equation*}
$$

is a theorem in the standard model by using induction and equational reasoning via \rightsquigarrow.

- Briefly state on which variable(s) you perform induction, and which induction scheme you are using.
- Write down each case explicitly and also write down the IH that you get, including quantifiers.
- Write down each single \rightsquigarrow-step in your proof.
- You will need one further auxiliary property (B). Write down this property and prove it in the same way as it is required for formula (A). Only exception: if you need further auxiliary properties for proving (B), then just state these properties without proving them.

Exercise 4: Verification of Imperative Programs
Consider the following program P that computes the division of x by y, i.e., the quotient q and the remainder r is computed such that $x=q \cdot y+r \wedge r<y$ should be satisfied.

```
q := 0;
while (x >= y) {
    q := q + 1;
    x := x - y;
}
r := x;
```

(a) Formulate pre- and post-conditions that state partial correctness of P.
\qquad
\qquad
(b) Construct a proof tableau for proving partial correctness.
\qquad
\qquad
$\mathrm{q}:=0 ;$
\qquad
while (x >= y) \{
\qquad
\qquad
$\mathrm{q}:=\mathrm{q}+1$;
\qquad
$\mathrm{x}:=\mathrm{x}-\mathrm{y}$;
\qquad
\}
\qquad
\qquad
r : $=x$;
(c) Find a reasonable precondition that ensures termination and complete the proof tableau for proving termination formally.
\qquad
\qquad
$\mathrm{q}=0 ;$
\qquad
while ($\mathrm{x}>=\mathrm{y}$) \{
\qquad
\qquad
$\mathrm{q}:=\mathrm{q}+1$;
\qquad
$\mathrm{x}:=\mathrm{x}-\mathrm{y}$;
\qquad
\}
(* the part after the while-loop should be omitted *)

Here is another blank template that can be used for a second attempt of either (b) or (c). If you use this template, please clearly indicate which of your solutions should (not) be graded.
\qquad
\qquad
q : = 0;
\qquad
while (x >= y) \{
\qquad
\qquad
$\mathrm{q}:=\mathrm{q}+1$;
$\mathrm{x}:=\mathrm{x}-\mathrm{y}$;
\qquad
\}
\qquad
\qquad
r := x;

