
VO Program Verification
LVA 703083

Exam 1 July 1, 2022

Last Name:

First Name:

Matriculation Number:

Exercise Points Score

Single Choice 6

Well-Definedness of Functional Programs 31

Verification of Functional Programs 36

Verification of Imperative Programs 27∑
100

• The time limit for the exam is 100 minutes, so 1 point = 1 minute.

• The available points per exercise are written in the margin.

• Write on the printed exam for Exercises 1 and 4 and use blank sheets for the rest.

• Your answers can be written in English or German.

page 1 of 8

VO Program Verification Exam 1 July 1, 2022

Exercise 1: Single Choice 6
For each statement indicate whether it is true (3) or false (7). Giving the correct answer is worth 3 points,
giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

1. 7 The property that a functional program P is well-defined is a necessary criterion to ensure that
the semantics of P is well-defined.

2. 3 Whenever termination of a functional program can be proven solely by the subterm criterion,
then termination can also be proven solely by the size-change principle.

Exercise 2: Well-Definedness of Functional Programs 31
Consider the following functional program where shuffle converts binary trees into lists and shuffles the order
of the elements.

append(Nil, xs) = xs (1)

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (2)

mirror(Leaf) = Leaf (3)

mirror(Node(`, x, r)) = Node(mirror(r), x,mirror(`)) (4)

shuffle(Node(`, x, r)) = append(shuffle(mirror(r)),Cons(x, shuffle(mirror(`)))) (5)

(a) (10)Turn the program into a well-defined functional program (without considering termination).

• Add all missing data type definitions via data.
Note: there is no unique solution.

• Provide a suitable type for the functions mirror and shuffle, assuming a suitable type for append.

• If the program is not pattern-disjoint or not pattern-complete, then modify the equations and/or
add new equations to obtain a pattern-disjoint and pattern-complete program.

Solution:

data Element = Elem : Element (this could also be Booleans, integers, . . .)

data List = Nil : List | Cons : Element× List→ List

data Tree = Leaf : Tree | Node : Tree× Element× Tree→ Tree

mirror : Tree→ Tree

shuffle : Tree→ List

shuffle(Leaf) = Nil (added equation)

(b) (7)Compute all dependency pairs of mirror and shuffle. Indicate which of these pairs can be removed by
the subterm-criterion.

Solution: The DPs are

mirror](Node(`, x, r))→ mirror](`) (6)

mirror](Node(`, x, r))→ mirror](r) (7)

shuffle](Node(`, x, r))→ shuffle](mirror(`)) (8)

shuffle](Node(`, x, r))→ shuffle](mirror(r)) (9)

Only the dependency pairs of mirror] can be removed by the subterm criterion.

page 2 of 8

VO Program Verification Exam 1 July 1, 2022

(c) (4)Compute the set of usable equations w.r.t. the dependency pairs of shuffle]. It suffices to mention the
indices of the equations.

Solution: Since the two dependency pairs invoke mirror, clearly the two mirror equations (3) and
(4) are usable. However, no further equation is usable.

(d) (10)Prove termination of shuffle by completing the following polynomial interpretation p.

pshuffle](t) = . . .

pmirror(t) = . . .

pNode(`, x, r) = . . .

. . . = . . .

Hints:

• You only need numbers 0 and 1 in the polynomial interpretation.

• Use intuition and don’t try to compute the constraints symbolically.

• It makes sense to start filling in suitable interpretations by looking at the constraints of the de-
pendency pairs for shuffle] first, and then look at the constraints of the usable equations from the
previous part.

Solution: The interpretation of shuffle] can just be the identity, since there is only one argument.
Consequently, Node must be large enough to orient both dependency pairs. Hence, the interpreta-
tion of Node(`, x, r) must be at least ` + r. In order to obtain a strict decrease, it actually must
be at least 1 + ` + r. If we additionally set the interpretation of leafs to 0, then the interpretation
counts the number of nodes in a tree. Since mirror does neither increase nor decrease the number
of nodes, we assign it the identity function. In total this gives rise to:

pshuffle](t) = t

pmirror(t) = t

pNode(`, x, r) = 1 + ` + r

pLeaf = 0

For this interpretation indeed all dependency pairs of shuffle] are oriented strictly and the usable
equations weakly. Hence, termination is proven.

page 3 of 8

VO Program Verification Exam 1 July 1, 2022

Exercise 3: Verification of Functional Programs 36
Consider the following functional program on natural numbers and lists of natural numbers, where the well-
known data-type definitions for Nat and List have been omitted. Observe that the definition of plus is not
the standard one.

plus(x,Zero) = x

plus(x, Succ(y)) = plus(Succ(x), y)

sumlist(Nil) = Zero

sumlist(Cons(x, xs)) = plus(x, sumlist(xs))

listsum(Nil) = Zero

listsum(Cons(x,Nil)) = x

listsum(Cons(x,Cons(y, xs))) = listsum(Cons(plus(x, y), xs))

Prove that the formula

∀xs. listsum(xs) =Nat sumlist(xs) (A)

is a theorem in the standard model by using induction and equational reasoning via .

• Briefly state on which variable(s) you perform induction, and which induction scheme you are using.

• Write down each case explicitly and also write down the IH that you get, including quantifiers.

• Write down each single -step in your proof.

• You will need one further auxiliary property (B). Write down this property and prove it in the same way
as it is required for formula (A). Only exception: if you need further auxiliary properties for proving
(B), then just state these properties without proving them.

Solution:

We first prove associativity of addition which is the mentioned auxiliary property (B).

∀x, y, z. plus(plus(x, y), z) =Nat plus(x, plus(y, z)) (B)

Here, we perform structural induction on z for arbitrary x and y.

• case Zero:
There is no IH and we derive:

plus(plus(x, y),Zero) =Nat plus(x, plus(y,Zero))

 plus(x, y) =Nat plus(x, plus(y,Zero))

 plus(x, y) =Nat plus(x, y)

 true

• case Succ(z):
The IH is ∀x, y. plus(plus(x, y), z) =Nat plus(x, plus(y, z)) and we derive:

plus(plus(x, y),Succ(z)) =Nat plus(x, plus(y,Succ(z)))

 plus(Succ(plus(x, y)), z) =Nat plus(x, plus(y,Succ(z)))

 plus(Succ(plus(x, y)), z) =Nat plus(x, plus(Succ(y), z))

IH
 plus(Succ(plus(x, y)), z) =Nat plus(plus(x, Succ(y)), z)

 plus(Succ(plus(x, y)), z) =Nat plus(plus(Succ(x), y), z)

page 4 of 8

VO Program Verification Exam 1 July 1, 2022

and here we get stuck, since we have to show that a Succ can be moved outside a plus. To this
end we use the auxiliary property

∀x, y. plus(Succ(x), y) =Nat Succ(plus(x, y)) (C)

to continue this case of the inductive proof

plus(Succ(plus(x, y)), z) =Nat plus(plus(Succ(x), y), z)

(C)
 plus(Succ(plus(x, y)), z) =Nat plus(Succ(plus(x, y)), z)

 true

We finally prove (A) by induction on xs using induction w.r.t. the algorithm listsum.

• case Nil:
There is no IH and we derive:

listsum(Nil) =Nat sumlist(Nil)

 Zero =Nat sumlist(Nil)

 Zero =Nat Zero

 true

• case Cons(x,Nil):
There is no IH and we derive:

listsum(Cons(x,Nil)) =Nat sumlist(Cons(x,Nil))

 x =Nat sumlist(Cons(x,Nil))

 x =Nat plus(x, sumlist(Nil))

 x =Nat plus(x,Zero)

 x =Nat x

 true

• case Cons(x,Cons(y, xs)):
The IH is listsum(Cons(plus(x, y), xs)) =Nat sumlist(Cons(plus(x, y), xs)) and we derive:

listsum(Cons(x,Cons(y, xs))) =Nat sumlist(Cons(x,Cons(y, xs)))

 listsum(Cons(plus(x, y), xs)) =Nat sumlist(Cons(x,Cons(y, xs)))

IH
 sumlist(Cons(plus(x, y), xs)) =Nat sumlist(Cons(x,Cons(y, xs)))

 plus(plus(x, y), sumlist(xs)) =Nat sumlist(Cons(x,Cons(y, xs)))

 plus(plus(x, y), sumlist(xs)) =Nat plus(x, sumlist(Cons(y, xs)))

 plus(plus(x, y), sumlist(xs)) =Nat plus(x, plus(y, sumlist(xs)))

(B)
 plus(x, plus(y, sumlist(xs))) =Nat plus(x, plus(y, sumlist(xs)))

 true

Here, without property (B) we would get stuck and could not apply the
(B)
 -step.

page 5 of 8

VO Program Verification Exam 1 July 1, 2022

Exercise 4: Verification of Imperative Programs 27
Consider the following program P that computes the division of x by y, i.e., the quotient q and the remainder
r is computed such that x = q · y + r ∧ r < y should be satisfied.

q := 0;

while (x >= y) {

q := q + 1;

x := x - y;

}

r := x;

(a) (3)Formulate pre- and post-conditions that state partial correctness of P .

Solution: Since x is modified during the execution, we have to store the initial value of x in a
logical variable, here: x0.

(| x0 = x |) P (| x0 = q * y + r ∧ r < y |)

(b) (12)Construct a proof tableau for proving partial correctness.

(| x0 = x |)

(| x0 = 0 * y + x |)

q := 0;

(| x0 = q * y + x |)

while (x >= y) {

(| x0 = q * y + x ∧ x >= y |)

(| x0 = (q + 1) * y + (x - y) |)

q := q + 1;

(| x0 = q * y + (x - y) |)

x := x - y;

(| x0 = q * y + x |)

}

(| x0 = q * y + x ∧ ! (x >= y) |)

(| x0 = q * y + x ∧ x < y |)

r := x;

(| x0 = q * y + r ∧ r < y |)

page 6 of 8

VO Program Verification Exam 1 July 1, 2022

(c) (12)Find a reasonable precondition that ensures termination and complete the proof tableau for proving
termination formally.

(| y > 0 |)

(| y > 0 ∧ max(x, 0) >= 0 |)

q = 0;

(| y > 0 ∧ max(x, 0) >= 0|)

while (x >= y) {

(| y > 0 ∧ x >= y ∧ e0 = max(x, 0) >= 0 |)

(| y > 0 ∧ e0 > max(x - y, 0) >= 0 |)

q := q + 1;

(| y > 0 ∧ e0 > max(x - y, 0) >= 0 |)

x : = x - y;

(| y > 0 ∧ e0 > max(x, 0) >= 0 |)

}

(* the part after the while-loop should be omitted *)

page 7 of 8

VO Program Verification Exam 1 July 1, 2022

Here is another blank template that can be used for a second attempt of either (b) or (c). If you use
this template, please clearly indicate which of your solutions should (not) be graded.

q := 0;

while (x >= y) {

q := q + 1;

x := x - y;

}

r := x;

page 8 of 8

