
University of Innsbruck
Faculty of Mathematics, Computer Science and Physics

Department of Computer Science

Seminar Report

The Epigram Programming Language

A Comprehensive Overview

by

Ilyas Satik

Matriculation ID.: 12044902

Submission Date: July 15, 2023

Supervisor: assoz. Prof. Dr. Cezary Kaliszyk

Contents

1 Introduction 1

2 Features of Epigram 2

2.1 Unique Type Definition . 2

2.1.1 How to read Epigram code? 2

2.1.2 Advantages of Epigram’s Approach to Type Definitions 3

2.1.3 Disadvantages of Epigram’s Approach to Type Definitions . . 4

2.1.4 Two-Dimensionality Across Programming Languages 4

2.2 Dependent Types and Their Constructors in Epigram 5

2.2.1 Dependent Types in Epigram 5

2.2.2 Structurally Recursive Programming with Dependent Families 6

2.2.3 Heterogeneous Equality in Epigram 6

2.2.4 Unification Constraints and First-Order Terms 7

2.2.5 Mutual Inductive Definitions in Epigram 7

2.3 Interactive Programming in Epigram 7

3 Dedicated Purposes 9

4 Conclusion 10

List of Figures

1 Epigram Code . 3

2 dependent types . 6

3 data definition . 8

4 interactive programming . 8

1 Introduction

Epigram is an intriguing language in the landscape of programming languages. It is a

dependently typed functional programming language developed by Conor McBride

1

and others at the University of Durham and the University of Nottingham. The

initial design of Epigram focused on interactive development, aiming to create an

environment where code and its specifications evolve concurrently.

2 Features of Epigram

Epigram has several unique and non-standard features that set it apart from other

languages. These features largely revolve around the concept of dependent types,

interactive programming, and its unique approach to type definition.

2.1 Unique Type Definition

In Epigram, types are defined interactively and spread over two dimensions, with

parameters and their types specified on the left, and the body of the definition on

the right. This approach has the advantage of providing precise, expressive, and

interactive type definitions. However, it also comes with the downside of a steep

learning curve, potentially verbose notation, efficiency concerns due to extensive

compile-time checks, and a limited ecosystem due to Epigram’s niche status. These

features, while intriguing, do add to the complexity of programming in Epigram.

It requires a different mindset from conventional programming, as well as a strong

understanding of type theory and formal logic.

2.1.1 How to read Epigram code?

1. Data Declaration The code begins by defining the concept of natural numbers

(denoted as Nat). This is done using the data keyword, which starts the

declaration of a new data structure. Here, Nat : * defines the new data

structure Nat. The constructors for this data structure are given in the where

clause: zero and suc n. These represent the number zero and the successor of

the number n, respectively.

2. Let Declaration After defining the Nat data structure, the code creates a

function named plus using a let declaration. This function takes two natural

2

Figure 1: Epigram Code

numbers, x and y, as input and also outputs a natural number.

3. Function Definition Following the function signature, the behaviour of the plus

function is defined. This function uses recursion on the first argument, x, and

pattern matching on x to define addition. If x is zero, the function does not

yet have a defined behaviour (indicated by []). If x is suc n (the successor of

some natural number n), the function calls itself with n (the predecessor of x)

and y, then takes the successor of the result. This mimics the behaviour of

addition: adding n and y, then incrementing the result by one, is equivalent

to adding suc n and y.

4. Inspect Declaration The code concludes with an inspect declaration, which

evaluates the plus function with two instances of suc (suc zero) (which repre-

sents the number 2) as input, expecting a natural number as output. The ?

in suc (suc ?) indicates an unknown value that the user expects to be filled in

by the function’s output. In this case, the expected output would be suc (suc

(suc (suc zero))). McBride (2005b)

2.1.2 Advantages of Epigram’s Approach to Type Definitions

1. Precision Epigram’s two-dimensional notation and dependent types allow for

incredibly precise type definitions. Programmers can specify their intentions

3

clearly and encode sophisticated properties directly into the types, reducing

the chance of runtime errors.

2. Program Verification The strict and expressive type system enables advanced

forms of program verification. You can ensure that the function behaves as

expected for all inputs, which is especially valuable in critical systems where

bugs could have severe consequences.

3. Interactive Development The interactive nature of type definition allows for a

rich dialogue between the developer and the language environment, helping in

understanding the problem better and leading to correct implementations.

2.1.3 Disadvantages of Epigram’s Approach to Type Definitions

1. Learning Curve The syntax and concepts of Epigram, such as dependent types

and interactive programming, are quite different from those in mainstream

languages. It can be challenging to learn, especially for those without a back-

ground in type theory or formal logic.

2. Verbose Notation The explicit nature of type definitions can lead to verbose

and complex code, especially for larger programs. This can be daunting and

may reduce readability.

3. Efficiency Concerns While dependent types provide great safety and correct-

ness guarantees, they may lead to a trade-off with efficiency. The extensive

compile-time checks can slow down the development process.

4. Limited Ecosystem Epigram is a niche language, so it lacks the extensive

libraries, tools, and community support available for more popular languages.

This can make it harder to find resources for learning the language or solving

specific problems.

2.1.4 Two-Dimensionality Across Programming Languages

In the field of programming languages, the majority of mainstream, general-purpose

languages adopt a one-dimensional syntax. Python, while fundamentally adhering

4

to this model, gives a semblance of two-dimensionality due to its syntactical conven-

tions, specifically the use of indentation to delineate blocks of code and the applica-

tion of list comprehensions and nested data structures. Languages like R and MAT-

LAB, primarily used in the scientific and engineering domains, while one-dimensional

in syntax, afford strong support for two-dimensional data structures—data frames

and matrices, which are instrumental in data analysis, statistics, and numerical

computation.

Visual or block-based languages such as Scratch, Blockly, and Max/MSP, on

the other hand, offer a more literal interpretation of two-dimensionality. These

languages utilize a two-dimensional, graphical interface for coding, either through a

block-based or node-based approach, which is visually oriented and typically used

in educational or multimedia contexts, respectively.

Esoteric languages provide an additional perspective. APL and its descendant J

are one-dimensional but use a dense and expressive syntax that might give an im-

pression of two-dimensionality. Whitespace, an esoteric language, interprets various

forms of whitespace as commands, enabling unconventional two-dimensional code

structures.

However, Epigram presents a unique approach to two-dimensionality in program-

ming languages, specifically using a two-dimensional syntax for type definitions.

This is a part of its broader focus on dependent types and interactive program-

ming—an approach that is not commonly found in mainstream languages and that

underscores the innovation and distinctiveness of Epigram.

2.2 Dependent Types and Their Constructors in Epigram

2.2.1 Dependent Types in Epigram

Dependent types, the cornerstone of Epigram’s design, allow types to be predicated

on values, allowing programmers to specify and verify more properties of their code

statically. For example, we can define a type of lists of a given length, or a type of

sorted arrays.

Here, the code defines another data structure, Vec, representing a vector of

5

Figure 2: dependent types

elements of type X and length n. This structure is an example of an inductive

family, a collection of data types defined mutually and systematically, indexed by

other data types (in this case, Nat). The Vec structure has two constructors:

vnil, representing an empty vector, and

vcons, representing the addition of an element x of type X to a vector xs of length

n, resulting in a vector of length suc n (the successor of n). These kinds of depen-

dent types make sense in the context of rigorous specification and proof systems.

They are used extensively in Epigram and have become more widely accepted and

incorporated in languages like Idris and Agda, although they are still considered

quite esoteric in mainstream programming.

2.2.2 Structurally Recursive Programming with Dependent Families

One of Epigram’s key features is its support for structurally recursive programming

with dependent families. These dependent families, or types indexed by values,

allow for a high degree of expressiveness in type definitions. In Epigram, we can

construct the basic apparatus for structurally recursive programming using standard

induction principles and heterogeneous equality.

2.2.3 Heterogeneous Equality in Epigram

Heterogeneous equality is a crucial concept in Epigram. It allows for the comparison

of two elements of potentially different types, where those types are themselves

propositionally equal. This form of equality is more general than homogeneous

6

equality, which only allows the comparison of two elements of the same type. In

the context of dependent types, heterogeneous equality provides a powerful tool for

expressing and proving properties about programs.

2.2.4 Unification Constraints and First-Order Terms

Epigram also represents unification constraints as equational hypotheses, reducing

them where possible. Unification, the process of finding a substitution of types that

makes two types equal, is a key process in type checking and inference in dependently

typed languages. Epigram’s approach to unification is complete for all first-order

terms composed of constructors and variables, providing a robust mechanism for

type inference.

2.2.5 Mutual Inductive Definitions in Epigram

Furthermore, Epigram extends its constructions to mutual inductive definitions,

allowing for the definition of multiple interdependent types. The constructors of one

type can refer to another type and vice versa, enabling the expression of complex

data structures. This feature showcases the power of dependent types in expressing

intricate relationships between data. Conor McBride (2004)

Having explored the intricacies of dependent types and constructors in Epigram,

we can see how these features push the boundaries of what is expressible in a pro-

gramming language. As we transition to our next topic, interactive programming in

Epigram, it’s worth noting that future work in this area will likely explore the adap-

tation of generic functional programming for programs and proofs in Type Theory.

This promises to further enhance the expressiveness and power of dependently typed

languages, and potentially open up new possibilities for interactive programming as

well.

2.3 Interactive Programming in Epigram

Epigram champions a unique style of interactive programming, where the program-

mer and the machine work together to construct a program. This interaction often

7

follows a ”dialogue” format, where the programmer provides partial information,

the machine responds with a transformed context and goals, and the programmer

then continues the dialogue based on this response.

For example, in Epigram, a programmer might start with a function definition

with a hole, like this:

Figure 3: data definition

When implementing the function definition, the programmer’s main task is to

fill in the ”bits in the boxes”, which are the core parts of the function. The rest

of the code, including the type declarations and the structure of the function, is

generated by the machine based on the programmer’s input. This is a key feature

of Epigram and similar languages: the programmer specifies the overall plan for the

function, and the machine helps to implement that plan. This approach can make

the programming process more efficient and help to ensure that the function behaves

as expected. McBride (2005a)

Figure 4: interactive programming

Epigram also supports the development of incomplete programs with unfinished

sections, referred to as ”sheds”. The type checker is forbidden to tread in these

sheds, allowing programmers to develop programs interactively. The machine shows

the available context and the required type wherever the cursor may be.

The interactive development of a program in Epigram is a kind of dialogue. The

system poses the problems—the left-hand sides of programs. Solutions are supplied

8

by filling in the right-hand sides, either by directly giving the program’s output or by

invoking a programming pattern which reduces the problem to subproblems which

are then posed in turn.

Epigram’s approach to meta-variables follows McBride’s OLEG system. Meta

variables represent not only the missing contents of sheds, but also all the unknowns

arising from implicit quantification. The latter is resolved, where possible, by solving

the unification constraints which arise during type checking.

These interactive features, while intriguing, do add to the complexity of program-

ming in Epigram. It requires a different mindset from conventional programming

and a strong understanding of type theory and formal logic. However, the benefits

of this interactive approach include a more direct connection between the program-

mer’s intentions and the resulting program, as well as the ability to develop programs

incrementally with constant feedback from the type checker. McKinna (2006)

3 Dedicated Purposes

The Epigram language was born out of a need for a language that can provide rig-

orous proofs of program correctness, a core tenet of dependent type theory. The

creators aimed to leverage the strength of dependent types and blend it with an

interactive programming model to create a potent environment for program specifi-

cation, development, and verification.

If Epigram were to disappear, programmers in need of the guarantees that Epi-

gram provides would likely gravitate towards other dependently-typed languages like

Idris, Agda, or Coq. These languages also offer rich type systems that can encode

intricate properties of programs, and they share many features and concepts with

Epigram, making them suitable alternatives.

The creators of Epigram did achieve their goal in that they successfully designed

and implemented a language that uses dependent types and interactive programming

to help developers write more correct and reliable code. Epigram has also made

a lasting impact on the field of programming languages by demonstrating novel

concepts and approaches that have since been picked up by other languages.

9

4 Conclusion

Epigram, while relatively esoteric and complex to master, stands as a testament

to the power of type theory and interactive programming in the pursuit of correct

software. Its features, while not standard in the general sense, have nevertheless had

a profound impact on a niche area of programming language design, and continue

to inspire other languages in the realm of dependent types and formal verification.

References

Conor McBride, Healfdene Goguen, J. M. (2004). A Few Constructions on Con-

structors. Springer, Berlin, Heidelberg.

McBride, C. (2005a). Epigram: Practical Programming with Dependent Types.

Springer, Berlin, Heidelberg.

McBride, C. (2005b). The epigram prototype: a nod and two winks. Technical

report, http://www.e-pig.org/.

McKinna, J. (2006). Why dependent types matter. Association for Computing Ma-

chinery.

10

