
Seminar Paper

Go

Author: Patrik Schweigl
Supervisor: Dr. Dohan Kim

Date: July 12, 2023

Department of Computer Science
University of Innsbruck

Abstract

With the rise of modern computing technologies such as distributed
systems and multicore processors and the dominance of networking, and
the fact, that there was no major system language released in a while, the
need for a programming language has become important. This seminar
paper will introduce the programming language Go, a modern, simple and
powerful programming language designed to tackle the challenges from the
21st century.

Contents
1 Introduction 1

2 History 1
2.1 Necessity of Go . 1
2.2 Development of Go . 1
2.3 Current state . 2

3 Language Details 3
3.1 Variables, Types and Functions 3
3.2 Control Flow . 4
3.3 Structs and Custom Types . 5
3.4 Concurrency . 6

3.4.1 Goroutines . 6
3.4.2 Channel . 7

3.5 Generics . 7
3.6 Idiomatic Error handling . 8

4 Go vs. Other Languages 8
4.1 Package Dependencies: C vs. Go 9
4.2 Memory Management: C vs. Java vs. Go 10
4.3 Visibility: C vs. Java vs. Go . 10
4.4 Error handling: C vs. Java vs. Go 11
4.5 Functional Programming in Go 12
4.6 Object-Oriented Programming in Go 12

5 Conclusion 12

6 Literature Review 14

1 Introduction
This paper shows an outline of the programming language Go. In Section 2, we
will give a short summary of the History of Go. We will talk about the birth
of the language, as well as its subsequent growth in popularity. We also give
an overview of its current state of the language. In Section 3 we will explore
the unique characteristics of the programming language Go that sets it apart.
Although Go is a very simple programming language with only a few reserved
keywords, this paper will not provide all features of the language. For those of
you who are interested in learning more about the programming language Go,
you can take a look at the homepage and learn everything about the standard
library [7], the user manual [3] or a guideline for writing effective Go [4]. In
Section 4 we will compare Go with other well-known programming languages.
In the last Section 5 we will give a summarized of Go and I will provide a
personal opinion on Go.

2 History

2.1 Necessity of Go
If we look at the past years, we can see how much the field of technology has
changed. We have seen the rise of multicore processors, networking systems and
massive computation clusters. However, the problems which were introduced
were only worked around instead of solved, making the code less maintainable.
This, and the fact, that the code bases at Google hold tens of millions of lines
of code and are maintained by thousands of developers, led to several issues. To
top that, compilation time was also a factor to not overlook [6].

"Go is a programming language designed by Google to help solve
Google’s problems, and Google has big problems." [6]

With this quote in mind, Google started to think of a new programming
language

2.2 Development of Go
The development of the programming language Go started in late 2007. Robert
Griesemer, Rob Pike and Ken Thompson, three well-known software engineers
at Google, started the design of Go. About half a year later in mid 2008, the
design work was mostly finished and the first implementations, the compiler
and the run-time, started to work. In November 2009, approximately two years
after the design start, Google officially announced Go to the public and made
Go an Open-Source project. Finally, in March 2012, the first stable go1 version
was released [5]. Table 1 shows the brief history of Go as well as some of the
most important releases.

1

Table 1: Brief history of Go
Date Version
2007 design start by Robert Griesemer, Rob Pike and Ken Thompson
2009 public announcement, Open Source
2012 go1.0 - first stable major version
2022 go1.18 - added generics
2023 go1.20 - Current version
2023 go1.21 - next major release planned in Q3

2.3 Current state
Go1.20 is currently the latest version of Go, with go1.21 expected in Q3. Ac-
cording to the official webpage, many companies such as American Express,
Netflix, Twitch, Cloudflare, Dropbox, Docker and many more are using Go.
Even databases like CockroachDB and AresDB from Uber are written in Go [2].

"Seven years along, with a lot of additional core functionality
and a great deal of performance profiling under the bridge, we are
still very happy with Go." [1]

Figure 1: Stack Overflow Survey from 2015 to 2023

2016 2017 2018 2019 2020 2021 2022 2023

5

10

15

0

1.9

4.6

7.1

8.8 8.8

10.51
11.83

14.32

Year%
of

pr
of

es
si

on
al

pa
rt

ic
ip

an
ts

in
Su

rv
ey

If we look onto the annual Stack Overflow Developer Surveys from 2015
to 2022, an increase of popularity of the programming language Go can be
noticed. In the first survey 2015, Go appeared as the 4th most loved pro-
gramming language, ranking behind Swift, C++11 and Rust [8]. Additionally,
Go started to appear as a serious programming language used by professional

2

developers in the survey from 2016. Although the percentage of 2% out of
approximately 26,000 participants is pretty low, this number increased to over
14% out of approximately 67,000 participants over the course of eight years
[8, 9, 10, 11, 12, 13, 14, 15, 16].

3 Language Details
In this chapter we will discuss the basic and the unique features of Go will be
presented. Go is a statically typed, compiled high-level programming language.
It uses a garbage collector to manage the memory automatically. To get started,
we will examine one of the most iconic snippets, known as The Hello, World!.

1 package main
2 import(
3 "fmt"
4)
5 func main() {
6 fmt.Println("Hello, World!")
7 }

Listing 1: Hello, World! Program in Go

The program begins with the package main declaration, which indicates that
this code is part of the main package. Next, we import the "fmt" package, which
we need to provide formatted print function for input and output. The entry
point of the program is the main function. Unlike many other languages like C,
C++ or Java, the main function does not have a parameter list and returns void.
Inside this function, we call the method Println from the package "fmt", which
was imported earlier. The Println function takes the string "Hello, World!" as
a parameter, which will printed out to the console.

3.1 Variables, Types and Functions
In this section we will talk about the fundamental concepts of programming
languages: variables, types and functions. Go is a statically typed language,
that means that the type of every variable must be known at compile time.

1 var myInt int32 = 32 // typed definition
2 var myFloat32 = 64.1234 // type deduction (float64)
3 myString := "Hello" // without var keyword
4 myPointer := &myString // pointer to adress of myString
5
6 const Pi = 3.14159 // constant of type "untyped float"

Listing 2: Definitions of variables

Listing 2 provides some variable definitions we will briefly look at. The first
definition provides beside the name of the variable and the value also the type.

3

This definition is fine, but Go allows defining variables much shorter than shown
in line three and four. Go uses type inference to receive the type from the
assignment. Go also has the pointer type, which we all know from languages
such C and C++, but Go omits the pointer arithmetic.

In line six we define a constant variable named Pi. Constants can be either
characters, strings, boolean or numeric values such int or float. Numeric con-
stants in Go has no type at the beginning, it will get a type, when you perform
explicit conversion or if a function requires a typed variant of it. Constants are
very useful, if you want to perform arithmetic, because they are with arbitrary
precision.

1 func add(a, b int) int {
2 return a + b
3 }
4 func divide(a, b int) (res int, rem int) {
5 res = a / b
6 rem = a % b
7 return
8 }

Listing 3: Definitions of functions

Listing 3 shows two simple definitions of functions. The first function add takes
two parameters, a and b of type int. Note, that a does not have an explicit
type definition. In that case, both parameters are of the same type, so you are
allowed to omit the first type name if the types of the consecutive parameters
are the same. To call this function, simply write out the name and provide the
parameters to it add(10, 12);

The second function divide shows a unique feature of Go, Go allows multiple
return values. They either can be anonymous with an explicit return, or, in our
case, be named. To get the result of the function divide, you have to destructure
it: a, b := divide(5, 2);

Functions in Go often have more than one return value, because in Go errors
are handled as return values, which is shown in 3.6.

3.2 Control Flow
This section provides information about the unique features about the two dif-
ferent constructs to handle control flow, branches and loops. In Go as well as
many other programming languages, there are two ways to handle conditional
branching: the if and switch statement. The syntax of those two constructs
are the same as in C or Java. But they provide extra features, which are shown
in Listing 4.

In Go, it is possible to add a preceding statement before the condition in
an if, a switch or a for statement. This variable is accessible in the current
branch and in all proceeding branches. In other languages you have to define
a variable before the if statement, which means that the variable has a longer
lifetime.

4

1 if condition := true; condition {
2 // condition is accessible here
3 }
4 // condition is not accessible here
5 switch j := 2; j {
6 // j is accessible here
7 }

Listing 4: Structs and Custom Types

While other programming languages do have different keywords for loops
like for, foreach, do..while or while, Go only has one keyword for it: for.
This construct can be used in Go to get all the loop variants mentioned above.

3.3 Structs and Custom Types
In this section we will talk about structs and custom types in Go. Structs
provide a way to define complex data structures, while custom types providing
more clarity.

1 type Person struct {
2 firstname string
3 lastname string
4 }
5 type Employee struct {
6 Person
7 Email string
8 Department string
9 }

10 func (p Person) FullName() string {
11 return p.firstname + " " + p.lastname
12 }

Listing 5: Structs and Custom Types

Listing 5 provides examples, how to define structs and provide methods for
those. Line one to four defines a struct with two members: firstname and
lastname. A struct is a simple data structure which can contain a collection of
fields and embeds other structs, but not functions. Line 5 to 9 defines a struct
Employee, which embeds the earlier defined struct Person. That means, that
every Employee now holds all fields of Person a can be safely converted into
it. As I said, structs do not allow function definitions inside a struct. In Go,
you can define a method for a receiver type as shown in line ten to twelve. (p
Person) is called the receiver type for the function FullName. This allows us,
to simply call the function person.Fullname() instead of FullName(person),
which is much cleaner especially if you chain functions.

Listing 6 shows two examples, how to define custom types. Custom types
are commonly used, to provide clarity.

5

1 type Duration int
2 type IPv4Addr [4]byte
3
4 func (ip IPv4Addr) IPv4AddrToString() string {
5 return fmt.Sprintf("%d.%d.%d.%d", ip[0], ip[1], ip[2], ip[3])
6 }

Listing 6: Structs and Custom Types

3.4 Concurrency
In this section we will dive into the concurrency feature of Go. Concurrency
is a powerful mechanism, which allows running code simultaneously. If utilized
correctly, it increases the performance of the program and can maintain inter-
activity, because the UI-thread does not block. Concurrency is one of its unique
features which sets it apart from other programming languages. Go uses a vari-
ant of Communicating sequential process CSP [6]. CSP was introduced by Tony
Hoare in the late 1970s and has been widely used in concurrent programming
languages.

3.4.1 Goroutines

Goroutines are lightweight threads, which executes a given function concur-
rently.

1 func print(s string) {
2 for i := 1; i <= 5; i++ {
3 time.Sleep(100 * time.Millisecond)
4 fmt.Println(s, ": ", i)
5 }
6 }
7 func main() {
8 go print("Hello from 1st")
9 go print("Hello from 2nd")

10
11 time.Sleep(2 * time.Second)
12 }

Listing 7: Simple goroutine in Go

In the above Listing 7, we define a function print, which prints out a given
string to the output 5 times with a delay of 100ms. If we call this function as a
normal function, the main thread would block for the whole duration. To call
this function as a goroutine, simply put the go keyword in front of the function
name, as shown in line eight and nine. Because the goroutines are non-blocking
by default, we have to wait for the goroutines to finish.

6

3.4.2 Channel

In addition to goroutines, Go provides a mechanism for communication and
synchronization between goroutines: Channel. A channel is a typed pipe, which
can send and receive values between goroutines. To write into and read from a
channel, you have to use the <- operator.

1 func main() {
2 ch := make(chan int)
3 go func() {
4 ch <- 42
5 }()
6 value := <-ch
7 fmt.Println(value)
8 }

Listing 8: Simple channel in Go

In this Listing 8, we create a channel called ch with the built-in function make(t
Type, size ...int) Type. We do not provide a size parameter, which means
that the channel is an unbuffered channel. With the size parameter it is possible
to make a buffered channel. Then we provide an anonymous goroutine, which
writes the value 42 into the channel ch. Finally, we read the value from that
channel and print it out.

3.5 Generics
Generics are a fairly new feature in Go, introduced 2022 with version go.1.18.
Generics are one of the most requested features in Go, that has been missing
from the language. They allow the developer to define a more general and
reusable code that work with different types.

1 func Swap[T any](a, b *T) {
2 tmp := *a
3 *a = *b
4 *b = tmp
5 }

Listing 9: Generics

In Listing 9 we defined a generic Swap function, which swaps the content of
two pointers. This function is defined with a type parameter T, which can by of
any type. Any type is a type alias for the type interface{}, which serves the
same purpose as the object type in Java. To call this function, we can either call
the function explicitly typed Swap[int](&x, &y), or let the compiler inference
the type Swap(&x, &y).

Generics are not limited to functions, they can be used with structs, inter-
faces and methods as well.

7

3.6 Idiomatic Error handling
Lastly, this section shows the idiomatic error handling, which is widely used in
Go. There can be caused by various reasons, such as I/O errors, incorrect inputs,
memory related errors, to name a few. Normally, you do not want your program
to crash at such situations, you want to handle them. That is the reason why
error handling is so crucial for every programming language. In Listing 3 we
defined a function divide(a, b int) (res int, rem int), which does not
handle division by 0. Let’s fix that.

1 func divide(a, b float64) (float64, error) {
2 if b == 0 {
3 return 0, errors.New("Cannot divide by 0!")
4 }
5 return a / b, nil
6 }
7 func main() {
8 if res, err := divide(12, 0); err != nil {
9 fmt.Println(err.Error())

10 } else {
11 fmt.Println(res)
12 }
13 }

Listing 10: Idiomatic error handling in Go

In Listing 10, we redefined the function divide, to take two float64 pa-
rameters and return the result of the division and an error object. If the second
parameter is different from zero, we return the result of the division and a nil
object. Nil does have the same meaning as null have in other languages, it is
the zero value for pointers, structs, channels and interfaces. If it is zero instead,
the result is typically the zero value of its type and an error object is created
with Error.New(text string). Now that we have a stable divide function, we
need to check, if an error is rose. In line eight we check, if the error object is nil,
which indicates that the function works as expected. Otherwise, we may need
to investigate what was the error cause and try to recover from that.

Sometimes, if an error is unrecoverable, Go has a construct named panic. If
a panic occurs in main, the program exits with a non-zero exit code. In a gor-
outine a panic stops the goroutine from running and terminates the goroutine.

4 Go vs. Other Languages
In this section we will look onto other well-known programming languages as
well as popular programming paradigms like Object-Oriented Programming and
Functional Programming.

8

4.1 Package Dependencies: C vs. Go
In this section we will compare the dependency management in C and Go, which
has a huge impact on compilation time.

In C, dependencies are grouped in so-called header files. Every source file,
which will references something outside its own package, has to include those
header files, usually located on top of the file. If we compile our program, the
first step is the preprocessing step. The Preprocessor replaces all the \#include
directives with the corresponding source code. This may lead to multiple inserts
of the same header file. To prevent redefinition errors, C has its own \#ifndef
guard pattern as shown in Listing 11. These #define guards allow the developer
to reorder the #include directives. On the other hand this could lead in big code
bases to many redundant \#include directives, which will slow down the pre-
processor step as well as all following steps afterwards. Let’s take a look at the
program ps, a program which will scan all running processes. The compilation
of the source code included the <sys/stat.h> header file 37 times [6].

1 #ifndef HEADER_H
2 #define HEADER_H
3 // definitions, declarations goes here
4 #endif

Listing 11: Define Guards in C

Now that we know how C handles dependencies, let’s have a look, how
Go handles dependencies. One of the big improvements is, that every unused
import in Go is a compile-time error. This is a nice upgrade, which prevents the
program from increasing in size for no reason. Now let’s have a look at Figure
2. We have three packages: package A includes package B, and B includes
package C. Furthermore, package A has a transitive dependency to C over B. If
we compile this program, the dependency graph recognizes, that package C has
to be compiled first and generates an C.o file. Next, package B is compiled, and
it read all the necessary information from the object file C.o, not C.go. Lastly,
package A gets compiled, and it gets all the necessary information from B.o.
The compiler does not need to access either B.go or C.o. This is the reason,
why Go has a far superior compilation time than C or C++ [6].

Figure 2: Dependency graph

Package A Package B Package B

9

4.2 Memory Management: C vs. Java vs. Go
Memory management vary across many programming languages. In this section
we will compare the different strategies of managing memory in C, Java and Go.

In C, the developer is fully responsible in acquiring and releasing memory.
To acquire memory from the underlying operating system, the developer has to
use the function void *malloc(size_t size), which will, on success, reserve
a block of size_t and return a pointer, which points on the first segment. To
release this block, the function void free(void *ptr) has to be called on the
pointer which points to the memory block. This flexible memory management
comes with risks: memory leaks and so-called dangling pointers, if the developer
does not manage the memory carefully.

In Java, there is an automatic memory management tool named garbage
collector. The garbage collector runs in its own thread and will be periodically
scan the memory for unreachable objects. This algorithm is fully automatic,
which means the developer does not need to manage the memory manually at
any point. Although the developer can call the Garbage Collector manually
through System.gc(), this is not a reliable way to handle the GC manually.

Go uses the same approach as Java. Although a garbage collector might be
a debatable feature in a system programming language, the design team around
Go decided that it would be more beneficial to implement it [6].

Table 2: Advantages and Disadvantages of GC
Advantages Disadvantages

• Developer does not need to worry
about memory management, in-
creased productivity

• Reduces memory related bugs
like dangling pointer and memory
leaks

• Automatic memory management
can lead to better memory usage
through dynamic memory alloca-
tion

• Performance overhead due to pe-
riodically running GC

• GC calls my lead to latency issues
through pause times

• GC is usually non-deterministic,
hard to predict when memory is
free

• Memory footprint is generally
higher

• GC is more difficult to implement

4.3 Visibility: C vs. Java vs. Go
In terms of visibility, C, Java and Go offers different approaches.

10

In C, header files are typically included into source files. Those header files
provide declaration of functions, definitions of variables, macros and structs.
These imports are generally replaced with its content when the program is
compiled. Thus, every declaration in those header files is publicly available. C
does not have the concept of packages or namespaces, which sometimes lead to
potential naming conflicts.

Java uses access modifiers such as public, protected and private for visibility
control. The modifier public is used, when the class or class member should
be publicly accessed. Protected is used to limit the access to the same package
and subclasses. Private, for the sake of completeness, is used, to restrict the
access to the defining class. With these modifiers the developers can maintain
a flexible level of encapsulation on package or class level.

Go, on the other hand, uses a simple rule to maintain package-level visibil-
ity. Variables, structs, types, constants, methods, functions and interfaces are
publicly visible, if they start with an uppercase letter. Lowercase identifiers and
identifiers which start with an underscore, on the other hand, are only accessible
inside the same package. This is a clever approach to keep the language simpler.
However, if you want to change the visibility of identifiers, you have to rename
them and change all references within the package. Listing 12 provides some
examples that show the visibility in Go.

1 const Pi = 3.14159 // exported
2 const e = 2.71828 // not exported
3
4 type Point3D struct { // user defined struct gets exported
5 X, y, _Z float64 // member X gets exported, y and _Z are not
6 }

Listing 12: Visibility in Go

4.4 Error handling: C vs. Java vs. Go
This section will compare the error handling of C and Java with Go.

First, C does not have a built-in feature for error handling. Fortunately, there
are more or less standard ways, to deal with errors in C. The most common one
is a concise return value, i.e. NULL or -1. This only works, if NULL is a valid
return value or -1 does not make sense context wise. A solution to this would
be a return value, which indicates the state, and a pointer parameter, where
the result of the function can be stored. We can take this divide function as an

11

example int divide(float a, float b, float* result). Other ways are
global states, such in #include <errno.h>

Java, on the other hand, has exception handling. Exceptions are objects,
which can be thrown. If such an exception is thrown, the normal execution is
interrupted and the program continues in the exception handler. In Java, the
exception handler is called a catch block. If there is no surrounding handler,
the program terminates. This mechanism provides a powerful tool, when it
comes to handle errors, but comes with a major drawback. Exceptions can
cause performance overhead due to so-called stack-unwinding.

The idiomatic error handling mechanism in Go is explained in detail in 3.6.
It is hard to compare error handling in Go with C, because C does not have a
standardized way. The way, Go handles errors, is completely different to Java.

4.5 Functional Programming in Go
While Go is not a functional programming language (FP), Go supports dif-
ferent functional programming aspects, which enables FP to some degree. Go
supports first-class functions, where functions can be assigned to variables. This
can be very handy, especially, when paired with anonymous functions, also called
closures in Go. Go also supports higher-order functions, where functions can
be function arguments. Famous examples of higher-order functions are map,
filter, reduce and fold. It is also a good advice to keep your business func-
tions pure, to maintain testability. However, Go was not designed to be a pure
functional programming language.

4.6 Object-Oriented Programming in Go
Although Go is not a traditional object-oriented programming (OOP) language,
Go offers features to achieve object-oriented programming to some degree. Clas-
sical OOP languages like Java and C# rely on class hierarchies and inheritance,
Go on the other hand uses composition over inheritance. Go uses structs and
methods with a receiver type to get the similar behavior to classes. Additionally,
Go supports struct embedding, which allows code reuse. To enable Polymor-
phism, Go utilizes interfaces.

5 Conclusion
This seminar paper holds an overview of the programming language Go and
unique features. We discussed the history of Go, which started way back in
2007 as a project at Google. Since then, Go has grown to a widely accepted
and used programming language.

Overall, Go was a very easy programming language to learn. Due to its
simple and C like syntax, which I am very familiar with, I had a great time
learning Go. Another aspect, which I appreciated, is that the Go developer team
offers such great documentation. This documentation offers the best way to

12

learn the language. Go offers some interesting and unique features to learn, like
concurrency, composition over inheritance, the package system, how methods
are implemented, just to name some. However, there are some design decisions,
which I miss or which I do not like. Personally, I like the manual memory
management over the garbage collector. Another point, which I do not like, is
the idiomatic error handling in Go.

13

6 Literature Review

References
[1] Jessica Edwards. Why go was the right choice for cockroachdb, 2022. Last

accessed 15 June 2023. URL: https://www.cockroachlabs.com/blog/
why-go-was-the-right-choice-for-cockroachdb.

[2] The Go Team. Case studies. Last accessed 15 June 2023. URL: https:
//go.dev/solutions/case-studies.

[3] The Go Team. Documentation. Last accessed 15 June 2023. URL: https:
//go.dev/doc/.

[4] The Go Team. Effective go. Last accessed 15 June 2023. URL: https:
//go.dev/doc/effective_go.

[5] The Go Team. Release history. Last accessed 15 June 2023. URL: https:
//go.dev/doc/devel/release#go1.

[6] The Go Team. Go at google: Language design in the service of software
engineering, 2012. Last accessed 15 June 2023. URL: https://go.dev/
talks/2012/splash.article.

[7] The Go Team. Standard library, 2023. Last accessed 15 June 2023. URL:
https://pkg.go.dev/std.

[8] The SO Team. 2015 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2015.

[9] The SO Team. 2016 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2016.

[10] The SO Team. 2017 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2017.

[11] The SO Team. 2018 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2018.

[12] The SO Team. 2019 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2019.

[13] The SO Team. 2020 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2020.

[14] The SO Team. 2021 developer survey. Last accessed 15 June 2023. URL:
https://insights.stackoverflow.com/survey/2021.

[15] The SO Team. 2022 developer survey. Last accessed 15 June 2023. URL:
https://survey.stackoverflow.co/2022.

14

https://www.cockroachlabs.com/blog/why-go-was-the-right-choice-for-cockroachdb
https://www.cockroachlabs.com/blog/why-go-was-the-right-choice-for-cockroachdb
https://go.dev/solutions/case-studies
https://go.dev/solutions/case-studies
https://go.dev/doc/
https://go.dev/doc/
https://go.dev/doc/effective_go
https://go.dev/doc/effective_go
https://go.dev/doc/devel/release#go1
https://go.dev/doc/devel/release#go1
https://go.dev/talks/2012/splash.article
https://go.dev/talks/2012/splash.article
https://pkg.go.dev/std
https://insights.stackoverflow.com/survey/2015
https://insights.stackoverflow.com/survey/2016
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2021
https://survey.stackoverflow.co/2022

[16] The SO Team. 2023 developer survey. Last accessed 15 June 2023. URL:
https://survey.stackoverflow.co/2023.

15

https://survey.stackoverflow.co/2023

	Introduction
	History
	Necessity of Go
	Development of Go
	Current state

	Language Details
	Variables, Types and Functions
	Control Flow
	Structs and Custom Types
	Concurrency
	Goroutines
	Channel

	Generics
	Idiomatic Error handling

	Go vs. Other Languages
	Package Dependencies: C vs. Go
	Memory Management: C vs. Java vs. Go
	Visibility: C vs. Java vs. Go
	Error handling: C vs. Java vs. Go
	Functional Programming in Go
	Object-Oriented Programming in Go

	Conclusion
	Literature Review

