
Outline Introduction The Language Conclusion

The GO Programming Language

Patrik Schweigl
Supervisor: Dr. Dohan Kim

University of Innsbruck

The GO Programming Language 1/25



Outline Introduction The Language Conclusion

Outline

1 Introduction to Go - History

2 The Language

3 Conclusion

The GO Programming Language 2/25



Outline Introduction The Language Conclusion

Why a new language

Things are taking too long.

No new system language in years, but much has changed.

Focus on networking
Focus on Client / Server architecture
Dependencies are growing
Focus on Cluster / multicore CPUs

Type system is too rigid in statically-typed compiled
languages.

These problems are language endemic.

The GO Programming Language 3/25



Outline Introduction The Language Conclusion

Why a new language

Things are taking too long.

No new system language in years, but much has changed.

Focus on networking
Focus on Client / Server architecture
Dependencies are growing
Focus on Cluster / multicore CPUs

Type system is too rigid in statically-typed compiled
languages.

These problems are language endemic.

The GO Programming Language 3/25



Outline Introduction The Language Conclusion

Why a new language

Things are taking too long.

No new system language in years, but much has changed.

Focus on networking
Focus on Client / Server architecture
Dependencies are growing
Focus on Cluster / multicore CPUs

Type system is too rigid in statically-typed compiled
languages.

These problems are language endemic.

The GO Programming Language 3/25



Outline Introduction The Language Conclusion

Why a new language

Things are taking too long.

No new system language in years, but much has changed.

Focus on networking
Focus on Client / Server architecture
Dependencies are growing
Focus on Cluster / multicore CPUs

Type system is too rigid in statically-typed compiled
languages.

These problems are language endemic.

The GO Programming Language 3/25



Outline Introduction The Language Conclusion

History

Started 2007 at Google by Robert Griesemer, Rob Pike and
Ken Thompson.

Publicly announced in November 2009 and went Open Source.

Go 1.0 was released in March 2012.

Current Version: go 1.20 was released in February 2023.

The GO Programming Language 4/25



Outline Introduction The Language Conclusion

Stack Overflow Survey

The GO Programming Language 5/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Facts

Designed for efficiency, simplicity, and scalability

Compiled language

System Language

Strongly typed with static type checking

Built-In Concurrency support

Garbage Collector

Fast compilation time through better dependency handling

The GO Programming Language 6/25



Outline Introduction The Language Conclusion

Hello, World! Program in Go

// simple Hello World program

package main

import "fmt"

func main() {

fmt.Println("Hello, World!")

}

The GO Programming Language 7/25



Outline Introduction The Language Conclusion

Variables and Types

Go supports various data types, including:

int, float, bool for basic types
string for text
Example: var value int32 = 42

Type inference allows omitting explicit type declarations.

Example: var value = 42

Or even better: value := 42

Go supports Constants for numeric and boolean types, strings
and runes.

const Pi =

3.141592653589793238462643383279502884197169399...

const OneOverPi = 1 / Pi

The GO Programming Language 8/25



Outline Introduction The Language Conclusion

Variables and Types

Go supports various data types, including:

int, float, bool for basic types
string for text
Example: var value int32 = 42

Type inference allows omitting explicit type declarations.

Example: var value = 42

Or even better: value := 42

Go supports Constants for numeric and boolean types, strings
and runes.

const Pi =

3.141592653589793238462643383279502884197169399...

const OneOverPi = 1 / Pi

The GO Programming Language 8/25



Outline Introduction The Language Conclusion

Variables and Types

Go supports various data types, including:

int, float, bool for basic types
string for text
Example: var value int32 = 42

Type inference allows omitting explicit type declarations.

Example: var value = 42

Or even better: value := 42

Go supports Constants for numeric and boolean types, strings
and runes.

const Pi =

3.141592653589793238462643383279502884197169399...

const OneOverPi = 1 / Pi

The GO Programming Language 8/25



Outline Introduction The Language Conclusion

Functions

Multiple return values:

func divide(a, b int) (int, int){

return a/b, a%b

}

Named return values:

func divide(a, b int) (res int, rem int){

res, rem = a/b, a%b

return

}

Anonymous functions (closures)

The GO Programming Language 9/25



Outline Introduction The Language Conclusion

Functions

Multiple return values:

func divide(a, b int) (int, int){

return a/b, a%b

}

Named return values:

func divide(a, b int) (res int, rem int){

res, rem = a/b, a%b

return

}

Anonymous functions (closures)

The GO Programming Language 9/25



Outline Introduction The Language Conclusion

Functions

Multiple return values:

func divide(a, b int) (int, int){

return a/b, a%b

}

Named return values:

func divide(a, b int) (res int, rem int){

res, rem = a/b, a%b

return

}

Anonymous functions (closures)

The GO Programming Language 9/25



Outline Introduction The Language Conclusion

Concurrency

Concurrency is not Parallelism.

Concurrency is about dealing with multiple things at once.

Parallelism is about doing lots of things at once.

Concurrency is more about structure.

Parallelism is about execution.

The GO Programming Language 10/25



Outline Introduction The Language Conclusion

Concurrency

Concurrency is not Parallelism.

Concurrency is about dealing with multiple things at once.

Parallelism is about doing lots of things at once.

Concurrency is more about structure.

Parallelism is about execution.

The GO Programming Language 10/25



Outline Introduction The Language Conclusion

Concurrency

Concurrency is not Parallelism.

Concurrency is about dealing with multiple things at once.

Parallelism is about doing lots of things at once.

Concurrency is more about structure.

Parallelism is about execution.

The GO Programming Language 10/25



Outline Introduction The Language Conclusion

Concurrency

Concurrency is not Parallelism.

Concurrency is about dealing with multiple things at once.

Parallelism is about doing lots of things at once.

Concurrency is more about structure.

Parallelism is about execution.

The GO Programming Language 10/25



Outline Introduction The Language Conclusion

Concurrency

Concurrency is not Parallelism.

Concurrency is about dealing with multiple things at once.

Parallelism is about doing lots of things at once.

Concurrency is more about structure.

Parallelism is about execution.

The GO Programming Language 10/25



Outline Introduction The Language Conclusion

Concurrency: Goroutines

Lightweight concurrent
functions.

Executed independently and
concurrently.

Enable efficient utilization of
resources.

Created using the go
keyword.

Figure: Goroutines in action

The GO Programming Language 11/25



Outline Introduction The Language Conclusion

Concurrency: Goroutines Example

func LongCalculation() int {

time.Sleep(2 * time.Second) // simulation

return 42

}

func main() {

res := 0

go func() {

res = LongCalculation()

}()

for res == 0 {

}

fmt.Println(res)

}

The GO Programming Language 12/25



Outline Introduction The Language Conclusion

Concurrency: Channels

Communication mechanism
between goroutines.

Enable safe data exchange
and synchronization.

Prevent race conditions and
data races.

Sending and receiving data
using the <- operator.

Figure: Goroutines in action

The GO Programming Language 13/25



Outline Introduction The Language Conclusion

Concurrency: Channel Example

func LongCalculation() int {

time.Sleep(2 * time.Second)

return 42

}

func main() {

channel := make(chan int)

go func() {

channel <- LongCalculation()

}()

fmt.Println(<-channel)

}

The GO Programming Language 14/25



Outline Introduction The Language Conclusion

Structs

Go uses struct for defining custom types.

type Person struct {

First string

Last string

}

person := Person{"Patrik", "Schweigl"}

Methods can be implemented outside of struct

func (p Person) FullName() string {

return p.First + " " + p.Last

}

n := person.FullName()

The GO Programming Language 15/25



Outline Introduction The Language Conclusion

Structs

Go uses struct for defining custom types.

type Person struct {

First string

Last string

}

person := Person{"Patrik", "Schweigl"}

Methods can be implemented outside of struct

func (p Person) FullName() string {

return p.First + " " + p.Last

}

n := person.FullName()

The GO Programming Language 15/25



Outline Introduction The Language Conclusion

Struct Embedding

Promote composition over inheritance through struct
embedding

type Employee struct {

Person // embedded struct

Email string

}

emp := Employee{Person{"Patrik", "Schweigl"}, "email"}

n := emp.FullName()

The GO Programming Language 16/25



Outline Introduction The Language Conclusion

Interfaces

Go supports interface for defining contracts.

type Magnitude interface {

Abs() float64

}

type Point2D struct{ X, Y float64 }

func (p Point2D) Abs() float64 { return math.Sqrt(p.X*p.

X + p.Y*p.Y) }

var x Magnitude = Point2D{}

Implicitly satisfied, when all methods are implemented

Enable polymorphism

The GO Programming Language 17/25



Outline Introduction The Language Conclusion

Interfaces

Go supports interface for defining contracts.

type Magnitude interface {

Abs() float64

}

type Point2D struct{ X, Y float64 }

func (p Point2D) Abs() float64 { return math.Sqrt(p.X*p.

X + p.Y*p.Y) }

var x Magnitude = Point2D{}

Implicitly satisfied, when all methods are implemented

Enable polymorphism

The GO Programming Language 17/25



Outline Introduction The Language Conclusion

Interfaces

Go supports interface for defining contracts.

type Magnitude interface {

Abs() float64

}

type Point2D struct{ X, Y float64 }

func (p Point2D) Abs() float64 { return math.Sqrt(p.X*p.

X + p.Y*p.Y) }

var x Magnitude = Point2D{}

Implicitly satisfied, when all methods are implemented

Enable polymorphism

The GO Programming Language 17/25



Outline Introduction The Language Conclusion

Visibility

Go manages code in packages

Start with an uppercase letter, to make struct / fields /
variables accessible outside package.

Start with a lowercase letter, to make struct / field / variables
not accessible outside package.

package point3Dlib

type Point3D struct{ x, Y, Z float32 }

func (p Point3D) GetX() float32 { return p.x}

func (p *Point3D) SetX(x float32) {p.x = x}

The GO Programming Language 18/25



Outline Introduction The Language Conclusion

Visibility

Go manages code in packages

Start with an uppercase letter, to make struct / fields /
variables accessible outside package.

Start with a lowercase letter, to make struct / field / variables
not accessible outside package.

package point3Dlib

type Point3D struct{ x, Y, Z float32 }

func (p Point3D) GetX() float32 { return p.x}

func (p *Point3D) SetX(x float32) {p.x = x}

The GO Programming Language 18/25



Outline Introduction The Language Conclusion

Visibility

Go manages code in packages

Start with an uppercase letter, to make struct / fields /
variables accessible outside package.

Start with a lowercase letter, to make struct / field / variables
not accessible outside package.

package point3Dlib

type Point3D struct{ x, Y, Z float32 }

func (p Point3D) GetX() float32 { return p.x}

func (p *Point3D) SetX(x float32) {p.x = x}

The GO Programming Language 18/25



Outline Introduction The Language Conclusion

Visibility

Go manages code in packages

Start with an uppercase letter, to make struct / fields /
variables accessible outside package.

Start with a lowercase letter, to make struct / field / variables
not accessible outside package.

package point3Dlib

type Point3D struct{ x, Y, Z float32 }

func (p Point3D) GetX() float32 { return p.x}

func (p *Point3D) SetX(x float32) {p.x = x}

The GO Programming Language 18/25



Outline Introduction The Language Conclusion

Idiomatic Error Handling

Go follows an idiomatic error handling pattern:

func divide(a, b float64) (float64, error) {

if b == 0 {return 0, errors.New("Divide by 0!")}

return a / b, nil

}

func main() {

if res, err := divide(12, 2); err != nil {

fmt.Println(err.Error())

} else {fmt.Println(res)}

}

The GO Programming Language 19/25



Outline Introduction The Language Conclusion

Go’s strength

Simple, yet powerful syntax

Designed for a modern era

Built-in support for concurrency

Rich built-in tooling

Rich standard library

Open-Source

The GO Programming Language 20/25



Outline Introduction The Language Conclusion

Go’s weakness

Go lacks Enum types

Method / Function overloading is
missing

Error handling is error-prone

Garbage Collector

The GO Programming Language 21/25



Outline Introduction The Language Conclusion

Sources

https://gobyexample.com/

https:

//en.wikipedia.org/wiki/Go_(programming_language)

https://go.dev/doc/

https://go.dev/talks/

https://www.geeksforgeeks.org/golang/

The GO Programming Language 22/25

https://gobyexample.com/
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://go.dev/doc/
https://go.dev/talks/
https://www.geeksforgeeks.org/golang/


Outline Introduction The Language Conclusion

Sources Images

https://xkcd.com/303/

https://www.educative.io/answers/

what-are-channels-in-golang

https://articles.wesionary.team/

understanding-go-routine-and-channel-b09d7d60e575

https://www.educative.io/answers/

what-are-channels-in-golang

https://www.golinuxcloud.com/golang-gopher/

The GO Programming Language 23/25

https://xkcd.com/303/
https://www.educative.io/answers/what-are-channels-in-golang 
https://www.educative.io/answers/what-are-channels-in-golang 
https://articles.wesionary.team/understanding-go-routine-and-channel-b09d7d60e575
https://articles.wesionary.team/understanding-go-routine-and-channel-b09d7d60e575
https://www.educative.io/answers/what-are-channels-in-golang
https://www.educative.io/answers/what-are-channels-in-golang
https://www.golinuxcloud.com/golang-gopher/


Outline Introduction The Language Conclusion

Sources Images Cont

https://play.google.com/store/apps/details?id=eu.

ydns.chernish2_go_free

https://de.wikipedia.org/wiki/Robert_Griesemer

https://de.wikipedia.org/wiki/Rob_Pike

https://en.wikipedia.org/wiki/Ken_Thompson

The GO Programming Language 24/25

https://play.google.com/store/apps/details?id=eu.ydns.chernish2_go_free
https://play.google.com/store/apps/details?id=eu.ydns.chernish2_go_free
https://de.wikipedia.org/wiki/Robert_Griesemer
https://de.wikipedia.org/wiki/Rob_Pike
https://en.wikipedia.org/wiki/Ken_Thompson


Outline Introduction The Language Conclusion

Thank you for the attention

The GO Programming Language 25/25


	Outline
	Introduction
	The Language
	Conclusion

