
Leopold-Franzens Universität Innsbruck

SE Specialisation Seminar

summer semester 2023

Kotlin Programming Language

Kristina Aleksandrova
Matrikel-Nr. 01437595

Instructor: Assoc.-Prof.
Dr. Cezary Kaliszyk

11.July 2023

Abstract

Kotlin, a modern programming language, has gained significant popu-
larity among developers due to its versatility, efficiency, and seamless
integration with existing Java codebases. This report provides an
overview of Kotlin, including its brief history, vision, distinguishing
features, differences from Java, limitations, and real-world applica-
tions. By understanding Kotlin’s unique attributes and its role in
contemporary software development, developers can make informed
decisions about utilizing this language in their projects. This re-
port aims to equip readers with the necessary knowledge to evaluate
Kotlin’s suitability for their programming needs and to appreciate its
growing significance in the software development landscape.

1

Contents

1 Introduction 3

2 Related Works 4

3 Kotlin Programming Language 5
3.1 History . 5
3.2 Vision of Kotlin . 6
3.3 Distinguishing Features . 7
3.4 Comparison to Java . 9
3.5 Limitations . 10
3.6 Real-World applications . 11

4 Conclusions 12

Bibliography 13

2

1 Introduction

In the fast-paced world of software development, programming languages
play a crucial role in shaping the way applications are built, maintained, and
scaled. Kotlin, a statically typed programming language, has emerged as a
compelling choice for developers seeking a modern alternative to traditional
languages like Java. Developed by JetBrains, the creators of popular IDEs
such as IntelliJ IDEA, Kotlin was designed to address the shortcomings of
existing languages while seamlessly integrating with the Java ecosystem [1].

This report serves as an introduction to Kotlin, exploring its origins,
unique features, and real-world applications. By delving into Kotlin’s history,
vision, and distinguishing characteristics, we can gain a deeper understanding
of why this language has garnered such widespread acclaim and adoption.

With its concise syntax, type safety, and interoperability with Java,
Kotlin offers developers an efficient and expressive programming experience
[7]. By leveraging Kotlin’s powerful features, developers can enhance pro-
ductivity, reduce boilerplate code, and improve overall code quality. More-
over, Kotlin’s compatibility with existing Java codebases allows developers
to leverage their investments in Java while benefiting from Kotlin’s modern
language features.

However, like any programming language, Kotlin has its limitations and
trade-offs. This report will highlight these limitations to provide readers
with a balanced perspective on the language’s capabilities and potential con-
straints.

Furthermore, we will explore real-world applications of Kotlin across di-
verse industries, including mobile development, server-side programming,
and multi-platform development. By examining successful use cases, we
can gauge Kotlin’s versatility and assess its suitability for various software
projects.

In conclusion, this report aims to provide a comprehensive overview
of Kotlin, enabling developers to make informed decisions about its adop-
tion and integration into their development workflows. Whether you are a
seasoned developer or someone exploring new programming languages, un-
derstanding Kotlin’s history, vision, distinguishing features, differences from
Java, limitations, and real-world applications will equip you with the neces-
sary knowledge to navigate the evolving landscape of software development.

3

2 Related Works

For the compilation of this report on Kotlin programming language, various
resources were consulted to ensure accuracy and completeness of information.
The primary sources utilized include online materials available on the internet
and the official Kotlin website and documentation.

Websites such as blogs, forums, and technology news platforms were ex-
plored to gather insights into the community’s experiences, opinions, and
discussions surrounding Kotlin. These online resources offered valuable per-
spectives, examples, and practical use cases, which aided in presenting a
comprehensive view of the language.

However, one of the most significant sources for this report was the of-
ficial Kotlin website [10]. The Kotlin website serves as a central hub for
all official information, documentation, tutorials, and resources related to
the language. The documentation provided by JetBrains, the developers of
Kotlin, proved to be an invaluable resource for understanding the language’s
syntax, features, and usage. It offered detailed explanations, code samples,
and practical illustrations to support the understanding of Kotlin’s concepts
and principles.

4

3 Kotlin Programming Language

Kotlin is a statically typed programming language. It is widely used in var-
ious domains, including Android app development, backend development,
web development, and more. It has a growing ecosystem of libraries, frame-
works, and tooling, making it a versatile language for building robust and
efficient software applications.

3.1 History

Kotlin was conceived and developed by a team of programmers at JetBrains,
led by Dmitry Jemerov [9]. The team wanted to create a modern program-
ming language that could improve upon the shortcomings of existing lan-
guages, particularly Java, and enhance productivity for developers.

Development of Kotlin started in 2010 [2], and the language was initially
built to run on the Java Virtual Machine (JVM). Kotlin was announced
to the public at the JVM Language Summit in July 2011 [4]. JetBrains
presented Kotlin as a pragmatic and concise language that aimed to improve
Java development by adding modern features, better tooling, and seamless
interoperability with existing Java codebases [11].

In February 2012, JetBrains open-sourced Kotlin under the Apache 2.0
license [2]. This move allowed the language to gain wider community involve-
ment and receive feedback. Following its open-source release, Kotlin gained
a small but dedicated following, primarily within the Kotlin developer com-
munity and among Java developers looking for a modern alternative. During
this period, Kotlin continued to evolve with regular updates and improve-
ments, addressing feedback and adding new language features.

In May 2017, at the Google I/O developer conference, Google announced
first-class support for Kotlin on the Android platform [3]. Kotlin became an
officially supported language for Android app development alongside Java.
This endorsement significantly increased Kotlin’s visibility and adoption among
Android developers. Since the official support for Kotlin on Android, the lan-
guage has seen a rapid rise in popularity.

Many developers and organizations have embraced Kotlin due to its con-
cise syntax, null safety, interoperability with Java, and modern language
features. Kotlin has continued to evolve with regular updates, adding new
features and improvements based on community feedback.

5

3.2 Vision of Kotlin

The vision of the Kotlin programming language is to provide a modern, con-
cise, and pragmatic language that enhances developer productivity, promotes
code safety, and offers seamless interoperability with existing Java codebases.

The important aspects of Kotlin are:

1. Conciseness and Readability: Kotlin aims to minimize boilerplate code
and reduce verbosity, allowing developers to express their intentions
clearly and concisely. It provides a clean and expressive syntax, making
code more readable and maintainable [1].

2. Interoperability: Kotlin is designed to seamlessly integrate with ex-
isting Java code. It can be used alongside Java in the same project,
allowing developers to leverage their Java knowledge and reuse Java
libraries and frameworks without any significant effort.

3. Safety and Reliability: Kotlin addresses common pitfalls and vulnera-
bilities in programming, offering features such as null safety and type
inference. It aims to minimize runtime errors and provides compile-time
checks to catch errors early in the development process, improving the
overall reliability of software.

4. Tooling and IDE Support: JetBrains, the company behind Kotlin, pro-
vides excellent tooling and IDE support for Kotlin development. Kotlin
is fully supported by JetBrains’ IntelliJ IDEA, Android Studio, and
other IDEs, offering features like code completion, refactoring, and de-
bugging capabilities.

5. Industry Adoption: Kotlin aims to have broad adoption across different
domains, including Android app development, backend development,
and more. It strives to be a practical and viable choice for developers
and organizations, offering productivity gains, improved code quality,
and performance [8].

6. Community-Driven Development: Kotlin encourages community in-
volvement and contributions to shape the language’s evolution. The
Kotlin community actively participates in providing feedback, report-
ing issues, and contributing to the language’s development through
open-source contributions [6].

6

3.3 Distinguishing Features

Kotlin is known for several distinguished features that set it apart from other
programming languages.

Concise Syntax: Kotlin offers a concise and expressive syntax, reducing
boilerplate code and making code more readable and maintainable. Features
like type inference, smart casts, lambda expressions, and extension functions
contribute to the brevity of Kotlin code.

fun main() {

println("Hello world!")

}

Kotlin excels at reducing boilerplate code in projects, showcasing its
efficiency by converting a basic Java class containing 96 lines of code into
just a single line [5].
Null Safety: Kotlin provides built-in null safety features, addressing one of
the most common sources of runtime errors in programming. It distinguishes
between nullable and non-nullable types, reducing the occurrence of null
pointer exceptions. Null safety is enforced at compile-time, ensuring safer
code. In Kotlin, the type system distinguishes between references that can
hold null (nullable references marked by “?”) and those that cannot (non-null
references). For example, a regular variable of type String cannot hold null:

var a: String = "abc" //means non-null by default

a = null // compilation error

var b: String? = "abc" // can be set to null

b = null // ok

print(b)

Smart Casts: Kotlin’s smart casts allow automatic type casting when
certain conditions are met. This eliminates the need for explicit type checks
and casting, making the code cleaner and more concise. Smart casts con-
tribute to improved readability and reduced developer effort. In most cases,
you don’t need to use explicit cast operators in Kotlin because the compiler
tracks the is-checks and explicit casts for immutable values and inserts (safe)
casts automatically when necessary:

fun demo(x: Any) {

if (x is String) {

print(x.length) // x is automatically cast to String

}

}

7

Extension Functions: Kotlin supports extension functions, which al-
low developers to add new functions to existing classes without modifying
their source code. This feature enables adding utility functions or extending
the functionality of third-party libraries, promoting code reuse and enhancing
expressiveness.

// Extension function on the String class

fun String.removeWhitespace(): String {

return this.replace(" ", "")

}

Coroutines: Kotlin provides built-in support for coroutines, enabling
asynchronous and concurrent programming. Coroutines simplify handling
asynchronous operations by allowing developers to write sequential code that
suspends and resumes execution, eliminating the need for callbacks or com-
plex threading mechanisms.

fun main() = runBlocking { // this: CoroutineScope

launch { // launch a new coroutine and continue

delay(1000L) // non-blocking delay for 1 second

println("World!") // print after delay

}

println("Hello") // main coroutine continues, previous is delayed

}

Interoperability with Java: Kotlin offers seamless interoperability
with Java, allowing developers to leverage existing Java codebases, libraries,
and frameworks. Kotlin code can call Java code directly and vice versa,
making it easy to adopt Kotlin gradually or work on projects with mixed
Java-Kotlin codebases.

// Person.kt

class Person(val name: String, val age: Int) {

fun sayHello() {

println("Hello, my name is $name and I am $age years old.")

}

}

// JavaExample.java

public class JavaExample {

public static void main(String[] args) {

Person person = new Person("John", 25);

person.sayHello();}}

8

Type Safety: Kotlin is a statically typed language that ensures strong
type safety. It performs comprehensive type checks at compile-time, reducing
the occurrence of type-related runtime errors and providing early detection
of potential issues.

fun main() {

val name: String = "John" // String assigned to name variable

val age: Int = 30 // Int type assigned to age variable

val result = name + age

}

// Compile-time error: Type mismatch

println(result)

Data Classes: Kotlin provides data classes, which are classes specifi-
cally designed to hold data with automatic generation of common methods
such as equals(), hashCode(), toString(), and copy(). Data classes help
reduce boilerplate code when working with simple data structures and auto-
matically provide several useful features. It automatically generate getters
for all properties. In this example, you can access the name and age proper-
ties directly.

val person = Person("John", 25)

println(person.toString()) // Output: Person(name=John, age=25)

Destructuring declarations: Data classes generate component functions that
allow you to destructure objects into individual variables.

val person = Person("John", 25)

val (name, age) = person

println(name) // Output: John

println(age) // Output: 25

3.4 Comparison to Java

There are several reasons why Kotlin has gained popularity among Android
developers as an alternative to Java [1]:

Reduced boilerplate code: Kotlin’s concise syntax and features like
data classes, smart casts, and extension functions significantly reduce the
amount of boilerplate code needed to write Android applications.

Improved code safety: With its null safety feature, Kotlin reduces the
risk of encountering NullPointerExceptions at runtime, leading to more
stable and reliable applications.

9

Better support for functional programming: Kotlin provides first-
class support for functional programming concepts such as lambdas, higher-
order functions, and extension functions, making it easier to write clean and
modular code.

Seamless Java interoperability: Kotlin code can be called from Java
and vice versa, enabling developers to gradually migrate their existing Java
codebases to Kotlin or leverage existing Java libraries and frameworks in
Kotlin projects.

Android Studio support: As both Android Studio and Kotlin are
developed by JetBrains, the IDE provides excellent support for Kotlin de-
velopment, including syntax highlighting, code completion, debugging, and
refactoring tools.

3.5 Limitations

While Kotlin has gained popularity and addressed many limitations of other
programming languages, it does have some limitations of its own.

1. Immaturity compared to Java: Kotlin is considered less mature than
Java, which means it may have more bugs and frequent updates. This
can lead to challenges in finding solutions for uncommon issues. In con-
trast, Java’s extensive history and community support make it easier
to find answers to a wide range of problems [13].

2. Performance: While Kotlin is generally fast and efficient in areas like
incremental builds [12], it may not match the raw power of Java in
developing high-performance Android applications. Since Kotlin builds
on top of Java, the additional layer can impact performance. However,
this drawback is often outweighed by the simplicity and ease of use
that Kotlin offers, particularly for beginners [13].

3. Hiring challenges: Due to its relative newness and less maturity com-
pared to Java, the pool of experienced Kotlin developers may be smaller.
For larger companies seeking to hire a significant number of Kotlin de-
velopers, it could be challenging to find experienced individuals. Job
portals like Indeed may list Kotlin developers, but identifying highly
skilled candidates might be more difficult compared to hiring Java de-
velopers. However, for smaller companies looking to hire a few Kotlin
developers, this may not be a significant issue [13].

10

3.6 Real-World applications

Kotlin has achieved significant success across a wide range of real-world appli-
cations. It has particularly excelled in the following domains: Android devel-
opment, server-side development, multi-platform development, data science
and machine learning, desktop application development, game development.
Notably, a substantial 81% of Kotlin’s usage is attributed to Android applica-
tion development (Figure 1). Prominent examples of successful Android apps
developed using Kotlin include Airbnb, Coursera, Uber, Netflix, Pinterest,
Duolingo, and many more [8].

Figure 1: Tasks Kotlin is recommended for [8].

11

4 Conclusions

In conclusion, Kotlin has emerged as a versatile and Java-compatible pro-
gramming language that has gained significant traction in the software de-
velopment community. Through its unique blend of features, Kotlin offers
developers a modern and efficient programming experience while maintaining
seamless interoperability with existing Java codebases.

Throughout this report, we explored the history, vision, distinguishing
features, differences from Java, limitations, and real-world applications of
Kotlin. It is evident that Kotlin’s concise syntax, null safety, extension func-
tions, and other language features contribute to improved code readability,
reduced boilerplate code, and enhanced productivity.

Kotlin’s success in Android development is undeniable, with a significant
percentage of Kotlin usage being attributed to Android applications. In-
dustry giants like Airbnb, Coursera, Uber, Netflix, Pinterest, and Duolingo
have embraced Kotlin, highlighting its value in delivering high-quality, user-
friendly Android apps.

The overall trajectory of Kotlin demonstrates its significance and po-
tential impact on the future of software development. As more developers
embrace Kotlin and its ecosystem continues to mature, we can expect even
greater advancements, improved tooling, and expanded real-world applica-
tions.

For developers considering Kotlin for their projects, it is crucial to care-
fully evaluate its suitability based on project requirements, team expertise,
and existing codebase considerations. The official Kotlin website, documen-
tation, and the vibrant Kotlin community serve as valuable resources to
navigate the language effectively.

In summary, Kotlin offers a compelling alternative to traditional pro-
gramming languages, particularly for Android development, while also pro-
viding strong support for server-side, multi-platform, data science, desktop
application, and game development. Its versatility, efficiency, and growing
adoption make it a language worth exploring for developers seeking to en-
hance their productivity and deliver robust software solutions in today’s fast-
paced software development landscape.

12

Bibliography

[1] AppMaster. Kotlin: Understanding the
Java alternative. https://appmaster.io/blog/

kotlin-embracing-the-future-of-android-development, 2023.
[Online; accessed 03-July-2023].

[2] The Kotlin Blog. Kotlin goes open source! https://blog.jetbrains.

com/kotlin/2012/02/kotlin-goes-open-source-2/, 14.02.2012.
[Online; accessed 03-July-2023].

[3] The Kotlin Blog. Kotlin on Android. Now offi-
cial. https://blog.jetbrains.com/kotlin/2017/05/

kotlin-on-android-now-official/, 17.05.2017. [Online; accessed
03-July-2023].

[4] The Kotlin Blog. Hello World. https://blog.jetbrains.com/kotlin/
2011/07/hello-world-2/, 19.07.2011. [Online; accessed 06-July-2023].

[5] DigitalOcean. Kotlin data class. https://www.digitalocean.com/

community/tutorials/kotlin-data-class, 03.08.2022. [Online; ac-
cessed 03-July-2023].

[6] Kotlin Foundation. Protect, promote and advance the development of
the Kotlin programming language. https://kotlinfoundation.org/,
2023. [Online; accessed 03-July-2023].

[7] HIGHSOURCE. What is the Kotlin programming language and the
advantages of working with it. https://highsource.sa/en/blogs/87,
2023. [Online; accessed 03-July-2023].

[8] InfoStride. Top 15 famous apps built with Kotlin. https://

infostride.com/apps-built-with-kotlin/. [Online; accessed 03-
July-2023].

[9] Dmitry Jemerov. Dmitry Jemerov. https://www.yole.page/. [Online;
accessed 06-July-2023].

[10] JetBrains. Kotlin docs. https://kotlinlang.org/, 2023. [Online;
accessed 03-July-2023].

[11] Analytics India Magazine. Ten years of Kotlin pro-
gramming language. https://analyticsindiamag.com/

ten-years-of-kotlin-programming-language/, 2023. [Online;
accessed 03-July-2023].

13

https://appmaster.io/blog/kotlin-embracing-the-future-of-android-development
https://appmaster.io/blog/kotlin-embracing-the-future-of-android-development
https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/
https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2011/07/hello-world-2/
https://blog.jetbrains.com/kotlin/2011/07/hello-world-2/
https://www.digitalocean.com/community/tutorials/kotlin-data-class
https://www.digitalocean.com/community/tutorials/kotlin-data-class
https://kotlinfoundation.org/
https://highsource.sa/en/blogs/87
https://infostride.com/apps-built-with-kotlin/
https://infostride.com/apps-built-with-kotlin/
https://www.yole.page/
https://kotlinlang.org/
https://analyticsindiamag.com/ten-years-of-kotlin-programming-language/
https://analyticsindiamag.com/ten-years-of-kotlin-programming-language/

[12] Medium. Kotlin vs Java: Compilation speed.
https://medium.com/keepsafe-engineering/

kotlin-vs-java-compilation-speed-e6c174b39b5d, 09.09.2016.
[Online; accessed 03-July-2023].

[13] TechQuintal. Advantages and disadvantages of Kotlin. https://www.

techquintal.com/advantages-and-disadvantages-of-kotlin/,
27.09.2022. [Online; accessed 03-July-2023].

14

https://medium.com/keepsafe-engineering/kotlin-vs-java-compilation-speed-e6c174b39b5d
https://medium.com/keepsafe-engineering/kotlin-vs-java-compilation-speed-e6c174b39b5d
https://www.techquintal.com/advantages-and-disadvantages-of-kotlin/
https://www.techquintal.com/advantages-and-disadvantages-of-kotlin/

	Introduction
	Related Works
	Kotlin Programming Language
	History
	Vision of Kotlin
	 Distinguishing Features
	 Comparison to Java
	 Limitations
	 Real-World applications

	Conclusions
	Bibliography

