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Abstract

AProlog is a logic programming language that extends Prolog to the setting of simply-typed
higher-order logic. Atthe term level, AProlog augments Prolog with A-abstractions and quantification
over higher-order variables. Formulas in AProlog are then based on the intuitionistic theory of
higher-order hereditary Harrop formulas, which extend higher-order Horn clauses by allowing
universal quantification and logical implication in goal clauses.
This report provides an introduction to AProlog, covering logical background, syntax, and proof
search semantics. The language is subsequently placed in a broader programming context with a
discussion of real-world applications of AProlog and a comparison to related languages.
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1 Introduction

AProlog is a declarative logic programming language that extends Prolog with higher-order logic
and strong typing [30]. In the paradigm of logic programming, computation is realised as logical
deduction [28]. Logic programs are composed of facts, which represent true statements, and
rules, which specify logical implications [42]. For example, a program may consist of the fact
“Felix is a cat” and the rule “if something is a cat, then it is a mammal”.

After defining a program, one can pose a query or goal, for which the logic programming
language will attempt to construct a proof [42]. In the example above, one may wish to prove the
goal “Felix is a mammal”. Although no prior knowledge of logic programming is required, this
report assumes that the reader is familiar with predicate and first-order logic, lambda calculus,
and at least one functional programming language.

The remainder of this report commences with an overview of Prolog in Section 2, providing an
introduction to the logic programming principles that underpin AProlog. Section 3 then describes
the syntax, semantics, and applications of AProlog. In Section 4, AProlog is positioned within
the broader programming landscape through a comparison with related programming languages.
Finally, Section 5 concludes the report with an outlook on the future of AProlog.

2 Prolog: A Brief Introduction

Prolog is a declarative logic programming language. Developed by Alain Colmerauer and
Phillipe Roussel in 1972 [20], Prolog is based on first-order predicate logic centred around Horn
clauses [42]. Its foundation in formal logic makes Prolog particularly well-suited to applications
such as formal language parsing and modelling state-transition frameworks [42]. This section
provides an overview of the syntax and semantics of Prolog, with particular emphasis on language
elements that are relevant to AProlog.

2.1 First-Order Horn Clauses

In Prolog, goal formulas and program clauses belong to a subset of first-order predicate logic
known as first-order Horn clauses (FOHC) [42]. In FOHC, goal formulas G and program clauses D
are described by the grammar

G::=T|A|GAG]| GVG]| IxaG
D::=A| G—->D|DAD]|VxD

where A is a first-order atomic formula and quantification is over first-order term variables. Several
logically equivalent characterisations of FOHC exist — this variant is favoured by Miller and
Nadathur [28].

FOHC comprises a somewhat restricted subset of first-order predicate logic. Firstly, both
implication and universal quantification are forbidden in goal formulas. Secondly, quantification
is not permitted over higher-order variables. Finally, existential quantification and disjunction are
both prohibited at the top level of program clauses.

At this point, one might question the rationale behind restricting the underlying logic of Prolog
to Horn clauses. Although this restriction reduces the expressive power of the language, it also
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provides certain computational advantages. In particular, it is possible to construct proofs over
Horn clauses in a refutation-complete manner using SLD-resolution [4] which forms the basis
of computation in Prolog [14]. Moreover, the semantics of FOHC are complete with respect to
first-order logic [29] in a sense that will be formalised when discussing the semantics of AProlog
in Subsection 3.3.

2.2 Syntax

In Prolog, the role of values is encoded in their initial letter. Terms that begin with lowercase
letters represent constants,' while terms starting with uppercase letters represent variables that can
be instantiated with specific values. For example, in Prolog syntax, the term parent (anne, X)
represents a constant parent of arity 2 applied to a constant anne of arity O and a variable X.
The intended interpretation is that anne is the parent of some child represented by the variable X.
Prolog formulas are constructed using built-in logical constants. Conjunction is represented by
a comma, disjunction is represented by a semicolon, and : - denotes the “implied by’ relation.
Each clause is then terminated by a dot. With this notation, one can now write a Prolog program
parent (anne, bob).
parent (bob, cara).
grandparent(X,Y) :- parent(X, P), parent(P, Y).
which expresses that anne is the parent of bob, bob is the parent of cara, and that X is the
grandparent of Y if X is the parent of a person P, who in turn is the parent of Y. As the variable P
is free in the final clause, it is implicitly universally quantified over this clause.

2.3 Semantics

To enquire about the existence of any grandparents in this logical universe, one can pose a query
to Prolog, indicated by the prefix ?- in this report. This produces output

?- grandparent(X, Y).

X = anne,

Y = cara
which confirms that anne is indeed the grandparent of cara, as expected. During the proof
search, the free variables X and Y are instantiated via unification which is decidable for first-order
logic [25]. It is important to note that in the context of queries, free variables are implicitly
existentially quantified, as opposed to the implicit universal quantification in the context of
programs.

In addition to representing logical disjunction, the semicolon operator can be used within
Prolog to request multiple solutions to a query. If a user typed a semicolon after the previous
query, the complete output would then be

?- grandparent(X, Y).

X = anne,
Y = cara ;
false.

'In this report, “constants” refers to all non-variable values, including functions of arity greater than 0.
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where false indicates that Prolog was unable to find any additional solutions.

This notion of falsity differs from the role that negation of truth plays in classical logic. If
Prolog can not prove a statement to be true, then it is assumed to be false: this is known as
negation as failure. Prolog provides a built-in predicate not (p) which evaluates to true if p is
not provable.> For example, consider program

likes(jen, apples).

likes(nate, pears).
The goal not (likes(jen, pears)) will return true as it is not provable that jen likes pears,
even though this was not explicitly stated to be false.

2.4 Limitations

This section has provided a brief overview of the logical basis, syntax, and semantics of Prolog.
However, the primary focus of this report is AProlog, which was developed as an extension of
Prolog [30]. This raises the question: which logical features are absent from Prolog, thus inspiring
the development of AProlog?

Firstly, Prolog restricts quantification to first-order variables. Prolog also lacks support for
explicit universal or existential quantification: these are only available implicitly. Moreover, FOHC
forbids implication and universal quantification in goals, which restricts the expressive power of
Prolog. Finally, Prolog does not have native support for types. These limitations are all addressed
in AProlog.

3 AProlog

AProlog is a declarative logic programming language that extends Prolog to the realm of simply-
typed higher-order logic. Introduced by Gopalan Nadathur and Dale Miller in 1988 [30], AProlog
builds upon several aspects of Prolog. Firstly, it extends the term language to the setting of
Church’s simply-typed lambda calculus (A7) [8]. Secondly, while Prolog is based around Horn
clauses, AProlog is based on the more expressive logic of higher-order hereditary Harrop formulas
(HOHH) [30]. Therefore, AProlog extends Prolog both at the term level and at the formula level [17].

The remainder of this section begins with an introduction to A~ and HOHH, followed by
descriptions of the syntax and semantics of AProlog. An integral characteristic of AProlog is its
foundation in intuitionistic logic, which does not assume the law of the excluded middle (LEM)
as an axiom [28]. The reason for adopting intuitionistic logic as the logical basis of AProlog will
become clear after introducing the semantics of the language. Finally, the section concludes with
an overview of modern implementations, practical applications, and limitations of AProlog.

3.1 Logical Background

This subsection provides the logical background necessary to understand the syntax and semantics
of AProlog. After an overview of the relevant aspects of A", the Hebrandt universes for HOHH are

2The notation \+(p) is preferred in some Prolog distributions due to the misleading association of not with logical
negation [21].
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introduced, followed by the complete definition of HOHH.

3.1.1 Simply-Typed Lambda Calculus

The term language of AProlog is based on Church’s simply-typed lambda calculus (A™) which
extends the lambda calculus to a typed setting [8]. In A, every term has an associated type,
every constant has a type signature, and constants can only be applied to terms which match their
signature. This is reminiscent of the role of types in typed functional programming languages —
refer to Chapter 4 of Miller and Nadathur [28] for formal definitions.

The rules of a-, 8-, and n-rewriting can then be defined as follows (using curried notation) [28]:

¢ Replacing Ax s by Ay s[x/y], provided that y is free for x in s and y is not free in s, is
called a-rewriting. The reflexive, symmetric, and transitive closure of this operation is
called a-conversion.

* Replacing (Ax s) ¢ by s[x/t], provided that 7 is free for x in s, is called SB-contraction.
The reflexive transitive closure of the union of a-rewriting and S-contraction is called
B-reduction.

* Replacing Ax (s x) by s, provided that x is not free in s, is called n-contraction. The
reflexive transitive closure of n-contraction is called n-reduction.

Informally, @-rewriting captures the notion of bound variable renaming, S-contraction expresses
function application, and n-contraction describes function abstraction. Two terms are then said to
be A-convertible if there exists a sequence of conversion steps that transform one term into the
other. Equality in AProlog is defined modulo A-conversion [28].

A term is in A-normal form if no further - or n-contractions can be applied. A higher-order
atomic formula in A-normal has the shape (% f; ... t,;) where h is a variable or (non-logical)
constant and the #; are terms. If % is a variable, then this atom is said to be flexible; otherwise, it is
rigid. This distinction is necessary when defining the permissible shape of formulas in HOHH.

3.1.2 Herbrandt Universes

Let X be a signature that contains the logical constants T, A, V, V, 3, and —. Two sets, known as
Herbrand universes, are used in defining the syntax and semantics of AProlog:

o ?(12 is defined as the set of all A-normal terms over X that do not contain V or —.
o ‘HZZ is defined as the set of all A-normal terms over X that do not contain —.

?{22 therefore directly extends H 12 by allowing V in terms.

3.1.3 Higher-Order Hereditary Harrop Formulas

Using the provided definitions, it is now possible to define the class of formulas known as higher-
order hereditary Harrop formulas (HOHH), which serve as the foundation of AProlog [30, 28].
Goal formulas G and program clauses D for HOHH are defined as
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G::=T|A|GAG| GVG| IxG|D—>G]| VG

D::=A, | G>D | DAD/| VxD
where A is a syntactic variable ranging over atomic formulas in 7-{22, A, ranges over rigid atoms
in 7{22, and quantification is over terms in 7{22 of an appropriate type [28]. Note that HOHH
extends FOHC by lifting atomic formulas and quantification to a higher-order setting, and also by
allowing — and V in goals.

To understand the requirement for rigidity in program clauses, consider the formula Vp p. If
such a formula were allowed as a program clause, this would result in an inconsistent program
from which any arbitrary formula is provable [28]. However, in HOHH, the rigidity restriction of
A, prevents this formula from being used as a program clause, even though it is permissible as a
goal. Requiring atomic program clauses to be rigid ensures logical consistency [28].

3.2 Syntax

The syntax of AProlog closely resembles that of Prolog, with variables denoted by uppercase
letters and constants by lowercase letters. The logical constants “,”, “;”, and “: -” have the same
meaning as in Prolog, and the concept of negation as failure is represented by the not predicate.

However, unlike Prolog, AProlog uses curried notation to represent function application [17].
For example, the Prolog expression £(X, g(Y, Z)) is written as £ X (g Y Z) in AProlog.
Moreover, AProlog introduces several additional keywords to represent types and the logic of A7,

which are described in this subsection.

3.2.1 Types

AProlog is strongly typed, meaning that type checking can be performed statically once all
constants and variables in an expression have been specified, thus improving runtime stability of
programs [28]. However, as AProlog supports type polymorphism, additional type checking must
be performed at runtime due to dynamic type inference [28].

AProlog provides pervasive (built-in) sorts for integers, real numbers, strings, and input/output
streams [28]. An additional pervasive sort o is used to represent logical formulas. Elements with
sort o, written as o in AProlog syntax, can be interpreted as part of the meta-logic. For example,
logical predicates have target type o and the constant ““,” has type o -> o -> o.

In AProlog, new type constructors for primitive types are defined using the keyword kind.
Each kind has an associated kind expression of the shape

(kind exp) ::= type | type -> (kind exp)
which specifies the order of the associated constructor [28]. For example, one can define a type
constructor pair which takes two type expressions as arguments and returns a new type as
kind pair type -> type -> type.
where -> associates to the left. The type constructor pair can now be used in type expressions. A

value constructors declaration begins with the keyword type and is followed by a type expression
in curried form connected by the right-associative operator ->. For example,

type pair.cons A -> B -> pair A B.
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defines a value constructor pair_cons which takes two arguments of types A and B and returns a
value of type pair A B. The capital letters A and B are type variables which can be instantiated
with an arbitrary type, allowing for polymorphism in type declarations. It is also possible to
define multiple values with the same signature by separating the names by a comma. For a full
description of type syntax in AProlog, refer to Chapter 1 of Miller and Nadathur [28].

3.2.2 Syntactical Extensions of Prolog

AProlog introduces several additional logical constants that are not present in Prolog, which
are summarised in Table 1. The constants pi and sigma represent universal and existential
quantification respectively, borrowing from the notation used by Church [8]. Note that these are
polymorphic, allowing quantification over variables of an arbitrary type: quantification over a
specific type T will be written as V, and 3, in the remainder of this report when the type can not
be inferred from the context.

Constant  Type ‘ Example Meaning
pi (A ->0) >0 pi X\ expr Vx expr
sigma (A->0) >0 sigma X\ expr dx expr
\ A ->B -> (A -> B) | X\ expr Ax expr
=> 0O ->0->0 exprl => expr2 exprl — expr2
& 0O->0->0 exprl & expr2 exprl A expr2

Table 1: Logical constants that are specific to AProlog and their corresponding meaning in logic
notation. Bound variables may start with uppercase or lowercase letters [28].

The constant “=>" has the same logical meaning as “:-" read from right to left, and the
constants “&” and “,” have identical meanings. Although this introduces some redundancy
into the meta-logic of AProlog, the symbols : - and & are intended to represent implication and
conjunction in program clauses, while => and , are used at the top level of goal clauses [28].
This distinction is made to improve the readability of programs.

To illustrate this difference, consider implementing a predicate for list reversal. In AProlog,
lists are constructed using the built-in constants nil, representing the empty list, and : :, which
prepends a new value to an existing list [28]. One can now define a binary predicate reverse
which uses an auxiliary predicate rev to express that a list K is the reversal of list L as follows [28]:
type reverse, rev list A -> list A -> o.
reverse L K :-

(rev nil K & (pi X\ pi L\ pi K\ rev (X::L) K :- rev L (X::K)))
=> rev L nil.
The reader is invited to confirm that this program is indeed in the language of HOHH and follows
the syntactic conventions described above.

A further distinguishing feature of AProlog is that equality is considered modulo A-conversion.
For example, for any constant f of arity > 2, the query

- X\ Y\ £XY) =@\ f2).
returns true as the terms (AxAy (f x y)) and (Az (f z)) are A-convertible.
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3.3 Semantics

Thus far, this report has presented an overview of the logical foundations of AProlog without
addressing how proofs are found. This section covers both theoretical and practical aspects of
proof search and provides insights into how the challenges posed by higher-order unification and
universal quantification are addressed.

The current state of an idealised logic programming interpreter can be described by its program
signature, program clauses, and goal formula. Let X denote a signature, # denote a set of program
clauses over X, and G denote a goal formula over X. The current proof state can be described as a
sequent or triple 2; P — G encoding that one wishes to prove goal G from a given program [28].
For example, consider extending the program in Subsection 2.2 to a typed setting by introducing
a single type p to represent people. This program would have initial proof state:
¥ = {anne:p, bob:p, cara:p, parent:p -> p -> o, grandparent:p -> p -> o}

# = {parent(anne, bob), parent(bob, cara),
VX VY VP parent(X, P) A parent(P, Y) — grandparent(X,Y)}
G = {grandparent (X,Y)}

The proof search carried out by AProlog can be formalised as a sequent calculus which iteratively
updates this proof state using inference rules which are described below.

3.3.1 Goal-Directed Search Semantics

Given a goal formula, AProlog seeks to derive a proof of this goal in a bottom-up manner. The
proof search can be divided into two phases. Firstly, right-introduction steps (summarised in
Table 2) are applied until an atomic formula is reached [28]. These inference rules capture the
intended semantic meaning of each logical constant by interpreting each logical connective in a
goal formula as a search instruction [29].

If the proof search reaches an atomic goal, AProlog applies backchaining steps to advance
the proof search (see Table 3). Backchaining uses the logical structure of program clauses to
further decompose the proof obligations. Unlike right-introduction steps that depend solely on
the structure of the goal formula, backchaining incorporates the logical assumptions encoded in
program clauses into the proof search.

A proof constructed using the rules in Table 2 and Table 3 is called a uniform proof in
terminology introduced by Miller et al. [29, 28]. It is desirable that the semantic notion of uniform
provability aligns with the concept of provability in the underlying logic: this notion of soundness
and completeness is formalised via the proof-theoretic concept of an abstract logic programming
language. This is an inference system in which every uniform proof can be represented as a proof
in the underlying logic and vice versa [29]. Notably, FOHC and HOHH are abstract programming
languages [29, 28] and therefore semantically complete in this sense.

At this point, it is possible to see why intuitionistic logic is in fact essential for the soundness
of HOHH. Consider constructing a uniform proof of the formula p vV (p — ¢) from the empty
program. This is provable as a goal if and only if either p is provable from the empty program or
q is provable from p [28]. Since neither of these is provable, this formula does not have a uniform
proof. However, if one assumes the LEM, then p vV (p — ¢) is equivalent to p — (p V q)
which does have a uniform proof via the AUGMENT and OR rules followed by backchaining on p.
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Name Inference Rule Meaning

TRUE TP T The goal T is immediately provable

AND 2, P—B Z;P—B Goal B] A Bj is provable if both B and B,

2 P—BIAB) are provable

OR ¥:P— B >, P— By Goal By V Bj is provable if B; or B; is
LP—B1VBy X P—BiVBy provable

AUGMENT >:P.Bi— B> Goal (B} — B») is provableif B, is provable
L;P—(B1—B,) when B is appended to the program clauses

INSTANCE X P—B[x/t] X0 W« t:T Goal 3.x B is provable if B[x/¢] is provable

LP—3x B for some A-term ¢ € H of type
GENERTC c:T,2;P—B[x/c] Goal ¥V .x B is provable if B[x/c] is provable

ZP—V.x B

for some fresh constant ¢ of type T

Table 2: Right-introduction rules [28]. During the proof search, AProlog matches A-normal forms
with the lower sequent to advance the proof search in a bottom-up manner. A comma is
used to represent set union and it is assumed that substitutions avoid variable capture.

Meaning

Name Inference Rule
D
. 2 P—A
Decide SPSA
Initial —
2 P—A
SP-5A  SP—G
—-L G—-D
TP — A
Dy Dy
TP—A Y P—A
/\L Dl/\D2 Dl/\Dz
P — A P —TA
D[x/t]
P — A 0wt
VL VTX D
%P — A

Select a formula D € P to backchain on

If A’ € P and A and A’ are a-convertible formulas,
then A is derivable by backchaining on A’

If A is derivable when backchaining on D € # and
G is provable, then A is derivable by backchaining
onG —» D

If A is derivable when backchaining on D; or D5,
then it is derivable by backchaining on D| A D;

If A is derivable for any A-term 7 of type 7 in HZ,
then A is derivable by backchaining on V.x D

Table 3: Backchaining rules [28]. If the proof search reaches an atomic goal A, then AProlog

. . .. D
selects a specific clause D € % to backchain on, denoted by superscript —.
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It follows that the semantics defined above are unsound for HOHH if the LEM is assumed. In
the first-order setting, FOHC is an abstract logic programming language for both classical and
intuitionistic logic [29, 28].

3.3.2 Proof Search in Practice

The proof search described above is nondeterministic, as multiple inference steps might be
applicable to a single sequent. AProlog addresses this by utilising a deterministic, depth-first
proof search strategy in which backchaining is carried out on the most recently added clause in
P [28]. As aresult, the clauses in P are treated like an ordered list rather than a set.

The restriction to a depth-first proof search might result in non-termination in some cases.
Consider, for example, the program consisting of a single clause

loop :- loop.
The query p, loop. will return false almost immediately since p is an atom with no defining
clauses. However, the logically equivalent query loop, p. will not terminate in a depth-first
search [28] due to recursive applications of the —L rule.

If the proof search reaches a dead end, AProlog backtracks to an earlier proof state (not to
be confused with backchaining) and continues the proof search from there [28]. A user can
prevent backtracking beyond a certain point using the cut operator “!”, for example, to ensure
termination or to enforce specific search semantics [28]. Other than this, AProlog offers no direct
means of influencing search behaviour. This determinism may be seen as advantageous due to its
transparency but is also inflexible if users desire more fine-grained control over proof search.

3.3.3 Unification

AProlog uses unification over higher-order terms to instantiate variables during the proof search
process. First-order unification, as used in Prolog, is decidable and guarantees the existence of a
most general unifier (mgu) if a unifier exists. However, higher-order unification satisfies neither
of these properties [25], introducing undecidability at the core of AProlog.

In 1991, Miller identified a computationally “well-behaved” fragment of the term language,
known as L), [25]. Unification on this fragment, referred to as pattern unification, is decidable
and the existence of an mgu is assured if a unifier exists [25]. Although the theory of AProlog
does not restrict the shape of unification supported, some implementations do choose to restrict
unification to L), to ensure decidability (see Subsection 3.4).

It is important to note that unification in AProlog is intensional rather than extensional. That is,
unification is carried out modulo A-conversion, but does not consider the extensional definitions
of constants. To illustrate this, consider the following definition of a predicate for term equality:

type eqpred (A -> o) -> (A -> 0) -> o.
eqpred T T.

The query

?7- eqpred X\ p X, gX) X\ qgX, pX.
will fail no matter how p and q are defined [28]. Even though the arguments of eq_pred in this
query have the same extensional logical meaning, these arguments can not be unified intensionally.
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3.3.4 Universal Quantification

AProlog incorporates a notion of variable scope to allow for clauses containing nested bound
variables without variable capture [28]. However, the implementation of universal quantification
presents further challenges. In AProlog, the interpretation of V is intensional [30]. Rather than
verifying that a universal goal holds for each element in a given domain, AProlog instantiates
the universally quantified variable with an eigenvariable representing an arbitrary value and
attempts to derive a proof of the resulting formula. This is logically stronger than the extensional
interpretation but requires care to ensure sound implementation of the GENERIC rule (see Table 2).

For example, consider the goal sigma X\ pi Y\ f X Y corresponding to the logical ex-
pression AxVy f(x,y). To solve this goal, the AProlog interpreter will first instantiate X with
a fresh variable of the same type, say X’, due to the INSTANCE rule. This results in a new
goal pi Y\ f X’ Y. At this point, the interpreter will choose some fresh eigenvariable due
to the GENERIC rule, say Y’, resulting in the updated goal £ X’ Y’. This variable Y’ is never
instantiated during computation [28]. However, it must additionally be ensured that X’ is never
instantiated to a term containing Y’ in the remaining proof search [30].

Nadathur and Miller propose two solutions to avoid the unintended capture of universally
quantified eigenvariables [27]. The first approach is to modify the unification procedure to have
an awareness of the scope of each variable. The second solution is to modify the implementation
of both the GENERIC and INSTANCE rules to keep track of the variables which are universally
quantified within the current scope [30]. The implementation details for universal quantification
are not prescribed by the language itself but rather are left to the discretion of individual systems.

3.4 Implementations

The report thus far has been concerned with the theoretical aspects of AProlog rather than concrete
implementations. However, various distributions of AProlog are available, which are summarised
in Table 4. Early implementations of AProlog did not impose restrictions on higher-order
unification and instead utilised a semi-decidable procedure [38] described by Huet [18]. However,
recent implementations are typically restricted to pattern unification, which is decidable but
reduces the expressive power of the language.

Miller and Nadathur claim that “The overwhelming majority of ‘typical’ MProlog program
clauses are within the L, fragment of the HOHH language” [28]. Although this reflects their
empirical experiences, it may be seen as somewhat unsatisfying from a logical standpoint. In
particular, the restriction to L) may lead to an inability to find proofs despite the existence of an
appropriate unifier, especially for users who lack a deep familiarity with pattern unification.

3.5 Applications

AProlog has predominantly been used in theoretical research concerning formal specifications [40,
1, 22, 41] and theorem proving. Early work on theorem proving in AProlog was carried out by

3See Qi [38], www.lix.polytechnique.fr/~dale/IProlog/fag/implementations.html, and
github.com/teyjus/teyjus/wiki/AboutTeyjus for more information about early development of AProlog.
All websites accessed 11 July, 2023.
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3.5 Applications

Name Initial Language Unification Execution
Release Fragment Model
LP V2.7 [27] 1988  C-Prolog - Interpreted
elLP[11] 1989  Common Lisp - Interpreted
MALI [5] ~1993 C - Compiled
Terzo [43] ~1997  Standard ML of NJ ? Interpreted
Teyjus V1 [31] 1999 C - Compiled
Teyjus V2 [38] 2009  OCaml and C L, Compiled
ELPI [10] 2015 OCaml L, Interpreted

Table 4: Comparison of AProlog implementations.> ELPI is technically a dialect as it introduces
additional features [9, 15], but does implement unification on L;, despite being optimised
for a subset thereof [10].

Felty, a PhD student of Dale Miller [13, 12]. Appel then created a simple theorem prover in
1999 [2], later collaborating with Felty in 2004 [3].

Appel and Felty implemented their theorem prover by defining a meta-language for reasoning
about proofs within the language of AProlog [3]. In this meta-language, types have kind tp and
terms have kind tm. Formulas are then represented by a constant form of type tp and implication
is written as an infix constant imp that takes two terms s and t as input arguments and returns a
term s imp t. This is written in AProlog syntax as

kind tp type.

kind tm type.

type form tp.

type imp tm -> tm -> tm. infixr imp 7.

where the keyword infixr defines the relative binding strength of imp [3]. Note in particular,
that imp refers to a value constructor in the meta-language and does not refer to the AProlog
constant =>.

Appel noted that AProlog is especially well-suited for elegant and concise representations of
proof systems, as the native typing of AProlog can be used to ensure well-typedness in the logical
meta-language [2]. For example, the rule that A imp B is a well-typed formula if both A and B
are well-typed formulas in the meta-language can be expressed concisely as

type hastype tm -> tp -> o.
hastype (A imp B) form :- hastype A form, hastype B form.

Since the invention of ELPI in 2015 [10], there has been a small resurgence of interest in
AProlog for theorem proving. The creators of ELPI have implemented a simple interactive
theorem prover for higher-order logic [9] and implemented the core components of a more general
theorem prover by extending AProlog with programming constraints [15]. Kohlhase et al. also
utilised ELPI in creating an early-stage theorem prover that simulates the Edinburgh Logical
Framework (LF) [19]. This framework was then used to generate a tableau prover and model
generator as a proof of concept in 2020.
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4 Higher-Order Programming: Context and Comparison

3.6 Limitations

Although AProlog encodes a richer logic than Prolog, there are still inherent limitations on what
can be expressed and proven within the language. Firstly, AProlog relies on higher-order unification
in its proof search, which is undecidable in general. To address this, several implementations of
AProlog deliberately restrict the fragment of unification supported, choosing decidability at the
cost of expressivity. Secondly, the lack of control over the proof search may be viewed either
as a limitation of the language or merely as a feature of declarative programming. Although
backtracking can be prevented via the cut operator, users who require more control over proof
search may find interactive theorem provers (ITPs) to be a more suitable solution.

The logical basis of AProlog in A™ may also be seen as a limitation. More expressive logical
systems exist which allow types to depend on values, known as dependent typing. Examples
include the Edinburgh Logical Framework (LF) which is implemented in the EIf family of
languages [34, 35, 36, 31] and the Calculus of Inductive Constructions (CIC) which forms the
basis of the Coq theorem prover [15].

Looking beyond the language itself, the relatively small community and limited documentation
surrounding AProlog present additional challenges. The creators of AProlog acknowledge that
programming with higher-order unification initially has a steep learning curve [30, 28]. While
Miller and Nadathur have written a book on the theory underlying AProlog [28] and code examples
are available with most AProlog distributions, there is a dearth of introductory tutorials compared
to more widely used languages. This lack of accessible resources is likely a factor in why AProlog
remains largely confined to specialised research applications.

4 Higher-Order Programming: Context and Comparison

In this section, AProlog is brought into context within the wider programming landscape. The
section begins with a high-level comparison of AProlog and the functional programming language
Haskell, serving as a case study illustrating the paradigmatic differences between AProlog and
functional programming. Following this, an overview is provided of languages that have been
either inspired by or share similarities with AProlog.

4.1 Comparison: AProlog Versus Haskell

AProlog exhibits several similarities with Haskell: they both support the use of functions as
arguments (higher-order programming), lambda abstractions, and feature strong typing with type
polymorphism. Moreover, both languages cite the functional language ML as an influence [30, 24].

The most apparent differences between AProlog and Haskell stem from their intended pur-
poses. The former is a specialised logic programming language with native support for logical
inference and higher-order unification, but almost no support for complex data structures and
data manipulation. Haskell, on the other hand, is a general-purpose programming language [24]
that offers a broader range of programming capabilities but does not utilise logical inference as
computation. In particular, computation in AProlog corresponds to a proof search that works
backwards from a goal, using unification and backtracking to advance this search [28]. Evaluation
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4.2 Beyond AProlog

in Haskell proceeds forwards, using pattern matching to lazily evaluate a given expression by
applying function definitions from left to right [24].

A significant difference between the two languages lies in their distinct concepts of equality. In
AProlog, equality is intensional modulo A-conversion, which is decidable [28]. For example, the
goal (X\ Y\ £ X Y) = (Z\ £ Z) returns true for any constant f of arity > 2 as these terms
are A-convertible. AProlog thus enables direct comparison of higher-order functions based on
their term structure, even over infinite domains. By contrast, the intended semantics of equality in
Haskell are extensional, which is undecidable in the general case [28]. The ability of AProlog to
directly compare higher-order functional expressions therefore provides a more expressive means
of reasoning about functions [28].

Finally, there is a clear discrepancy in the popularity of the two languages. As of July 2023,
Haskell ranks as the 26th most popular programming language according to Google searches for
tutorials* and holds the 36th position in the TIOBE index,> which measures the number of search
engine results. In contrast, AProlog is not ranked in either popularity index or by Google Trends,’
indicating that it is not widely searched for.

4.2 Beyond LProlog

Although A~ can be simulated in other languages, AProlog stands out as one of the few languages
that implement A~ directly. There are, however, a number of related programming languages,
which are described below.

4.2.1 Prolog Extensions

In addition to AProlog, other languages have extended the logic of Prolog to a higher-order setting.
One such language is HiLog [6], which retains the first-order semantics of Prolog but expands
the syntax to allow arbitrary terms (including variables) in the place of function calls. Although
this provides greater syntactic flexibility, HiLog programs can be translated back into first-order
predicate logic, indicating that this extension does not provide additional semantic strength [6].

Qu-Prolog (Quantifier Prolog) extends Prolog by introducing explicit quantification and variable
binding [7]. It supports unification involving a-renaming and substitutions [32] and also allows
optional type hints for bound variables in its modern form [39]. However, Qu-Prolog is not
strongly typed and does not support unification relative to the full set of A-conversion rules [31],
making it computationally weaker than AProlog.

4.2.2 Languages Inspired by AProlog

Perhaps the most well-known language inspired by AProlog is Elf [34]. Pfenning proposed
Elf in 1989 as a logic programming implementation of LF [34], having been inspired by the
correspondence between AProlog and A~ [34, 35]. EIf is primarily intended for use as a
meta-language to reason about deductive systems such as programming languages [36].

4pypl.github.io/PYPL.html accessed 13 July, 2023.
Swww.tiobe.com/tiobe-index/ accessed 13 July, 2023.
6trends.google.com/trends/explore?q=1ambda%20prolog accessed 13 July, 2023.
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5 Conclusions

Makam is a more recent language inspired by AProlog that has been under development since
2012.7 It is implemented from scratch in OCaml and was designed as a refinement of AProlog
specifically for prototyping new programming languages via formal specifications.

Efforts have also been made to extend AProlog to a logical system known as linear logic. Hodas,
a PhD student of Miller, developed an extension of AProlog to linear logic called lolli in 1992 [16].
Miller later extended both AProlog and lolli to a language called Forum, which introduces the
possibility of multiple conclusions in a classical (rather than intuitionistic) setting [26]. However,
it appears that neither language has been actively maintained since the 1990s.3

4.2.3 Interactive Theorem Provers

Many interactive theorem provers (ITPs) support logical deduction in a higher-order setting.
Isabelle is a proof assistant that implements several logical frameworks, including Higher-Order
Logic (Isabelle/HOL). Isabelle/HOL, like AProlog, is based on A~ [33]. However, while AProlog
relies on a single deterministic proof search strategy, Isabelle offers a wide range of tactics and
tacticals, granting users more control in guiding the proof search.’

Furthermore, several ITPs implement richer logics than A ™. For example, Twelf is an extension
of Elf which implements LF [37], while Coq and Lean are based on the calculus of inductive
constructions [15]. These systems thus support a more expressive logic than AProlog.

5 Conclusions

In summary, AProlog extends Prolog to the realm of strongly-typed higher-order intuitionistic
logic. This extension is achieved by expanding the term language to A~ and the formula language
to HOHH. As a result, AProlog is capable of reasoning about a significantly more expressive logic
than Prolog, while remaining firmly rooted in the declarative logic programming paradigm.

In theory, the semantics of AProlog are sound and complete, meaning that a goal is provable in
HOHH if and only if it is derivable via a uniform proof. However, in practice, the deterministic
depth-first proof search strategy employed by AProlog might not terminate. A more serious
restriction is posed by the undecidability of higher-order unification. To address this, recent
implementations of AProlog have restricted unification to L;, thus ensuring decidability at the cost
of reduced expressivity. Future implementations of AProlog could further extend the supported
unification fragment (see e.g. Libal & Miller [23]), but this undecidability will always remain an
inherent limitation of AProlog.

Since its invention in 1988, AProlog has primarily been used in niche research applications.
When compared with more widely used languages, one may well question the relevance, utility,
and purpose of AProlog in a modern context. However, what sets AProlog apart is its distinctive
position as a purely declarative logic programming implementation of A~. This provides value

7 github.com/astampoulis/makam accessed on 11 July, 2023.

8The language homepages are available at www.lix.polytechnique.fr/~dale/lolli/ and
www.lix.polytechnique.fr/Labo/Dale.Miller/forum/ (accessed on 11 July, 2023).

9See also www.lix.polytechnique.fr/~dale/IProlog/fag/related.html accessed on 11 July, 2023.
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in settings where reasoning involving higher-order logic is required, but more complex logical
frameworks would introduce unnecessary complexity.

Since the introduction of ELPI in 2015 [10], there has been a growing number of research
papers utilising AProlog for theorem proving [9, 15, 19]. Perhaps this, in turn, will lead to
increased interest and further exploration of AProlog in the coming years; or perhaps AProlog
will remain relatively unknown. Only time will reveal the lasting impact and ongoing relevance
of AProlog in the field of higher-order logic programming.
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