
λProlog: Higher-Order Logic Programming
Specialisation Seminar

Jamie Fox

Introduction

• Prolog is a logic programming language

• λProlog extends Prolog

• This talk covers...

- Logic Programming

- Prolog

- λProlog

- Applications

λProlog

Prolog

Higher-Order Logic

Types

λProlog 2023-06-30 1 / 22

Introduction

• Prolog is a logic programming language

• λProlog extends Prolog

• This talk covers...

- Logic Programming

- Prolog

- λProlog

- Applications

λProlog

Prolog

Higher-Order Logic

Types

λProlog 2023-06-30 1 / 22

Predicate Logic In 60 Seconds

Terms

Entity Examples

Variables X, Y, Person

Constants p, cat, anne

Predicates mammal(cat), parent(anne,Person), f(X,g(Y))

Logic Operations

p ∧ q p and q
p ∨ q p or q
p← q p if q (“implied by”)
∃X p There exists an X such that p
∀X p For all X, p

λProlog 2023-06-30 2 / 22

Predicate Logic In 60 Seconds

Terms

Entity Examples

Variables X, Y, Person

Constants p, cat, anne

Predicates mammal(cat), parent(anne,Person), f(X,g(Y))

Logic Operations

p ∧ q p and q
p ∨ q p or q
p← q p if q (“implied by”)
∃X p There exists an X such that p
∀X p For all X, p

λProlog 2023-06-30 2 / 22

Logic Programming

• Programming paradigm based on formal logic
• Programs consist of facts and rules

Example

Facts: p(X), parent(anne, bob), even(2)
Rules: sibling(X, Y) ⇐= parent(P, X) ∧ parent(P, Y)

• Typically have a logic program and try to prove a goal

Logic
Programming

Language

Progam

Goal

true ✓

false ✗

Facts & Rules

“Prove this thing”

λProlog 2023-06-30 3 / 22

Logic Programming

• Programming paradigm based on formal logic

• Programs consist of facts and rules

• Typically have a logic program and try to prove a goal

Logic
Programming

Language

Progam

Goal

true ✓

false ✗

Facts & Rules

“Prove this thing”

λProlog 2023-06-30 3 / 22

Motivation
Why program using formal logic?

1 Proof Formalisation
• Humans can make mistakes in proofs, computers (hopefully!) reason correctly

2 Program Verification
• Testing can not prove that code works as intended – we need logic

3 Modelling Algorithms
• Natural language processing, compiler design, constraint solving, ...

λProlog 2023-06-30 4 / 22

1. Introduction

2. Logic Programming

3. Prolog
Background
Horn Clauses
Examples

4. λProlog

5. Applications

Prolog – Background

• Developed in France in ∼1972

• Prolog is a declarative language
• Tell Prolog what to prove but not how to prove it

• Based on first-order logic restricted to Horn clauses

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

λProlog 2023-06-30 5 / 22

Prolog – Background

• Developed in France in ∼1972

• Prolog is a declarative language
• Tell Prolog what to prove but not how to prove it

• Based on first-order logic restricted to Horn clauses

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

λProlog 2023-06-30 5 / 22

Prolog – Background

• Developed in France in ∼1972

• Prolog is a declarative language
• Tell Prolog what to prove but not how to prove it

• Based on first-order logic restricted to Horn clauses

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

λProlog 2023-06-30 5 / 22

Horn Clause Examples

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

No ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗
}

No ∀ or→ goals
p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗
}

No quantification over functions

λProlog 2023-06-30 6 / 22

Horn Clause Examples

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

No ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗
}

No ∀ or→ goals
p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗
}

No quantification over functions

λProlog 2023-06-30 6 / 22

Horn Clause Examples

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

No ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗
}

No ∀ or→ goals
p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗
}

No quantification over functions

λProlog 2023-06-30 6 / 22

Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.

λProlog 2023-06-30 7 / 22

Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.

λProlog 2023-06-30 7 / 22

Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.

λProlog 2023-06-30 7 / 22

Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.

λProlog 2023-06-30 7 / 22

Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.

λProlog 2023-06-30 7 / 22

Prolog Demo

In Prolog clauses, “:-” means “←” and “,” means “∧”

Program

% anne has children bob and cara

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

How many solutions are there?

λProlog 2023-06-30 8 / 22

Prolog Demo

In Prolog clauses, “:-” means “←” and “,” means “∧”

Program

% anne has children bob and cara

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

How many solutions are there?

λProlog 2023-06-30 8 / 22

Prolog – Multiple Solutions

Program

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

X = bob,

Y = cara

; % Prolog can output multiple solutions using ;
X = cara,

Y = bob ;

false.

λProlog 2023-06-30 9 / 22

Prolog – Multiple Solutions

Program

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

X = bob,

Y = cara ; % Prolog can output multiple solutions using ;
X = cara,

Y = bob

;

false.

λProlog 2023-06-30 9 / 22

Prolog – Multiple Solutions

Program

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

X = bob,

Y = cara ; % Prolog can output multiple solutions using ;
X = cara,

Y = bob ;

false.

λProlog 2023-06-30 9 / 22

Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.

λProlog 2023-06-30 10 / 22

Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.

Provability for first-order Horn clauses is undecidable.
So how did Prolog decide that there are no solutions?

λProlog 2023-06-30 10 / 22

Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.

If Prolog fails to find a solution to a query then it is assumed to be false

• e.g. we did not specify whether parent(anne, cara) is true or false, so
Prolog assumes this to be false

λProlog 2023-06-30 10 / 22

What’s Missing?

1 Higher-Order Logic
First order Horn clauses do not allow...
• Quantification over functions
• → and ∀ in goal clauses

2 Typed Logic Programming
What if we want to restrict predicates to
certain types of objects?

λProlog

Prolog

Higher-Order Logic

Types

λProlog 2023-06-30 11 / 22

What’s Missing?

1 Higher-Order Logic
First order Horn clauses do not allow...
• Quantification over functions
• → and ∀ in goal clauses

2 Typed Logic Programming
What if we want to restrict predicates to
certain types of objects?

λProlog

Prolog

Higher-Order Logic

Types

λProlog 2023-06-30 11 / 22

1. Introduction

2. Logic Programming

3. Prolog

4. λProlog
Syntax
Semantics
Types
Demo

5. Applications

λProlog Background

• Invented in 1987 by Dale Miller and Gopalan Nadathur

• Adds higher-order logic, native lambda expressions, and
polymorphic typing to Prolog

• Based on higher-order hereditary Harrop formulas
(hohh)

hohh
λProlog

Horn clauses
Prolog

λProlog 2023-06-30 12 / 22

λProlog Background

• Invented in 1987 by Dale Miller and Gopalan Nadathur

• Adds higher-order logic, native lambda expressions, and
polymorphic typing to Prolog

• Based on higher-order hereditary Harrop formulas
(hohh)

hohh
λProlog

Horn clauses
Prolog

λProlog 2023-06-30 12 / 22

λProlog Background

• Invented in 1987 by Dale Miller and Gopalan Nadathur

• Adds higher-order logic, native lambda expressions, and
polymorphic typing to Prolog

• Based on higher-order hereditary Harrop formulas
(hohh)

hohh
λProlog

Horn clauses
Prolog

λProlog 2023-06-30 12 / 22

Horn Clauses vs. hohh

hohh

Define goal formulas G and program clauses D for hohh as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G | D → G | ∀X G

D ::= Ar | G → D | D ∧ D | ∀X D

where elements of A are normal forms wrt λ-calculus.

Formula D G

p ∨ (q ∧ r) ✗ ✓

}
Still no ∨ or ∃ at the top level in programs

∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗

}
∀ and→ are now allowed in goals

p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗

}
Quantification is now allowed over functions

λProlog 2023-06-30 13 / 22

Horn Clauses vs. hohh

hohh

Define goal formulas G and program clauses D for hohh as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G | D → G | ∀X G

D ::= Ar | G → D | D ∧ D | ∀X D

where elements of A are normal forms wrt λ-calculus.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

Still no ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗

}
∀ and→ are now allowed in goals

p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗

}
Quantification is now allowed over functions

λProlog 2023-06-30 13 / 22

Horn Clauses vs. hohh

hohh

Define goal formulas G and program clauses D for hohh as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G | D → G | ∀X G

D ::= Ar | G → D | D ∧ D | ∀X D

where elements of A are normal forms wrt λ-calculus.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

Still no ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✓
}
∀ and→ are now allowed in goals

p ∧ q→ p ✓ ✓

∀F g(F(x)) ✗ ✗

}
Quantification is now allowed over functions

λProlog 2023-06-30 13 / 22

Horn Clauses vs. hohh

hohh

Define goal formulas G and program clauses D for hohh as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G | D → G | ∀X G

D ::= Ar | G → D | D ∧ D | ∀X D

where elements of A are normal forms wrt λ-calculus.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

Still no ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✓
}
∀ and→ are now allowed in goals

p ∧ q→ p ✓ ✓

∀F g(F(x)) ✓ ✓
}

Quantification is now allowed over functions

λProlog 2023-06-30 13 / 22

1. Introduction

2. Logic Programming

3. Prolog

4. λProlog
Syntax
Semantics
Types
Demo

5. Applications

λProlog 2023-06-30 14 / 22

Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

1 Start from the goal query

2 Work backwards using the current program state (facts and rules)

3 If stuck:
a) Try to backtrack to an earlier proof state
b) If no more backtracking is possible, then return false

• Variables are instantiated using unification

• λProlog is based on intuitionistic logic

λProlog 2023-06-30 14 / 22

Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

• Variables are instantiated using unification
• Decidable for first-order logic but undecidable for higher-order logic (beyond

the scope of this talk)

• λProlog is based on intuitionistic logic

λProlog 2023-06-30 14 / 22

Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

• Variables are instantiated using unification

• λProlog is based on intuitionistic logic
• The logic taught in the 4th semester is classical logic
• Classical logic assumes the Law of the Excluded Middle, i.e. that p ∨ ¬p always

holds

• Inference in λProlog is unsound for classical logic

• Solution: get rid of the LEM!

λProlog 2023-06-30 14 / 22

Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

• Variables are instantiated using unification

• λProlog is based on intuitionistic logic
• The logic taught in the 4th semester is classical logic
• Classical logic assumes the Law of the Excluded Middle, i.e. that p ∨ ¬p always

holds

• Inference in λProlog is unsound for classical logic

• Solution: get rid of the LEM!

λProlog 2023-06-30 14 / 22

Proof Search

• λProlog uses a deterministic, depth-first proof search

• Query 1 and query 2 are logically equivalent
• Semantically, query 1 fails immediately while query 2 will not terminate
• In practice: limit proof search depth

Program

loop :- loop.

Query

?- fail, loop. % query 1

Query

?- loop, fail. % query 2

λProlog 2023-06-30 15 / 22

Proof Search

• λProlog uses a deterministic, depth-first proof search
• Query 1 and query 2 are logically equivalent

• Semantically, query 1 fails immediately while query 2 will not terminate
• In practice: limit proof search depth

Program

loop :- loop.

Query

?- fail, loop. % query 1

Query

?- loop, fail. % query 2

λProlog 2023-06-30 15 / 22

Proof Search

• λProlog uses a deterministic, depth-first proof search
• Query 1 and query 2 are logically equivalent
• Semantically, query 1 fails immediately while query 2 will not terminate

• In practice: limit proof search depth

Program

loop :- loop.

Query

?- fail, loop. % query 1

Query

?- loop, fail. % query 2

λProlog 2023-06-30 15 / 22

Proof Search

• λProlog uses a deterministic, depth-first proof search
• Query 1 and query 2 are logically equivalent
• Semantically, query 1 fails immediately while query 2 will not terminate
• In practice: limit proof search depth

Program

loop :- loop.

Query

?- fail, loop. % query 1

Query

?- loop, fail. % query 2

λProlog 2023-06-30 15 / 22

1. Introduction

2. Logic Programming

3. Prolog

4. λProlog
Syntax
Semantics
Types
Demo

5. Applications

λProlog 2023-06-30 16 / 22

λProlog Types

λProlog is strongly typed

• Based on simply-typed λ calculus

• Built-in sorts (int, real, string, list ...)

• Formulas have special sort o

Example

• The predicate sibling X Y might have type person -> person -> o

• A predicate member X L which encodes that X is a member of list L might
have type A -> (list A) -> o where A is a type variable

• “,” (logical conjunction) has type o -> o -> o

λProlog 2023-06-30 16 / 22

λProlog Types

λProlog is strongly typed

• Based on simply-typed λ calculus

• Built-in sorts (int, real, string, list ...)

• Formulas have special sort o

Example

• The predicate sibling X Y might have type person -> person -> o

• A predicate member X L which encodes that X is a member of list L might
have type A -> (list A) -> o where A is a type variable

• “,” (logical conjunction) has type o -> o -> o

λProlog 2023-06-30 16 / 22

λProlog Types

λProlog is strongly typed

• Based on simply-typed λ calculus

• Built-in sorts (int, real, string, list ...)

• Formulas have special sort o

Example

• The predicate sibling X Y might have type person -> person -> o

• A predicate member X L which encodes that X is a member of list L might
have type A -> (list A) -> o where A is a type variable

• “,” (logical conjunction) has type o -> o -> o

λProlog 2023-06-30 16 / 22

λProlog Types

λProlog is strongly typed

• Based on simply-typed λ calculus

• Built-in sorts (int, real, string, list ...)

• Formulas have special sort o

Example

• The predicate sibling X Y might have type person -> person -> o

• A predicate member X L which encodes that X is a member of list L might
have type A -> (list A) -> o where A is a type variable

• “,” (logical conjunction) has type o -> o -> o

λProlog 2023-06-30 16 / 22

λProlog Demo – 1

• Define new types with kind

and value constructors with type
• Dragons are nocturnal

• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep
• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty type.

kind cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind

and value constructors with type
• Dragons are nocturnal

• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind and value constructors with type

• Dragons are nocturnal
• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind and value constructors with type

• Dragons are nocturnal
• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind and value constructors with type

• Dragons are nocturnal
• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind and value constructors with type
• Dragons are nocturnal

• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 1

• Define new types with kind and value constructors with type
• Dragons are nocturnal

• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep

• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

λProlog 2023-06-30 17 / 22

λProlog Demo – 2

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

Query

Logically, it follows that ∀C daytime C → safe C. We can ask λProlog:
?- pi C\ daytime C => safe C.

λProlog 2023-06-30 18 / 22

1. Introduction

2. Logic Programming

3. Prolog

4. λProlog

5. Applications
Comparison: λProlog vs. Haskell
Who Uses λProlog?
Alternatives to λProlog

λProlog vs. Haskell

Similarities

• Both λProlog and Haskell are based on λ calculus and higher-order logic

• Both support polymorphic types, abstraction via modules, and I/O streams

Differences

1 Purpose
• λProlog has native support for logical inference
• Haskell is better for general-purpose calculation

2 Evaluation
• λProlog works backwards from a goal using unification
• Haskell works forwards using matching-driven lazy evaluation

3 Popularity – Haskell is much more widely used and better documented

λProlog 2023-06-30 19 / 22

λProlog vs. Haskell

Similarities

• Both λProlog and Haskell are based on λ calculus and higher-order logic

• Both support polymorphic types, abstraction via modules, and I/O streams

Differences

1 Purpose
• λProlog has native support for logical inference
• Haskell is better for general-purpose calculation

2 Evaluation
• λProlog works backwards from a goal using unification
• Haskell works forwards using matching-driven lazy evaluation

3 Popularity – Haskell is much more widely used and better documented

λProlog 2023-06-30 19 / 22

λProlog vs. Haskell

Similarities

• Both λProlog and Haskell are based on λ calculus and higher-order logic

• Both support polymorphic types, abstraction via modules, and I/O streams

Differences

1 Purpose
• λProlog has native support for logical inference
• Haskell is better for general-purpose calculation

2 Evaluation
• λProlog works backwards from a goal using unification
• Haskell works forwards using matching-driven lazy evaluation

3 Popularity – Haskell is much more widely used and better documented

λProlog 2023-06-30 19 / 22

λProlog vs. Haskell

Similarities

• Both λProlog and Haskell are based on λ calculus and higher-order logic

• Both support polymorphic types, abstraction via modules, and I/O streams

Differences

1 Purpose
• λProlog has native support for logical inference
• Haskell is better for general-purpose calculation

2 Evaluation
• λProlog works backwards from a goal using unification
• Haskell works forwards using matching-driven lazy evaluation

3 Popularity – Haskell is much more widely used and better documented

λProlog 2023-06-30 19 / 22

Who Uses λProlog?

There are many implementations of λProlog... but what is it used for?

1 Theorem Proving
• Modelling logic frameworks
• Appel (1999), Appel and Felty (2004), Guidi et al. (2019), Kohlhase et al. (2020)

2 Program Verification
• Modelling program specifications
• Andrews (1997), Southern and Nadathur (2014)

3 Algorithm Design
• Modelling search algorithms and compiler design
• Rollins and Wing (1990), Liang (2002)

λProlog 2023-06-30 20 / 22

Who Uses λProlog?

There are many implementations of λProlog... but what is it used for?

1 Theorem Proving
• Modelling logic frameworks
• Appel (1999), Appel and Felty (2004), Guidi et al. (2019), Kohlhase et al. (2020)

2 Program Verification
• Modelling program specifications
• Andrews (1997), Southern and Nadathur (2014)

3 Algorithm Design
• Modelling search algorithms and compiler design
• Rollins and Wing (1990), Liang (2002)

λProlog 2023-06-30 20 / 22

Who Uses λProlog?

There are many implementations of λProlog... but what is it used for?

1 Theorem Proving
• Modelling logic frameworks
• Appel (1999), Appel and Felty (2004), Guidi et al. (2019), Kohlhase et al. (2020)

2 Program Verification
• Modelling program specifications
• Andrews (1997), Southern and Nadathur (2014)

3 Algorithm Design
• Modelling search algorithms and compiler design
• Rollins and Wing (1990), Liang (2002)

λProlog 2023-06-30 20 / 22

Alternatives to λProlog

Languages Inspired by λProlog

• Elf – implements a more expressive logic (LF) but inspired by λProlog

• Makam – a dialect of λProlog for language prototyping (very niche)

Alternatives to λProlog

• HiLog – extends of Prolog to higher-order logic (less general than λProlog)

• Twelf – logically more general than λProlog (also based on LF)

• Interactive Theorem Provers (Isabelle, Coq, Lean) – more control over proof
search

λProlog 2023-06-30 21 / 22

Alternatives to λProlog

Languages Inspired by λProlog

• Elf – implements a more expressive logic (LF) but inspired by λProlog

• Makam – a dialect of λProlog for language prototyping (very niche)

Alternatives to λProlog

• HiLog – extends of Prolog to higher-order logic (less general than λProlog)

• Twelf – logically more general than λProlog (also based on LF)

• Interactive Theorem Provers (Isabelle, Coq, Lean) – more control over proof
search

λProlog 2023-06-30 21 / 22

Conclusion

λProlog ...

• is a declarative logic programming language

• extends Prolog with higher-order logic and types

• can be used for theorem proving and program verification

• mostly used in research

Further Reading

Programming with Higher-Order Logic, Miller and Nadathur (2012)
An Overview of Lambda-Prolog, Nadathur and Miller (1988)

λProlog 2023-06-30 22 / 22

Conclusion

λProlog ...

• is a declarative logic programming language

• extends Prolog with higher-order logic and types

• can be used for theorem proving and program verification

• mostly used in research

Further Reading

Programming with Higher-Order Logic, Miller and Nadathur (2012)
An Overview of Lambda-Prolog, Nadathur and Miller (1988)

λProlog 2023-06-30 22 / 22

Bibliography I

Andrews, J. H. (1997). Executing formal specifications by translation to higher order logic
programming. In Goos, G., Hartmanis, J., Van Leeuwen, J., Gunter, E. L., and Felty, A.,
editors, Theorem Proving in Higher Order Logics, volume 1275, pages 17–32. Springer
Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.

Appel, A. W. (1999). Lightweight Lemmas in λ Prolog. The MIT Press.

Appel, A. W. and Felty, A. P. (2004). Polymorphic lemmas and definitions in Lambda
Prolog and Twelf. Publisher: arXiv Version Number: 1.

Guidi, F., Sacerdoti Coen, C., and Tassi, E. (2019). Implementing type theory in higher
order constraint logic programming. Mathematical Structures in Computer Science,
29(8):1125–1150.

λProlog 2023-06-30 1 / 4

Bibliography II

Kohlhase, M., Rabe, F., Sacerdoti Coen, C., and Schaefer, J. F. (2020). Logic-Independent
Proof Search in Logical Frameworks: (Short Paper). In Peltier, N. and
Sofronie-Stokkermans, V., editors, Automated Reasoning, volume 12166, pages
395–401. Springer International Publishing, Cham. Series Title: Lecture Notes in
Computer Science.

Liang, C. C. (2002). Compiler Construction in Higher Order Logic Programming. In Goos,
G., Hartmanis, J., Van Leeuwen, J., Krishnamurthi, S., and Ramakrishnan, C. R., editors,
Practical Aspects of Declarative Languages, volume 2257, pages 47–63. Springer
Berlin Heidelberg, Berlin, Heidelberg. Series Title: Lecture Notes in Computer Science.

Miller, D. and Nadathur, G. (2012). Programming with Higher-Order Logic. Cambridge
University Press, 1 edition.

Nadathur, G. and Miller, D. (1988). An Overview of Lambda-Prolog.

Rollins, E. J. and Wing, J. M. (1990). Specifications as search keys for software libraries: A
case study using lambda prolog. Technical Report CMU-CS-90-159, Paris.

λProlog 2023-06-30 2 / 4

Bibliography III

Southern, M. and Nadathur, G. (2014). A Lambda Prolog Based Animation of Twelf
Specifications. Publisher: arXiv Version Number: 1.

λProlog 2023-06-30 3 / 4

Intuitionistic Logic in λProlog

The formula p → (p ∨ q) ≡ p ∨ (p → q) is a tautology in classical logic

Proof: If we assume the LEM, then p→ q ≡ ¬p ∨ q holds.
Then

p→ (p ∨ q) ≡ ¬p ∨ (p ∨ q)
≡ p ∨ (¬p ∨ q)
≡ p ∨ (p→ q)

λProlog 2023-06-30 4 / 4

Intuitionistic Logic in λProlog

The formula p → (p ∨ q) ≡ p ∨ (p → q) is a tautology in classical logic

Example 1

Consider trying to prove goal p → (p ∨ q) from the empty program.
This is provable if and only if p ∨ q is provable from p, which is trivial.

Example 2

Consider trying to prove goal p ∨ (p → q) from the empty program.
This is provable if and only if either p is provable from the empty program or if q
is provable from p.
Neither of these is possible!

Conclusion: λProlog semantics are unsound for classical logic

λProlog 2023-06-30 4 / 4

	Introduction
	Logic Programming
	Prolog
	Background
	Horn Clauses
	Examples

	lambdaProlog
	Syntax
	Semantics
	Types
	Demo

	Applications
	Comparison: lambdaProlog vs. Haskell
	Who Uses lambdaProlog?
	Alternatives to lambdaProlog

	Appendix
	References

