
λProlog: Higher-Order Logic Programming
Specialisation Seminar

Jamie Fox



Introduction

• Prolog is a logic programming language

• λProlog extends Prolog

• This talk covers...

- Logic Programming

- Prolog

- λProlog

- Applications
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Predicate Logic In 60 Seconds

Terms

Entity Examples

Variables X, Y, Person

Constants p, cat, anne

Predicates mammal(cat), parent(anne,Person), f(X,g(Y))

Logic Operations

p ∧ q p and q
p ∨ q p or q
p← q p if q (“implied by”)
∃X p There exists an X such that p
∀X p For all X, p
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Logic Programming

• Programming paradigm based on formal logic
• Programs consist of facts and rules

Example

Facts: p(X), parent(anne, bob), even(2)
Rules: sibling(X, Y) ⇐= parent(P, X) ∧ parent(P, Y)

• Typically have a logic program and try to prove a goal

Logic
Programming

Language

Progam

Goal

true ✓

false ✗

Facts & Rules

“Prove this thing”
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Motivation
Why program using formal logic?

1 Proof Formalisation
• Humans can make mistakes in proofs, computers (hopefully!) reason correctly

2 Program Verification
• Testing can not prove that code works as intended – we need logic

3 Modelling Algorithms
• Natural language processing, compiler design, constraint solving, ...
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1. Introduction

2. Logic Programming

3. Prolog
Background
Horn Clauses
Examples

4. λProlog

5. Applications



Prolog – Background

• Developed in France in ∼1972

• Prolog is a declarative language
• Tell Prolog what to prove but not how to prove it

• Based on first-order logic restricted to Horn clauses

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.
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Horn Clause Examples

Horn Clauses

Define goal formulas G and program clauses D as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G

D ::= A | G → D | D ∧ D | ∀X D

where A is a first-order atomic formula and quantification is over variables.

Formula D G

p ∨ (q ∧ r) ✗ ✓
}

No ∨ or ∃ at the top level in programs
∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗
}

No ∀ or→ goals
p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗
}

No quantification over functions
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Prolog – Read, Prove, Print Loop

• Each clause ends with a “.”
• Prolog demos also work in λProlog

Program

owns(alex, cat(fluffy)). % alex owns a cat called fluffy

owns(alex, dog(frodo)).

owns(dave, cat(whiskers)).

Query

?- owns(alex, Pet). % Does alex own any pets?

Pet = cat(fluffy) .

?- owns(dave, cat(X)). % Does dave own any cats?

X = whiskers.
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Prolog Demo

In Prolog clauses, “:-” means “←” and “,” means “∧”

Program

% anne has children bob and cara

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

How many solutions are there?
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Prolog – Multiple Solutions

Program

parent(anne, bob).

parent(anne, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

X = bob,

Y = cara

; % Prolog can output multiple solutions using ;
X = cara,

Y = bob ;

false.
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Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.
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Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.

Provability for first-order Horn clauses is undecidable.
So how did Prolog decide that there are no solutions?
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Negation As Failure

Program

parent(anne, bob).

parent(dave, cara).

sibling(X, Y) :- parent(P, X), parent(P, Y), not(X = Y).

Query

?- sibling(X,Y).

false.

If Prolog fails to find a solution to a query then it is assumed to be false

• e.g. we did not specify whether parent(anne, cara) is true or false, so
Prolog assumes this to be false
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What’s Missing?

1 Higher-Order Logic
First order Horn clauses do not allow...
• Quantification over functions
• → and ∀ in goal clauses

2 Typed Logic Programming
What if we want to restrict predicates to
certain types of objects?

λProlog

Prolog

Higher-Order Logic

Types
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λProlog Background

• Invented in 1987 by Dale Miller and Gopalan Nadathur

• Adds higher-order logic, native lambda expressions, and
polymorphic typing to Prolog

• Based on higher-order hereditary Harrop formulas
(hohh)

hohh
λProlog

Horn clauses
Prolog
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Horn Clauses vs. hohh

hohh

Define goal formulas G and program clauses D for hohh as follows:
G ::= ⊤ | A | G ∧ G | G ∨ G | ∃X G | D → G | ∀X G

D ::= Ar | G → D | D ∧ D | ∀X D

where elements of A are normal forms wrt λ-calculus.

Formula D G

p ∨ (q ∧ r) ✗ ✓

}
Still no ∨ or ∃ at the top level in programs

∃X f(X) ∧ g(X) ✗ ✓

∀X f(X) ✓ ✗

}
∀ and→ are now allowed in goals

p ∧ q→ p ✓ ✗

∀F g(F(x)) ✗ ✗

}
Quantification is now allowed over functions
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Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

1 Start from the goal query

2 Work backwards using the current program state (facts and rules)

3 If stuck:
a) Try to backtrack to an earlier proof state
b) If no more backtracking is possible, then return false

• Variables are instantiated using unification

• λProlog is based on intuitionistic logic
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Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

• Variables are instantiated using unification
• Decidable for first-order logic but undecidable for higher-order logic (beyond

the scope of this talk)

• λProlog is based on intuitionistic logic
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Semantics
How does λProlog find solutions?

• λProlog uses a deterministic proof search

• Variables are instantiated using unification

• λProlog is based on intuitionistic logic
• The logic taught in the 4th semester is classical logic
• Classical logic assumes the Law of the Excluded Middle, i.e. that p ∨ ¬p always

holds

• Inference in λProlog is unsound for classical logic

• Solution: get rid of the LEM!
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Proof Search

• λProlog uses a deterministic, depth-first proof search

• Query 1 and query 2 are logically equivalent
• Semantically, query 1 fails immediately while query 2 will not terminate
• In practice: limit proof search depth

Program

loop :- loop.

Query

?- fail, loop. % query 1

Query

?- loop, fail. % query 2
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λProlog Types

λProlog is strongly typed

• Based on simply-typed λ calculus

• Built-in sorts (int, real, string, list ...)

• Formulas have special sort o

Example

• The predicate sibling X Y might have type person -> person -> o

• A predicate member X L which encodes that X is a member of list L might
have type A -> (list A) -> o where A is a type variable

• “,” (logical conjunction) has type o -> o -> o
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λProlog Demo – 1

• Define new types with kind

and value constructors with type
• Dragons are nocturnal

• If it is daytime in a cave C which contains a dragon D, then the dragon is asleep
• A cave is safe if all dangerous dragons in the cave are asleep

Program

kind dragon_ty type.

kind cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.
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λProlog Demo – 2

Program

kind dragon_ty, cave_ty type.

type asleep, dangerous dragon_ty -> o.

type safe, daytime cave_ty -> o.

type in dragon_ty -> cave_ty -> o.

asleep D :- daytime C, in D C.

safe C :- pi D\ (dangerous D, in D C) => asleep D.

Query

Logically, it follows that ∀C daytime C → safe C. We can ask λProlog:
?- pi C\ daytime C => safe C.
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1. Introduction
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3. Prolog

4. λProlog

5. Applications
Comparison: λProlog vs. Haskell
Who Uses λProlog?
Alternatives to λProlog



λProlog vs. Haskell

Similarities

• Both λProlog and Haskell are based on λ calculus and higher-order logic

• Both support polymorphic types, abstraction via modules, and I/O streams

Differences

1 Purpose
• λProlog has native support for logical inference
• Haskell is better for general-purpose calculation

2 Evaluation
• λProlog works backwards from a goal using unification
• Haskell works forwards using matching-driven lazy evaluation

3 Popularity – Haskell is much more widely used and better documented
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Who Uses λProlog?

There are many implementations of λProlog... but what is it used for?

1 Theorem Proving
• Modelling logic frameworks
• Appel (1999), Appel and Felty (2004), Guidi et al. (2019), Kohlhase et al. (2020)

2 Program Verification
• Modelling program specifications
• Andrews (1997), Southern and Nadathur (2014)

3 Algorithm Design
• Modelling search algorithms and compiler design
• Rollins and Wing (1990), Liang (2002)
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Alternatives to λProlog

Languages Inspired by λProlog

• Elf – implements a more expressive logic (LF) but inspired by λProlog

• Makam – a dialect of λProlog for language prototyping (very niche)

Alternatives to λProlog

• HiLog – extends of Prolog to higher-order logic (less general than λProlog)

• Twelf – logically more general than λProlog (also based on LF)

• Interactive Theorem Provers (Isabelle, Coq, Lean) – more control over proof
search
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Conclusion

λProlog ...

• is a declarative logic programming language

• extends Prolog with higher-order logic and types

• can be used for theorem proving and program verification

• mostly used in research

Further Reading

Programming with Higher-Order Logic, Miller and Nadathur (2012)
An Overview of Lambda-Prolog, Nadathur and Miller (1988)
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Intuitionistic Logic in λProlog

The formula p → (p ∨ q) ≡ p ∨ (p → q) is a tautology in classical logic

Proof: If we assume the LEM, then p→ q ≡ ¬p ∨ q holds.
Then

p→ (p ∨ q) ≡ ¬p ∨ (p ∨ q)
≡ p ∨ (¬p ∨ q)
≡ p ∨ (p→ q)
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Intuitionistic Logic in λProlog

The formula p → (p ∨ q) ≡ p ∨ (p → q) is a tautology in classical logic

Example 1

Consider trying to prove goal p → (p ∨ q) from the empty program.
This is provable if and only if p ∨ q is provable from p, which is trivial.

Example 2

Consider trying to prove goal p ∨ (p → q) from the empty program.
This is provable if and only if either p is provable from the empty program or if q
is provable from p.
Neither of these is possible!

Conclusion: λProlog semantics are unsound for classical logic
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