
Perl

Maximilian egger

Specialisation Seminar

Supervisor:
Prof. Dr. Cezary Kaliszyk

Department of Computer Science
University of Innsbruck

Innsbruck, July 15, 2023

Abstract

This paper presents a comprehensive examination of the Perl programming lan-
guage. Starting with its inception in 1987 by Larry Wall, the paper traces the
evolution of Perl into a powerful and versatile tool for text manipulation, system
administration, and web development. The language’s unique syntax, character-
ized by its expressive yet unconventional design, is explored, highlighting its ability
to handle complex tasks with ease.

In addition to its syntax, the paper explores Perl’s distinguishing features, in-
cluding default variables and robust support for regular expressions. These fea-
tures enable developers to efficiently process and manipulate text data, making
Perl a favored choice for tasks requiring sophisticated pattern matching.

However, the paper also acknowledges certain limitations of Perl. The principle
of ”There’s More Than One Way To Do It” (TIMTOWTDI) can lead to code
readability challenges, especially for those unfamiliar with multiple coding styles.
Furthermore, Perl’s declining popularity compared to languages like Python and
its interpretation overhead raise concerns about performance and industry adop-
tion.

To provide a balanced view, the paper conducts a comparative analysis of Perl
with C and Python. While Perl excels in certain text-processing tasks, C out-
performs it in computationally intensive operations, and Python’s simplicity and
broad library support contribute to its widespread adoption.

In conclusion, this paper serves as a valuable resource for developers seeking
to understand the strengths and weaknesses of Perl. By offering insights into its
unique syntax, distinguishing features, and comparative performance, the paper
equips readers to make informed decisions when choosing a programming language
for their specific projects.

1 Introduction

The Perl programming language was first introduced in 1987 by Larry Wall, with the
focus on the most important principle of language design: “To make easy jobs easy
and hard things not impossible”[8, xvii]. The Perl language prioritizes practicality,
emphasizing ease of use, efficiency, and comprehensive functionality over aesthetic qual-
ities like minimalism or elegance[9]. Often called the “Practical Extraction and Report
Language”[7, 5], Perl revolutionized the manipulation and extraction of information
from text input, surpassing other available languages at the time. Its optimization for
manipulating and scanning text files made it a go-to tool and is a key-factor in its
continuing relevance today. Over the years, the open-source language has evolved with
the support of its vibrant developer community, expanding its capabilities from simple
scripts to building web services and large applications utilizing different programming
paradigms such as Object-Oriented Programming and Functional Programming.

This paper tries to give the readers a brief overview of the Perl programming language.
It begins by exploring the origins of Perl and continues to examine the evolution of

1

Perl into the versatile tool it has become today. Subsequently, a brief explanation
of the Perl language is presented, emphasizing its unusual yet expressive syntax and
rich, community-driven library ecosystem. The discussion proceeds to highlight the
distinguishing features of Perl, including its expressiveness, usage of context, default
variables and its adherence to the principle of offering multiple solutions to problems,
strong text manipulation tools. However, the paper also addresses the limitations of Perl,
including potential challenges in code maintenance and the learning curve associated
with its syntax. Finally, a comparative analysis with Python and C is provided, offering
insights into the unique strengths and weaknesses of each language and aiding developers
in making informed choices for their projects.

2 History

Perl, an expressive and versatile programming language, has a storied history that spans
over three decades. Developed in the late 1980s by Larry Wall, Perl emerged as a re-
sponse to the limitations of existing Unix scripting languages. Wall’s aim was to design
a language that prioritized practicality, focusing on enabling developers to accomplish
both simple and complex tasks effectively[8, xvii–xx].

Wall identified a specific problem prevalent among system administrators at the time –
the lack of scripting languages with robust text processing and manipulation capabili-
ties1[7, 5].
Leveraging his background in linguistics, he sought to create a language that excelled in
these areas[2, 3]. Wall’s innovation provided a powerful solution for system administra-
tors, enabling them to effortlessly extract and manipulate information from text files[7,
8]. The impact of Perl was significant, rapidly gaining popularity within the Unix user
community. Its prowess in text processing made it a preferred tool for log file analysis,
report generation, and data extraction tasks. Beyond system administration, Perl found
applications in diverse fields such as web development and bioinformatics[1].

Over the years, Perl underwent iterative evolution, marked by major releases that in-
troduced new features and enhancements. The language garnered recognition for its
expressive syntax, extensive library ecosystem, and its adherence to the principle of of-
fering multiple solutions to problems. Perl’s flexibility and robust text manipulation
capabilities played pivotal roles in its continuous growth and adoption[7, 6-8][2, 4-5].
Critical to Perl’s evolution and continued relevance was its active and dedicated com-
munity of developers. This community contributed to the language’s expansion, de-
veloping numerous modules and libraries that extended its functionality. The spirit of
collaboration and knowledge sharing within the Perl community fostered a dynamic en-

1Larry Wall interview — Linux Journal https://www.linuxjournal.com/article/3394, visited
09.06.2023

2

vironment, facilitating the language’s ongoing development and adaptation2. Perl has
remained resilient, embracing modern programming paradigms such as Object-Oriented
Programming and Functional Programming, while retaining its core strengths in text
processing[2, 141-162][6, 272-307].

Its enduring impact is a testament to Larry Wall’s visionary approach and the col-
lective efforts of the Perl community. Evidence of Perl’s continued usage can be found
in the statistics of contributions to the Comprehensive Perl Archive Network (CPAN).
While the numbers may be decreasing slowly, the fact that developers continue to con-
tribute to CPAN showcases the enduring relevance of Perl as a programming language.
Perl remains a valuable resource, offering a vast collection of modules and libraries that
are actively maintained and utilized by developers today3.

3 The Perl Language

Perl distinguishes itself from other programming languages by adopting a design that
mirrors human communication rather than being rooted in strict mathematical concepts.
Its syntax, while unique and often considered unconventional, offers powerful features
and flexibility.
In this chapter, readers will be given a short summary of the Perl syntax and some of
its unique characteristics and distinctions from other programming languages many are
familiar with.

3.1 Variable Names and Sigils

In Perl, variable names always have a leading sigil, which indicate their container type.
Scalar variables, representing single values, use the dollar sign ($) sigil. Array or List
variables, use the at sign (@) sigil. Hash variables, representing key-value pairs, use the
percent sign (%) sigil.

my $scalar = 42;

my @list = (1, 2, 3);

my %hash = (’key1’, ’value1 ’, ’key2’, ’value2 ’);

2Comprehensive Perl Archive Network: http://www.cpan.org/misc/cpan-faq.html#How_does_the_

CPAN_work, visited 09.06.2023
3CPAN Tester Statistics:https://stats.cpantesters.org/statscpan.html#milestones, visited
09.06.2023

3

3.2 Context

In Perl, the concept of context refers to how values or expressions are evaluated and
used in different situations. The context influences the behavior and interpretation of
these values. Perl has two primary contexts: scalar context and list context.
It is essential to understand the concept of context in Perl to write effective and accurate
code.

Scalar Context:
In scalar context, a variable or expression is evaluated to produce a single scalar value.
For example, when assigning an array to a scalar variable, only the last element of the
array is stored in the scalar variable. Here’s an example:

my @numbers = (1, 2, 3);

my $last_number = @numbers;

$last_number will be assigned the value 3

List Context:
In list context, a variable or expression is evaluated to produce a list of values. For
instance, when assigning an array to a list of variables, each element of the array is
assigned to the corresponding variable.

my @names = (’Alice’, ’Bob’, ’Charlie ’);

my ($first , $second , $third) = @names;

$first will be ’Alice ’, $second will be ’Bob ’, $third will be ’

Charlie ’

#Invalid! We need to use List context!

my %hash1{("key1", "key2", "key3")} = ("val1", "val2", "val3");

say $hash1{"Max"};

#Correct statement using List Context:

my %hash1;

@hash1 {("Max", "Milla", "Tobi")} = ("Egger", "Maskov", "Krissmer")

;

say $hash1{"Max"};

Context influences various operations and built-in functions in Perl. For example, the
behavior of the reverse function changes depending on the context. In scalar context,
it concatenates the elements of an array into a single string, while in list context, it
reverses the order of the elements.

3.3 Accessing Variables

The sigil used when accessing a variable in Perl varies depending on the intended op-
eration. For instance, when declaring an array as @values, accessing its first element

4

as a single value is done using $values[0]. On the other hand, retrieving a list of values
from the array is achieved using @values[@indices]. The choice of sigil determines the
contextual interpretation when working with variables. Here are some examples:

my @values = (1, 2, 3);

my $scalar = $values [0];#Retrieves a scalar

my @list = @vales [0,1]

my @empty_list = @values [0]; #Retrieves a single element list

List are evaluated to their final element or their length in the scalar context:

my @values = (1, 2, 3);

$length = @values; #Evaluates to the length of the array

$val = @values [(0 ,1)]; #Evaluates to the value of the final index

3.4 Coercion

A variable in Perl has both a container-type - scalar, array or hash - and a value-type.
Variables are either numeric literals, which are represented as integers or double-precision
floating-point values or string literals. Perl is a loosely typed language, and therefore the
value-type of variables can change over time. The container-type of a variable, however,
cannot change.

In Perl, when an operation is performed on a variable or value that expects a specific type,
but the actual value has a different type, coercion occurs. Perl attempts to automatically
convert the value to the expected type to facilitate the operation. If you use a string in a
numeric context, Perl will attempt to convert the string to a numeric value if possible.

my $num = "10"; #Value type: string

$num = $num + 5; #Coercion from string to number

print $num; #Output: 15

$num = $num + "a" #Can’t convert "a" to a number => 0

print $num #Output: 10

3.5 Branching Directives

Like any other modern programming language, Perl also offers branching directives.
They can either be declared in the conventional way, in which the condition is followed
by the instruction - also called prefix if.

if ($value1 > $value2) {

print ’value1 is larger than value 2’;

}

5

Perl, however, also offers the possibility of using the postfix if, where the condition
comes after the instruction. This due to Perl roots in linguistics, because it allows to
express conditions in a way that mirrors how we naturally phrase statements in spoken
language.

print ’value1 is larger than value 2’ if value1 > value2;

3.6 Looping Directives

In Perl, developers can choose between a multiple styles for writing for-loops and while-
loops.

For-loops
The syntax for writing for-loops in Perl is short and concise and allows the developer
to create loops with or without counting variables or to iterate through elements of a
list.

#For -loop without counting variable

for (1..10) {

print "x";

}

#For -loop with counting variable

for my $i (1..10) {

print "$i ";

}

#Foreach -loop for iterating over lists

my @fruits = ("apple", "banana", "orange");

foreach my $fruit (@fruits) {

print "$fruit ";

}

While-loops
While-loops in Perl should look and feel familiar for most developers. But Perl offers an
alternative: The until statement is a conditional construct in Perl that executes a block
of code only if a specified condition is false. It is the opposite of the while statement.

my $count = 1;

until ($count > 5) {

print "$count ";

$count ++;
}

my $count = 1;

until ($count > 5) {

print "$count ";

$count ++;
}

6

4 Distinguishing features of Perl

Perl boasts a set of distinguishing features that contribute to its uniqueness and versa-
tility as a programming language. Firstly, its distinctive yet expressive syntax enables
developers to write concise and powerful code, accommodating a multitude of coding
styles. Secondly, Perl’s robust support for regular expressions empowers advanced pat-
tern matching and sophisticated text manipulation, making it a potent tool for handling
complex data processing tasks. Moreover, Perl is renowned for its default variables,
which provide convenient access to frequently used data and simplify code develop-
ment. Lastly, Perl’s guiding principle of ”There’s More Than One Way To Do It”
(TIMTOWTDI) embraces the flexibility of multiple solutions to a problem, encourag-
ing developers to explore creative and innovative approaches. We will briefly cover the
features mentioned and give a small introduction on the concepts.

4.1 Syntax

Perl’s syntax is probably its most distinguishing and also most powerful feature. In the
previous chapter, we provided a brief overview of Perl syntax, highlighting its flexibility
and unique characteristics. However, delving into every detail of Perl’s syntax would
be beyond the scope of this paper. Nevertheless, it is worth mentioning a couple of
additional examples that demonstrate Perl’s rich syntax. One such feature is the ability
to access array elements using negative indices, allowing easy retrieval of elements from
the end of the array without explicit calculations. Another intriguing aspect is Perl’s
treatment of strings when used with the ++ operator, enabling string increment opera-
tions. These are just a glimpse of the many distinctive syntax elements that contribute
to Perl’s power and versatility, making it a language well-suited for a wide range of
programming tasks[2][7].

4.2 Default Variables

Perl’s default variables are a unique and powerful feature that sets it apart from other
programming languages. These variables are automatically available for use without
explicit declaration, providing convenient access to commonly used data within Perl
programs. They are denoted by special punctuation symbols, such as $, $@, $., and
others, and they carry specific meanings based on the context in which they are used.

4.2.1 $ - The default scalar variable

It serves as the default target for many built-in functions and operations, eliminating the
need for declaring and assigning variables in certain contexts. Functions and operators
use this variable as a default, if no parameter is explicitly used. In loops, the default

7

scalar variable is a convenient placeholder that references the current element being
processed in the loop. Additionally, when dealing with open files, $ represents the
current line, allowing seamless file processing without requiring an explicit variable to
hold the line content.

$_ = ’My name is Maximilian ’;

say;

#Output: "My name is Maximilian"

print "#$_ " for 1 .. 3;

#Output: "#1 #2 #3"

my @fruits = ("apple , banana , melon");

print "$_" for @fruits;

#Output: "apple , banana , melon"

4.2.2 @ - The default array variable

In contrast to many other programming languages, Perl subroutines do not explicitly
declare their arguments. Instead, Perl uses the default array variable @ to capture the
arguments passed to the subroutine during the function call. By accessing the elements
of @ directly within the subroutine code, Perl enables more flexible and concise function
definitions, allowing subroutines to handle varying numbers of arguments seamlessly.

sub print_arguments {

my ($first_arg , $second_arg) = @_;

say "$first_arg $second_arg";
}

print_arguments("Hello", "World");

#Output: "Hello World"

4.2.3 $. - Current line number variable

The $. variable in Perl is a special built-in variable that represents the current line
number in a file being processed. It provides a convenient way to keep track of the
line number while reading or processing files in Perl scripts. This feature is particularly
useful in tasks that involve parsing or filtering data from text files.

while (<$file >) {

print "$. $_";
}

#Outputs each line of the open file with the current

#line number in front

8

4.3 Regular Expressions

Regular Expressions in Perl are a powerful and fundamental feature that has played a
significant role in making Perl a dominant force in text processing and pattern match-
ing. Regular expressions, commonly known as regex, provide a concise and expressive
syntax for describing complex text patterns. In Perl, regular expressions are seamlessly
integrated into the language, enabling developers to perform advanced string manipula-
tions, data extraction, and pattern matching with ease[3, 283-285].
While Perl didn’t create regular expressions, it certainly played a crucial role in popu-
larizing them among developers. The flexibility and efficiency offered by Perl’s regular
expressions attracted programmers dealing with text processing tasks, and its expressive
syntax became a model for regular expression support in other programming languages.
Many languages nowadays offer regular expression packages that are “Perl compatible”[3,
90-91].

In Perl, you can use regular expressions by using the powerful built-in support for regex
through the matching operator m// (the m can be omitted for simplicity) and the
substitution operator s///. The m// operator is used to match a regex pattern against
a string, while the s/// operator is used for search and replace operations with regex.
Using the binding operator = we can apply the regex defined in the second operand to
the string of the first operand.

my $name = ’Chatfield ’;

say ’Found a hat!’ if $name =~ /hat/;

#Output: "Found a hat!"

Moreover, Perl compatible regular expressions provide several quantifiers, such as *, +,
?, and {}, which offer different ways to define the repetition:

• The * quantifier matches zero or more occurrences of the preceding element.

• The + quantifier matches one or more occurrences of the preceding element.

• The ? quantifier matches zero or one occurrence of the preceding element (making
it optional).

• The {} quantifiers, like {n} or {n, m}, allow you to specify exact or range-based
repetitions, respectively.

my $string = ’Brussle ’;

say ’True’ if $string =~ /m?ussle/; #Output: True

$string = ’mmmmssle ’;

say ’True’ if $string =~ /mu**ssle/; #Output: True

$string = ’ussle’;

say ’False’ if $string !~ /m+ussle/; #Output: False

Perl compatible regular expressions offer many more features than matching, substitu-
tion and quantifiers, but it would again break the scope of this paper to go into more
detail.

9

4.4 TIMTOWTDI - There’s More Than One Way To Do It

Unlike many other programming languages that promote a single prescribed approach
to problem-solving, Perl embraces a contrasting philosophy known as TIMTOWTDI,
which stands for “There’s More Than One Way To Do It”. It reflects Perl’s philosophy
of providing multiple, diverse solutions to a problem, allowing developers the freedom to
choose the approach that best fits their coding style and preferences. Perl embraces the
idea that different developers may have distinct perspectives and ways of tackling a task,
and rather than imposing a single rigid solution, it encourages creativity and flexibility.
This philosophy is deeply embedded in Perl’s design and is evident in various aspects of
the language, such as its expressive and adaptable syntax, powerful regular expression
support, and numerous built-in functions. The TIMTOWTDI principle empowers Perl
programmers to explore various coding techniques and discover innovative solutions that
suit their specific needs[2, 3].

5 Limitations

While Perl is a powerful and versatile programming language, it does come with cer-
tain limitations that developers should be aware of. Understanding these limitations is
essential for making informed decisions when choosing a programming language for a
specific project.

5.1 Too many ways to do it?

The ”There’s More Than One Way To Do It” (TIMTOWTDI) principle in Perl, while
promoting flexibility and creativity, can also lead to some challenges and potential issues
in certain contexts. With numerous ways to accomplish the same task, Perl code can
become difficult to read and understand, especially for developers who are not familiar
with the various coding styles. This can pose challenges for team collaboration and
code maintenance over time. TIMTOWTDI can lead to inconsistencies in codebases,
as different developers may choose different approaches for similar tasks. Establishing
coding standards and maintaining consistency across projects can become challenging.
For beginners or developers transitioning to Perl from other languages, the abundance
of options may initially be overwhelming. The learning curve can be steeper due to the
need to understand various syntaxes and approaches for accomplishing tasks. When en-
countering issues in Perl code, it may be more challenging to identify the root cause, as
there could be multiple ways to implement a certain feature or algorithm. Overall, while
TIMTOWTDI offers creative possibilities, developers must carefully consider trade-offs
and employ best practices to mitigate potential issues related to code readability, main-
tainability, and consistency[5, 212-213].

10

5.2 Perl is scripting language

As a scripting language, Perl offers powerful text-processing capabilities and quick devel-
opment cycles, making it an excellent choice for automating tasks and handling diverse
data formats. However, its nature as an interpreted language means that Perl code
cannot be easily obfuscated to hide its intent, making it more transparent and acces-
sible. Additionally, due to the interpretation process, Perl programs tend to be slower
compared to well-optimized programs written in compiled languages like C or C++[4].

5.3 Code readability

Code readability in Perl can sometimes be challenging, especially when default variables
and one-liners are involved. Default variables like $, which are automatically used by
certain functions and loops, can make code terse but less self-explanatory, as it may
not be immediately clear which variable is being operated on. Similarly, Perl’s one-
liners, though powerful for quick text processing tasks, can quickly become difficult to
comprehend as they often pack multiple operations into a single line. This conciseness,
while efficient for short scripts, can lead to reduced readability and maintenance issues
in larger projects. If one would like an example of the difficulty to read concise, Perl
scripts, please refer to the list of Perl one-liners and try to interpret them.

5.4 Popularity

Over the years, Perl has experienced a decline in popularity compared to other program-
ming languages. One contributing factor to this trend may be the emergence of newer
languages with a focus on simplicity, performance, and modern paradigms. While Perl
remains a powerful language with its strengths in text processing and scripting tasks, its
complex syntax and steep learning curve may deter newcomers and developers seeking
more approachable alternatives4.
The dwindling popularity of Perl presents a significant challenge due to the network
effect, where the value and utility of a language increase with the number of users and
contributors. As a language’s community grows, it fosters an ecosystem of libraries,
frameworks, and tools, enriching the development experience and making it more at-
tractive to new developers. Conversely, a declining user base may lead to a reduced
focus on language development, fewer updates, and a shrinking pool of resources and
expertise. This, in turn, could create a self-reinforcing cycle, making it less appealing
for developers to invest in Perl projects.

4TIOBE Index: https://www.tiobe.com/tiobe-index/ visited 13.07.2023

11

https://catonmat.net/ftp/perl1line.txt

Figure 1: Program run time on the z1000 data set on logarithmic axis

Source: Prechelt, L. (2000)[4]

6 Comparison to C and Python

This section provides a comparative analysis of Perl with two other widely used pro-
gramming languages: C and Python. Each language possesses unique characteristics,
strengths, and trade-offs that make them suitable for different types of projects and pro-
gramming paradigms. By exploring the key differences and similarities between Perl, C,
and Python, this section aims to help developers make informed decisions when selecting
the most appropriate language for their specific programming requirements.
We will compare the programming languages by looking at the paper “An empirical com-
parison of C, C++, Java, Perl, Python, Rexx, and Tcl for a search/string-processing
program” published by Lutz Prechelt in the year 2000[4]. The paper tries to compare
the programming languages by giving a number of developers specialized in different
programming languages the same task.

12

Figure 2: Program run time on the z1000 data set on logarithmic axis

Source: Prechelt, L. (2000)[4]

13

Figure 3: Program run time on the z1000 data set on logarithmic axis

Source: Prechelt, L. (2000)[4]

14

6.1 Comparison to C

Upon reviewing figures 1-3, several conclusions can be drawn regarding the performance
and coding complexity of the compared programming languages. Firstly, the optimized
C program demonstrates superior performance compared to Perl programs, indicating
that C is well-suited for computationally intensive tasks and offers efficient execution.
Additionally, it becomes apparent that working with C might demand a higher level of
expertise, as its optimization and memory management require a deeper understanding
of low-level concepts. Moreover, the figures suggest that accomplishing a simple task
in C may require a larger number of lines of code compared to Perl, highlighting the
language’s potential for increased development effort for straightforward tasks. These
observations underscore the trade-offs and considerations developers should consider
when choosing between C and Perl for different types of projects.

6.2 Comparison to Python

After analyzing figures 1-3, we notice that Perl and Python perform almost the same in
terms of speed and memory consumption and require approximately the same amount
of lines of code. However, Python is vastly more popular (rank 1 on the TIOBE index,
compared to Perl’s rank 27 5), and there are several reasons why. First, Python has
a simpler and more readable syntax, making it easier for beginners to learn and use.
Second, Python has strong libraries for important areas like data science and machine
learning, which makes it highly valuable in those fields. Third, many industries have
adopted Python as their go-to language, making it widely used and supported. Lastly,
the more people use Python, the more valuable it becomes due to the network effect,
where its benefits grow with its popularity. All these factors contribute to Python’s
widespread acceptance and explain why it has become more popular than Perl despite
similar performance.

7 Conclusion

In conclusion, Perl stands as a language with distinctive and powerful syntax, offering
developers a wide range of creative solutions for various tasks. It continues to excel in
system administration and text manipulation tasks, leveraging its strengths in regular
expressions and text processing capabilities. Moreover, its community remains dedi-
cated, providing ongoing support and development for the language. However, Perl’s
future growth potential is hindered by the lack of widespread industry adoption, re-
sulting in limited interest from new developers. While Perl retains its effectiveness for

5TIOBE Index: https://www.tiobe.com/tiobe-index/ visited 13.07.2023

15

specific use cases, the overall trajectory suggests that its popularity will continue to de-
cline. Nonetheless, Perl will continue to serve as a valuable tool for those who appreciate
its strengths and rely on its capabilities in their domains.

16

References

[1] Beginner’s Introduction to Perl — perl.com. https://www.perl.com/pub/2008/

04/23/a-beginners-introduction-to-perl-510.html/. [Accessed 09-Jun-2023].

[2] Chromatic. Modern Perl 4e. Pragmatic Programmers, Raleigh, NC, Nov. 2015.

[3] J. E. Friedl. Mastering regular expressions. ” O’Reilly Media, Inc.”, 2006.

[4] L. Prechelt. An empirical comparison of c, c++, java, perl, python, rexx and tcl.
IEEE Computer, 33(10):23–29, 2000.

[5] L. Prechelt. Are scripting languages any good? a validation of perl, python, rexx,
and tcl against c, c++, and java. Adv. Comput., 57:205–270, 2003.

[6] L. Rosenfeld and A. B. Downey. Think Perl 6. O’Reilly Media, May 2017.

[7] R. Schwartz, b. d. foy, and T. Phoenix. Learning Perl. O’Reilly Media, 2011.

[8] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly Media, Se-
bastopol, CA, 3 edition, July 2000.

[9] L. Wall et al. The perl programming language, 1994.

17

https://www.perl.com/pub/2008/04/23/a-beginners-introduction-to-perl-510.html/
https://www.perl.com/pub/2008/04/23/a-beginners-introduction-to-perl-510.html/

	Introduction
	History
	The Perl Language
	Variable Names and Sigils
	Context
	Accessing Variables
	Coercion
	Branching Directives
	Looping Directives

	Distinguishing features of Perl
	Syntax
	Default Variables
	$_ - The default scalar variable
	@_ - The default array variable
	$. - Current line number variable

	Regular Expressions
	TIMTOWTDI - There's More Than One Way To Do It

	Limitations
	Too many ways to do it?
	Perl is scripting language
	Code readability
	Popularity

	Comparison to C and Python
	Comparison to C
	Comparison to Python

	Conclusion

