Einführung in die Theoretische Informatik

Christian Dalvit Manuel Eberl Samuel Frontull **Cezary Kaliszyk** Daniel Ranalter

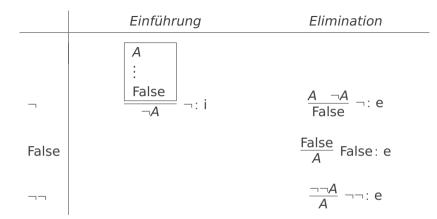
Wintersemester 2022/23

Zusammenfassung

Wintersemester 2022/23

Zusammenfassung der letzten LVA

	Einführung	Elimination
\wedge	$\frac{A}{A \wedge B} \wedge : i$	$\frac{A \wedge B}{A} \wedge : e \frac{A \wedge B}{B} \wedge : e$
V	$\frac{A}{A \vee B} \vee : i \frac{B}{A \vee B} \vee : i$	$ \begin{array}{c cccc} A & B \\ \vdots & \vdots \\ C & C \end{array} $ \times \to: e
\rightarrow	$ \begin{array}{c} A \\ \vdots \\ B \\ \hline A \to B \end{array} \to: i $	$\frac{A A \rightarrow B}{B} \rightarrow : e$



Der Kalkül NK des natürlichen Schließens besteht aus den gerade betrachteten Beweisregeln.

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Kalkül des natürlichen Schließens, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

algebraische Strukturen, Boolesche Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen, Chomsky-Hierarchie, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Kalkül des natürlichen Schließens, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

algebraische Strukturen, Boolesche Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen, Chomsky-Hierarchie, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Beispiel (Wiederholung)

Wir betrachten die Ableitung der Formel $\neg\neg p \to p$

1	$\neg\neg p$	Prämisse
2	р	¬¬: e
3	$ \ \ abla abla$	1, 2, →: i

Beispiel (Wiederholung)

Wir betrachten die Ableitung der Formel $\neg \neg p \rightarrow p$

1	$\neg \neg p$	Prämisse
2	р	¬¬: e
3	$ eg \neg p ightarrow p$	1, 2, →: i

Beispiel

Wir betrachten die Ableitung der Umkehrung

Beispiel (Wiederholung)

Wir betrachten die Ableitung der Formel $\neg \neg p \rightarrow p$

1	$\neg \neg p$	Prämisse
2	р	¬¬: e
3	$ eg \neg p ightarrow p$	1, 2, →: i

Beispiel

Wir betrachten die Ableitung der Umkehrung

Beispiel (Abgeleitete Regel ¬¬: i)

Mit der selben Ableitung erhalten wir die folgende (abgeleitete) Inferenzregel:

$$\frac{A}{\neg \neg A} \neg \neg : i$$

NB: Wir schreiben Inferenzregeln immer mit den Metavariablen für Formeln A, B, C . . .

Beispiel (Abgeleitete Regel ¬¬: i)

Mit der selben Ableitung erhalten wir die folgende (abgeleitete) Inferenzregel:

$$\frac{A}{\neg \neg A} \neg \neg : i$$

NB: Wir schreiben Inferenzregeln immer mit den Metavariablen für Formeln $A, B, C \dots$

Beispiel

Wir betrachten noch eine weitere abgeleitete Inferenzregel, nämlich den Widerspruchsbeweis (WB):

Die Ableitung der Regel WB gelingt wie folgt: 1

 $\neg A$

 $\neg A \rightarrow False Prämisse. \rightarrow : i$ Prämisse

False

1, 2, \rightarrow : e

5

A

2.3.¬: i 4,¬¬: e

universität innsbruck

Die Ableitung der Regel WB gelingt wie folgt: 1

A

 $\neg A$

False

$$p \lor q$$
 Prämisse

 $a \lor p = 2, \lor : i$

 $\neg A \rightarrow False Prämisse. \rightarrow : i$

Prämisse

1, 2, \rightarrow : e 2.3.¬: i 4,¬¬: e

$$q \lor p$$
 4, \lor : i

$$q \lor p$$
 1,2-3,4-5, \lor : e

Beispiel

Nun wollen wir noch
$$p \lor q \vdash q \lor p$$
 zeigen:

universität

innsbruck

Die Ableitung der Regel WB gelingt wie folgt: 1

$$p \lor q$$
 Prämisse

 $a \lor p = 2, \lor : i$

$$q \vee p \quad \text{Pramis}$$

2	¬A	Prairiisse	
3	False	1, 2, →: e	

D.........

 $\neg A \rightarrow \text{False}$ Prämisse. \rightarrow : i

Beispiel

Nun wollen wir noch
$$p \lor q \vdash q \lor p$$
 zeigen:

Prämisse

Die Ableitung der Regel WB gelingt wie folgt: 1

3

3 4

Α

 $\neg A$

False

 $p \vee q$

1,

Prämisse

Prämisse

Prämisse

 $\neg A \rightarrow False Prämisse. \rightarrow : i$

 $\frac{1, 2, \rightarrow : e}{2.3, \neg : i}$

Prämisse

4,¬¬: e

Beispiel

Nun wollen wir noch $p \lor q \vdash q \lor p$ zeigen:

2 3

3

6

5

 $q \lor p$ 4, \lor : i

 $q \lor p$ 1,2-3,4-5, \lor : **e**

 $a \lor p = 2, \lor : i$

Diskurs: Axiome für die Aussagenlogik nach Frege und Łukasiewicz

 Der Kalkül NK des natürlichen Schließens ist (beileibe) nicht der einzige korrekte und vollständige Kalkül für die Aussagenlogik.

Diskurs: Axiome für die Aussagenlogik nach Frege und Łukasiewicz

• Der Kalkül NK des natürlichen Schließens ist (beileibe) nicht der einzige korrekte und vollständige Kalkül für die Aussagenlogik.

Definition

Axiome für die Aussagenlogik nach Frege und Łukasiewicz

$$(1) \qquad A \to (B \to A)$$

$$(2) \qquad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$(3) \qquad (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

Satz

Das Axiomensystem nach Frege und Łukasiewicz mit Inferenzregel Modus Ponens ist korrekt und vollständig für die Aussagenlogik.

Konjunktive und Disjunktive Normalformen

Wintersemester 2022/23

Eine Wahrheitsfunktion $f: \{T, F\}^n \to \{T, F\}$ ist eine Funktion, die n Wahrheitswerten einen Wahrheitswert zuordnet (vgl. Rechnerarchitektur)

Eine Wahrheitsfunktion $f: \{T, F\}^n \to \{T, F\}$ ist eine Funktion, die n Wahrheitswerten einen Wahrheitswert zuordnet (vgl. Rechnerarchitektur)

Definition

Sei $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion; wir definieren:

$$\mathsf{TV}(f) := \{(s_1, \ldots, s_n) \mid f(s_1, \ldots, s_n) = \mathsf{T}\}\$$

Eine Wahrheitsfunktion $f: \{T, F\}^n \to \{T, F\}$ ist eine Funktion, die n Wahrheitswerten einen Wahrheitswert zuordnet (vgl. Rechnerarchitektur)

Definition

Sei $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion; wir definieren:

$$\mathsf{TV}(f) := \{(s_1, \dots, s_n) \mid f(s_1, \dots, s_n) = \mathsf{T}\}$$

Definition (Konjunktive und Disjunktive Normalform)

- **1** Ein Literal ist ein Atom p oder die Negation eines Atoms $\neg p$
- Formel *A* ist in disjunktiver Normalform (DNF), wenn *A* eine Disjunktion von Konjunktionen von Literalen
- 3 Formel A ist in konjunktiver Normalform (KNF), wenn A eine Konjunktion von Disjunktionen von Literalen

• $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion $TV(f) \neq \emptyset$, $TV(f) \neq \{T, F\}^n$

- $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion $TV(f) \neq \emptyset$, $TV(f) \neq \{T, F\}^n$
- p_1, \ldots, p_n atomare Formeln

- $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion $TV(f) \neq \emptyset$, $TV(f) \neq \{T, F\}^n$
- p_1, \ldots, p_n atomare Formeln
- Sei DNF D definiert als:

$$D := \bigvee_{(s_1,\ldots,s_n)\in\mathsf{TV}(f)} \bigwedge_{i=1}^n A_i$$

wobei $A_i = p_i$, wenn $s_i = T$ und $A_i = \neg p_i$ sonst

- $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion $TV(f) \neq \emptyset$, $TV(f) \neq \{T, F\}^n$
- p_1, \ldots, p_n atomare Formeln
- Sei DNF D definiert als:

$$oldsymbol{\mathsf{D}} := igvee_{(s_1,\ldots,s_n)\in\mathsf{TV}(f)}igwedge_{i=1}^n A_i$$

wobei $A_i = p_i$, wenn $s_i = T$ und $A_i = \neg p_i$ sonst

Sei KNF K definiert als:

$$\mathcal{K} := \bigwedge_{(s_1,...,s_n) \not\in \mathsf{TV}(f)} \bigvee_{j=1}^n B_j$$

wobei $B_j = \neg p_j$, wenn $s_j = T$ und $B_j = p_j$ sonst

- $f: \{T, F\}^n \to \{T, F\}$ eine Wahrheitsfunktion $TV(f) \neq \emptyset$, $TV(f) \neq \{T, F\}^n$
- p_1, \ldots, p_n atomare Formeln
- Sei DNF D definiert als:

$$oldsymbol{\mathsf{D}} := igvee_{(s_1,\ldots,s_n)\in\mathsf{TV}(f)}igwedge_{i=1}^n A_i$$

wobei $A_i = p_i$, wenn $s_i = T$ und $A_i = \neg p_i$ sonst

Sei KNF K definiert als:

$$K := \bigwedge_{(s_1,\ldots,s_n) \notin \mathsf{TV}(f)} \bigvee_{j=1}^n B_j$$

wobei $B_j = \neg p_j$, wenn $s_j = T$ und $B_j = p_j$ sonst

• Die Wahrheitstabellen von D und K entsprechen der Wahrheitsfunktion f

1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden

- 1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden
- 2 Jede Formel mit n Atomen induziert eine Wahrheitsfunktion in n Variablen

- 1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden
- 2 Jede Formel mit n Atomen induziert eine Wahrheitsfunktion in n Variablen

Beweis.

- Es fehlen die Fälle, wo die Wahrheitsfunktion trivial ist:
 - TV(f) = ∅
 - $TV(f) = \{T, F\}^n$

- 1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden
- 2 Jede Formel mit n Atomen induziert eine Wahrheitsfunktion in n Variablen

Beweis.

- Es fehlen die Fälle, wo die Wahrheitsfunktion trivial ist:
 - TV(f) = ∅
 - $TV(f) = \{T, F\}^n$
- 2 Setze $D = K := \bigwedge_{i=1}^{n} (p_i \wedge \neg p_i)$ im ersten Fall
- **3** Setze $D = K := \bigvee_{i=1}^{n} (p_i \vee \neg p_i)$ im zweiten Fall

- 1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden
- 2 Jede Formel mit n Atomen induziert eine Wahrheitsfunktion in n Variablen

Beweis.

- Es fehlen die Fälle, wo die Wahrheitsfunktion trivial ist:
 - TV(f) = ∅
 - $TV(f) = \{T, F\}^n$
- 2 Setze $D = K := \bigwedge_{i=1}^{n} (p_i \wedge \neg p_i)$ im ersten Fall
- **3** Setze $D = K := \bigvee_{i=1}^{n} (p_i \vee \neg p_i)$ im zweiten Fall

- 1 Jede Wahrheitsfunktion kann als DNF oder KNF ausgedrückt werden
- 2 Jede Formel mit n Atomen induziert eine Wahrheitsfunktion in n Variablen

Beweis.

- Es fehlen die Fälle, wo die Wahrheitsfunktion trivial ist:
 - $TV(f) = \emptyset$
 - $TV(f) = \{T, F\}^n$
- 2 Setze $D = K := \bigwedge_{i=1}^{n} (p_i \wedge \neg p_i)$ im ersten Fall
- **3** Setze $D = K := \bigvee_{i=1}^{n} (p_i \vee \neg p_i)$ im zweiten Fall

Folgerung

Für jede Formel A existiert eine DNF D und eine KNF K, sodass $A \equiv D \equiv K$ gilt.

Die folgende Operation (⊕) wird XOR genannt:

р	q	$p\oplusq$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Die folgende Operation (⊕) wird XOR genannt:

р	q	$p\oplusq$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Wir erstellen die KNF.

Die folgende Operation (⊕) wird XOR genannt:

Wir erstellen die KNF.

$$\mathsf{TV}(\oplus) = \{(\mathsf{F},\mathsf{T}),(\mathsf{T},\mathsf{F})\}$$

Die folgende Operation (⊕) wird XOR genannt:

Wir erstellen die KNF.

$$\mathsf{TV}(\oplus) = \{(\mathsf{F},\mathsf{T}),(\mathsf{T},\mathsf{F})\}$$

p_1	p ₂	$p_1 \oplus p_2$	Disjunktion
F	F	F	
Т	Т	F	

Beispiel

Die folgende Operation (⊕) wird XOR genannt:

Wir erstellen die KNF.

$$\mathsf{TV}(\oplus) = \{(\mathsf{F},\mathsf{T}),(\mathsf{T},\mathsf{F})\}$$

p_1	p ₂	$p_1 \oplus p_2$	Disjunktion
F	F	F	$p_1 \lor p_2$
Т	Т	F	

Beispiel

Die folgende Operation (⊕) wird XOR genannt:

Wir erstellen die KNF.

$$\mathsf{TV}(\oplus) = \{(\mathsf{F},\mathsf{T}),(\mathsf{T},\mathsf{F})\}$$

p_1	p ₂	$p_1 \oplus p_2$	Disjunktion
F	F	F	$p_1 \lor p_2$
Т	Т	F	$\neg p_1 \lor \neg p_2$

Beispiel

Die folgende Operation (⊕) wird XOR genannt:

Wir erstellen die KNF.

$$\mathsf{TV}(\oplus) = \{(\mathsf{F},\mathsf{T}),(\mathsf{T},\mathsf{F})\}$$

p_1	p ₂	$p_1 \oplus p_2$	Disjunktion	KNF
F	F	F	$p_1 \lor p_2$	
Т	Т	F	$\neg p_1 \lor \neg p_2$	$(p_1 \vee p_2) \wedge (\neg p_1 \vee \neg p_2)$

Algebraische Strukturen

Wintersemester 2022/23

Eine Algebra $\mathcal{A} = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- lacksquare Träger (oder Trägermengen) A_1,\ldots,A_n
- **2** Operationen \circ_1, \ldots, \circ_m auf den Trägern

Eine Algebra $A = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- **2** Operationen \circ_1, \ldots, \circ_m auf den Trägern

Eine Algebra $\mathcal{A} = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- **2** Operationen ○1,..., ○m auf den Trägern

Eine Algebra $A = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- 2 Operationen \circ_1, \ldots, \circ_m auf den Trägern

Nullstellige Operationen werden auch Konstanten genannt; wir fixieren eine unendliche Menge von Variablen x_1, x_2, \ldots und für jede Operation \circ_i der Algebra $\mathcal A$ ein Symbol \circ_i der gleichen Stelligkeit

Eine Algebra $A = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- 2 Operationen \circ_1, \ldots, \circ_m auf den Trägern

Nullstellige Operationen werden auch Konstanten genannt; wir fixieren eine unendliche Menge von Variablen x_1, x_2, \ldots und für jede Operation \circ_i der Algebra \mathcal{A} ein Symbol \circ_i der gleichen Stelligkeit

Definition (Algebraische Ausdrücke)

Wir definieren die algebraischen Ausdrücke einer Algebra \mathcal{A} induktiv:

Eine Algebra $A = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- **2** Operationen \circ_1, \ldots, \circ_m auf den Trägern

Nullstellige Operationen werden auch Konstanten genannt; wir fixieren eine unendliche Menge von Variablen x_1, x_2, \ldots und für jede Operation \circ_i der Algebra \mathcal{A} ein Symbol \circ_i der gleichen Stelligkeit

Definition (Algebraische Ausdrücke)

Wir definieren die algebraischen Ausdrücke einer Algebra \mathcal{A} induktiv:

I Konstanten und Variablen sind algebraische Ausdrücke.

Eine Algebra $\mathcal{A} = \langle A_1, \dots, A_n; \circ_1, \dots, \circ_m \rangle$ besteht aus

- **1** Träger (oder Trägermengen) A_1, \ldots, A_n
- 2 Operationen \circ_1, \ldots, \circ_m auf den Trägern

Nullstellige Operationen werden auch Konstanten genannt; wir fixieren eine unendliche Menge von Variablen x_1, x_2, \ldots und für jede Operation \circ_i der Algebra $\mathcal A$ ein Symbol \circ_i der gleichen Stelligkeit

Definition (Algebraische Ausdrücke)

Wir definieren die algebraischen Ausdrücke einer Algebra \mathcal{A} induktiv:

- I Konstanten und Variablen sind algebraische Ausdrücke.
- Wenn A_1, \ldots, A_n algebraische Ausdrücke, \circ eine Operation, dann ist $\circ (A_1, \ldots, A_n)$ ein algebraischer Ausdruck

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	С
d	d	а	b	С

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	С
d	d	а	b	С

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d	
а	а				
b	b	С	d	a	
С		d			
d	d	а	b	С	

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d	
а	а	b	С	d	
b	b	С	d	a	
С	С	d	а	С	
d	d	а	b	С	

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	a
С	С	d	а	С
d	d	a	b	С

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	a
С			а	
d	d	a	b	С

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

Seien A und B algebraische Ausdrücke

- A und B sind aquivalent, wenn \forall Instanzen A' und B' gilt: A' = B'
- Wenn A äquivalent zu B ist, schreiben wir kurz $A \approx B$

Definition

Wenn die Träger von ${\mathcal A}$ endlich sind, dann nennen wir ${\mathcal A}$ endlich

Beispiel

0	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	С
d	d	а	b	С

Definition

Sei ∘ eine binäre Operation auf A

Definition

Sei ∘ eine binäre Operation auf A

• Wenn $0 \in A$ existiert, sodass für alle $a \in A$

$$a \circ 0 = 0 \circ a = 0$$

dann heißt 0 Nullelement für o

Definition

Sei ∘ eine binäre Operation auf A

• Wenn $0 \in A$ existiert, sodass für alle $a \in A$

$$a \circ 0 = 0 \circ a = 0$$

dann heißt 0 Nullelement für o

• Wenn $1 \in A$ existiert, sodass für alle $a \in A$

$$a \circ 1 = 1 \circ a = a$$

dann heißt 1 Einselement (neutrales Element) für o

Definition

Sei ∘ eine binäre Operation auf A

• Wenn $0 \in A$ existiert, sodass für alle $a \in A$

$$a \circ 0 = 0 \circ a = 0$$

dann heißt 0 Nullelement für o

• Wenn $1 \in A$ existiert, sodass für alle $a \in A$

$$a \circ 1 = 1 \circ a = a$$

dann heißt 1 Einselement (neutrales Element) für o

• Sei 1 das neutrale Element für \circ und für $a \in A$, existiert $b \in A$, sodass

$$a \circ b = b \circ a = 1$$

Dann heißt b das Inverse (Komplement) von a

Definition

Eine Algebra $\mathcal{A} = \langle A; \circ \rangle$ heißt

Definition

Eine Algebra $A = \langle A; \circ \rangle$ heißt

• Halbgruppe, wenn ∘ assoziativ

Definition

Eine Algebra $A = \langle A; \circ \rangle$ heißt

- Halbgruppe, wenn o assoziativ
- Monoid, wenn $A = \langle A; \circ, 1 \rangle$ eine Halbgruppe mit Einselement 1 für \circ

Definition

Eine Algebra $A = \langle A; \circ \rangle$ heißt

- Halbgruppe, wenn ∘ assoziativ
- Monoid, wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ eine Halbgruppe mit Einselement 1 für \circ
- ullet Gruppe, wenn ${\mathcal A}$ ein Monoid ist und jedes Element ein Inverses hat

Definition

Eine Algebra $A = \langle A; \circ \rangle$ heißt

- Halbgruppe, wenn ∘ assoziativ
- Monoid, wenn $\mathcal{A} = \langle A; \circ, 1 \rangle$ eine Halbgruppe mit Einselement 1 für \circ
- ullet Gruppe, wenn ${\cal A}$ ein Monoid ist und jedes Element ein Inverses hat

Eine Halbgruppe, ein Monoid oder eine Gruppe heißt kommutativ, wenn o kommutativ

Definition

Eine Algebra $A = \langle A; \circ \rangle$ heißt

- Halbgruppe, wenn ∘ assoziativ
- Monoid, wenn $A = \langle A; \circ, 1 \rangle$ eine Halbgruppe mit Einselement 1 für \circ
- ullet Gruppe, wenn ${\cal A}$ ein Monoid ist und jedes Element ein Inverses hat

Eine Halbgruppe, ein Monoid oder eine Gruppe heißt kommutativ, wenn o kommutativ

Beispiel

Die im vorigen Beispiel definierte Algebra ${\mathcal A}$ hat folgende Eigenschaften:

- a ist das neutrale Element von ○
- Jedes Element besitzt ein Inverses
- ist nicht kommutativ

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Beweis.

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Beweis.

1 Sei ∘ eine binäre Operation auf der Menge *A*

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Beweis.

- **1** Sei ∘ eine binäre Operation auf der Menge *A*
- 2 Angenommen e und u sind neutrale Elemente für \circ

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Beweis.

- Sei eine binäre Operation auf der Menge A
- 2 Angenommen e und u sind neutrale Elemente für o
- \blacksquare Wir zeigen, dass e = u

$$e = e \circ u$$

$$= u$$

Eigenschaft des neutralen Elements

Lemma

Jede binäre Operation hat maximal ein neutrales Element

Beweis.

- Sei eine binäre Operation auf der Menge A
- 2 Angenommen *e* und *u* sind neutrale Elemente für ∘
- \blacksquare Wir zeigen, dass e = u

$$e = e \circ u$$

$$= u$$

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

Sei $a \in A$ und seien b, c Inverse von a. Wir zeigen b = c:

$$b = b \circ 1$$

1 ist neutrales Element

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

Sei $a \in A$ und seien b, c Inverse von a. Wir zeigen b = c:

$$b = b \circ 1$$

1 ist neutrales Element

$$=b\circ (a\circ c)$$

c ist Komplement von a

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

$$b = b \circ 1$$

$$=b\circ (a\circ c)$$

$$= (b \circ a) \circ c$$

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

$$b = b \circ 1$$
 1 ist neutrales Element
 $= b \circ (a \circ c)$ c ist Komplement von a
 $= (b \circ a) \circ c$ Assoziativität von \circ

$$= 1 \circ c$$
 b ist Komplement von a

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

$$b=b\circ 1$$
 1 ist neutrales Element
 $=b\circ (a\circ c)$ c ist Komplement von a
 $=(b\circ a)\circ c$ Assoziativität von \circ
 $=1\circ c$ b ist Komplement von a
 $=c$ 1 ist neutrales Element

Lemma

Wenn $\mathcal{A} = \langle \mathsf{A}; \circ, \mathsf{1} \rangle$ ein Monoid ist, dann ist das Inverse eindeutig

Beweis.

$$b = b \circ 1$$
 1 ist neutrales Element
 $= b \circ (a \circ c)$ c ist Komplement von a
 $= (b \circ a) \circ c$ Assoziativität von \circ
 $= 1 \circ c$ b ist Komplement von a
 $= c$ 1 ist neutrales Element

Definition (Ring)

Eine Algebra $\mathcal{A} = \langle A; +, \cdot, 0, 1 \rangle$ heißt Ring, wenn

Definition (Ring)

Eine Algebra $\mathcal{A} = \langle A; +, \cdot, 0, 1 \rangle$ heißt Ring, wenn

 \blacksquare $\langle A; +, 0 \rangle$ eine kommutative Gruppe

Definition (Ring)

Eine Algebra $\mathcal{A} = \langle A; +, \cdot, 0, 1 \rangle$ heißt Ring, wenn

- \blacksquare $\langle A; +, 0 \rangle$ eine kommutative Gruppe

Definition (Ring)

Eine Algebra $A = \langle A; +, \cdot, 0, 1 \rangle$ heißt Ring, wenn

- $\langle A; \cdot, 1 \rangle$ ein Monoid
- \blacksquare · distributiert über + (von links und von rechts), das heißt für alle $a,b,c\in A$ gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$

Definition (Ring)

Eine Algebra $\mathcal{A} = \langle A; +, \cdot, 0, 1 \rangle$ heißt Ring, wenn

- \blacksquare $\langle A; +, 0 \rangle$ eine kommutative Gruppe
- \triangle $\langle A; \cdot, 1 \rangle$ ein Monoid
- \bullet distributiert über + (von links und von rechts), das heißt für alle $a,b,c\in A$ gilt:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$

Definition (Körper)

Eine Algebra $\mathcal{A}=\langle A;+,\cdot,0,1
angle$ heißt Körper, wenn

- \blacksquare \mathcal{A} ein Ring

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

- \blacksquare $\langle B; +, 0 \rangle$ und $\langle B; \cdot, 1 \rangle$ sind kommutative Monoide
- **2** Die Operationen + und \cdot distribuieren übereinander. Es gilt also für alle $a,b,c\in B$:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $a + (b \cdot c) = (a+b) \cdot (a+c)$

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

- \blacksquare $\langle B; +, 0 \rangle$ und $\langle B; \cdot, 1 \rangle$ sind kommutative Monoide
- Die Operationen + und \cdot distribuieren übereinander. Es gilt also für alle $a,b,c\in B$:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $a + (b \cdot c) = (a+b) \cdot (a+c)$

 \blacksquare Für alle $a \in B$ gilt

$$a + \sim (a) = 1$$
 $a \cdot \sim (a) = 0$

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

- \blacksquare $\langle B; +, 0 \rangle$ und $\langle B; \cdot, 1 \rangle$ sind kommutative Monoide
- Die Operationen + und \cdot distribuieren übereinander. Es gilt also für alle $a,b,c\in B$:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $a + (b \cdot c) = (a+b) \cdot (a+c)$

 \blacksquare Für alle $a \in B$ gilt

$$a + \sim (a) = 1$$
 $a \cdot \sim (a) = 0$

Das Element \sim (a) heißt das Komplement oder die Negation von a

Eine Algebra $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ heißt Boolesche Algebra wenn gilt:

- \blacksquare $\langle B; +, 0 \rangle$ und $\langle B; \cdot, 1 \rangle$ sind kommutative Monoide
- Die Operationen + und \cdot distribuieren übereinander. Es gilt also für alle $a,b,c\in B$:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 $a + (b \cdot c) = (a+b) \cdot (a+c)$

3 Für alle $a \in B$ gilt

$$a + \sim (a) = 1$$
 $a \cdot \sim (a) = 0$

Das Element \sim (a) heißt das Komplement oder die Negation von a

Konventionen

- Wir lassen \cdot oft weg und schreiben ab statt $a \cdot b$
- Wir verwenden die folgende Präzedenz: ~ bindet stärker als + und ·
- Die Definition ist eine Verallgemeinerung der Definition in Rechnerarchitektur

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Wir definieren Boolesche Ausdrücke induktiv:

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Wir definieren Boolesche Ausdrücke induktiv:

1 0, 1 und Variablen sind Boolesche Ausdrücke

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Wir definieren Boolesche Ausdrücke induktiv:

- 1 0, 1 und Variablen sind Boolesche Ausdrücke
- 2 Wenn E und F Boolesche Ausdrücke sind, dann sind

$$\sim$$
(E) $(E \cdot F)$ $(E + F)$

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Wir definieren Boolesche Ausdrücke induktiv:

- 1 0, 1 und Variablen sind Boolesche Ausdrücke
- 2 Wenn E und F Boolesche Ausdrücke sind, dann sind

$$\sim$$
(E) $(E \cdot F)$ $(E + F)$

Boolesche Ausdrücke A und B heißen äquivalent ($A \approx B$), wenn für alle Booleschen Algebren, in allen Instanzen A' und B' gilt: A' = B'.

Sei eine unendliche Menge von Variablen x_1, x_2, \ldots gegeben; diese Variablen heißen Boolesche Variablen

Wir definieren Boolesche Ausdrücke induktiv:

- 1 0, 1 und Variablen sind Boolesche Ausdrücke
- 2 Wenn E und F Boolesche Ausdrücke sind, dann sind

$$\sim$$
(E) $(E \cdot F)$ $(E + F)$

Boolesche Ausdrücke A und B heißen äquivalent ($A \approx B$), wenn für alle Booleschen Algebren, in allen Instanzen A' und B' gilt: A' = B'.

Beispiel (vgl Rechnerarchitektur)

Die folgenden Ausdrücke sind Boolesche Ausdrücke:

$$x_1$$
 x_2 $x_1 + x_2$ $x_1 \cdot x_2$ $x_1 \cdot (x_1 + x_2)$ $x_1(x_1 + x_2)$ $x_1 \sim (x_1 + x_2)$

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

1 ∪ die Mengenvereinigung

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

- **1** ∪ die Mengenvereinigung
- □ die Schnittmenge

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

- U die Mengenvereinigung
- □ die Schnittmenge
- ightharpoonup \sim die Komplementärmenge

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

- U die Mengenvereinigung
- □ die Schnittmenge
- ightharpoonup \sim die Komplementärmenge

Diese Algebra nennt man Mengenalgebra.

Sei M eine Menge; $\mathcal{P}(M)$ bezeichnet die Potenzmenge von M, also

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Definition

Wir betrachten die Algebra

$$\langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$$

- U die Mengenvereinigung
- □ die Schnittmenge
- ightharpoonup \sim die Komplementärmenge

Diese Algebra nennt man Mengenalgebra.

Lemma

Die Mengenalgebra ist eine Boolesche Algebra

Definition

Sei $\mathbb{B}:=\{0,1\}$, wobei $0,1\in\mathbb{N}.$ Wir betrachten die Algebra

$$\langle \mathbb{B}; +, \cdot, \sim, 0, 1
angle$$

wobei die Operationen $+,\cdot,\sim$ wie folgt definiert:

Definition

Sei $\mathbb{B}:=\{0,1\}$, wobei $0,1\in\mathbb{N}$. Wir betrachten die Algebra

$$\langle \mathbb{B}; +, \cdot, \sim, 0, 1 \rangle$$

wobei die Operationen $+,\cdot,\sim$ wie folgt definiert:

	1	0	+	1	0	\sim	
1	1	0	1	1	1	1	0
0	0	0	0	1	0	0	1

Definition

Sei $\mathbb{B}:=\{0,1\}$, wobei $0,1\in\mathbb{N}$. Wir betrachten die Algebra

$$\langle \mathbb{B}; +, \cdot, \sim, 0, 1 \rangle$$

wobei die Operationen $+,\cdot,\sim$ wie folgt definiert:

	1	0	+	1	0		\sim	
1	1	0	1	1	1	-	1	0
0	0	0	0	1	0	(0	1

Diese Algebra nennt man binäre Algebra oder Boolesche Algebra im engeren Sinn (Rechnerarchitektur)

Definition

Sei $\mathbb{B}:=\{0,1\}$, wobei $0,1\in\mathbb{N}$. Wir betrachten die Algebra

$$\langle \mathbb{B}; +, \cdot, \sim, 0, 1 \rangle$$

wobei die Operationen $+,\cdot,\sim$ wie folgt definiert:

	1	0	+	1	0	\sim	
1	1	0	1	1	1	1	0
0	0	0	0	1	0	0	1

Diese Algebra nennt man binäre Algebra oder Boolesche Algebra im engeren Sinn (Rechnerarchitektur)

Lemma

Die binäre Algebra ist eine Boolesche Algebra

Algebra der Aussagenlogik

Sei Frm die Menge der aussagenlogischen Formeln

Definition

Wir betrachten die Algebra $\mathcal{F}rm$

 $\langle \mathsf{Frm}; \vee, \wedge, \neg, \mathsf{False}, \mathsf{True} \rangle$

Wobei die Zeichen wie in der Aussagenlogik interpretiert werden und Gleichheit von Booleschen Ausdrücken logische Äquivalenz bedeutet

Algebra der Aussagenlogik

Sei Frm die Menge der aussagenlogischen Formeln

Definition

Wir betrachten die Algebra $\mathcal{F}rm$

 $\langle \mathsf{Frm}; \vee, \wedge, \neg, \mathsf{False}, \mathsf{True} \rangle$

Wobei die Zeichen wie in der Aussagenlogik interpretiert werden und Gleichheit von Booleschen Ausdrücken logische Äquivalenz bedeutet

Lemma

Die Algebra Frm ist eine Boolesche Algebra

Algebra des Kartesischen Produkts und der Schaltfunktionen

Definition

Sei $\mathbb{B}:=\{0,1\}$ und sei \mathbb{B}^n das n-fache kartesische Produkt von \mathbb{B} :

 $\mathbb{B}^n = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{B}\}; \text{ wir betrachten }$

$$\langle \mathbb{B}^n; +, \cdot, \sim, (0, \ldots, 0), (1, \ldots, 1) \rangle$$

- $(a_1,\ldots,a_n)\cdot(b_1,\ldots,b_n)=(a_1\cdot b_1,\ldots,a_n\cdot b_n)$
- $((a_1,\ldots,a_n))=(\sim(a_1),\ldots,\sim(a_n))$

Algebra des Kartesischen Produkts und der Schaltfunktionen

Definition

Sei $\mathbb{B} := \{0, 1\}$ und sei \mathbb{B}^n das *n*-fache kartesische Produkt von \mathbb{B} :

 $\mathbb{B}^n = \{(a_1, \dots, a_n) \mid a_i \in \mathbb{B}\}; \text{ wir betrachten }$

$$\langle \mathbb{B}^n; +, \cdot, \sim, (0, \ldots, 0), (1, \ldots, 1) \rangle$$

- $(a_1, \ldots, a_n) \cdot (b_1, \ldots, b_n) = (a_1 \cdot b_1, \ldots, a_n \cdot b_n)$
- $> ((a_1,\ldots,a_n)) = (\sim(a_1),\ldots,\sim(a_n))$

Lemma

Die oben definierte Algebra ist eine Boolesche Algebra

Definition

Sei Abb die Menge der Abbildungen von \mathbb{B}^n nach \mathbb{B}^m wir betrachten

$$\langle \mathsf{Abb}; +, \cdot, \sim, (\mathbf{0}, \dots, \mathbf{0}), (\mathbf{1}, \dots, \mathbf{1}) \rangle$$

- **1** $(\mathbf{0},\ldots,\mathbf{0}):(a_1,\ldots,a_n)\mapsto(0,\ldots,0)$
- **2** (1, ..., 1): $(a_1, ..., a_n) \mapsto (1, ..., 1)$
- $f(f+g)(a_1,\ldots,a_n)=f(a_1,\ldots,a_n)+g(a_1,\ldots,a_n)$
- $(f \cdot g)(a_1, \ldots, a_n) = f(a_1, \ldots, a_n) \cdot g(a_1, \ldots, a_n)$
- $\sim (f)(a_1,\ldots,a_n) = \sim (f(a_1,\ldots,a_n))$

Diese Algebra nennt man Algebra der Schaltfunktionen oder *n*-stelligen Booleschen Funktionen

Definition

Sei Abb die Menge der Abbildungen von \mathbb{B}^n nach \mathbb{B}^m wir betrachten

$$\langle \mathsf{Abb}; +, \cdot, \sim, (\mathbf{0}, \dots, \mathbf{0}), (\mathbf{1}, \dots, \mathbf{1}) \rangle$$

- **1** $(\mathbf{0},\ldots,\mathbf{0}):(a_1,\ldots,a_n)\mapsto(0,\ldots,0)$
- **2** $(1, ..., 1): (a_1, ..., a_n) \mapsto (1, ..., 1)$
- $f(f+g)(a_1,\ldots,a_n)=f(a_1,\ldots,a_n)+g(a_1,\ldots,a_n)$
- $(f \cdot g)(a_1,\ldots,a_n) = f(a_1,\ldots,a_n) \cdot g(a_1,\ldots,a_n)$
- $\sim (f)(a_1,\ldots,a_n) = \sim (f(a_1,\ldots,a_n))$

Diese Algebra nennt man Algebra der Schaltfunktionen oder *n*-stelligen Booleschen Funktionen

Lemma

Die Algebra der Schaltfunktionen ist eine Boolesche Algebra