1) Betrachten Sie die Boolsche Algebra (siehe Definition 3.12 und Lemma 3.6 im Scriptum)

$$\mathcal{B} = \langle \mathbb{B}^4; +, \cdot, \sim, (0, 0, 0, 0), (1, 1, 1, 1) \rangle$$

Nach dem Darstellungssatz von Stone (Satz 3.2 im Scriptum) existiert eine Menge M, sodass \mathcal{B} isomorph zur Mengenalgebra $\mathcal{M} = \langle \mathcal{P}(M); \cup, \cap, \sim, \varnothing, M \rangle$ ist. Finden Sie eine Menge M und definieren Sie einen Isomorphismums $\varphi \colon \mathcal{B} \to \mathcal{M}$ (siehe auch Folie 18 in Woche 5).

2) Wie sind die Operationen Vereinigung, Durchschnitt, Komplement und Konkatenation von formalen Sprachen über dem Alphabet Σ definiert? Wie sind Potenz und Kleene-Stern definiert?

Betrachten Sie die formalen Sprachen $L_1 = \{a, ab, abc, abcd\}$, $L_2 = \{a, bb, ccc, dddd\}$, $L_3 = \{a, b, ab\}$ und $L_4 = \{\epsilon, a, b\}$ über dem Alphabet $\Sigma = \{a, b, c, d\}$ und leiten Sie davon die folgende Sprachen ab.

- a) $L_a = L_3^2 \cap (L_1 \cup L_2)$
- b) $L_b = L_1 L_3 \cap L_4^*$
- c) $L_c = L_2 L_2 \cap L_2$
- d) $L_d = (L_1 L_3 \cap L_3 L_2) L_4$

Beschreiben Sie folgenden Sprachen mithilfe der Sprache L_1 bis L_4 , d.h. beschreiben Sie die Sprachen durch Vereinigung, Konkatenation, ... der Sprachen L_1 bis L_4 .

- e) $L_e = \{a, b, aa, ab, ba, bb, aab, bab\}$
- f) $L_f = \{b\}$
- 3) Beweisen Sie folgende Aussage in dem in der Vorlesung vorgestellten Kalkül des natürlichen Schließens NK: $\vdash (\neg p \lor q) \to \neg (\neg q \land p)$