
Available Projects

René Thiemann

May 2, 2023

Contents
1 Pattern-Completeness (2-3 persons) 1

1.1 Preliminaries . 1
1.2 Task 1 – Soundness of the Abstract Inference System 2
1.3 Task 2 – Termination of Implementation 4
1.4 Task 3 – Prove that the algorithm implements the abstract

inference system. 6

2 Congruence Closure (2-3 persons) 7
2.1 Definition of Algorithm . 8
2.2 Completeness of CCA . 9
2.3 Soundness of CCA . 10
2.4 Correctness of CCA . 10
2.5 Termination of CCA . 11

3 Tseitin Transformation (2 persons) 11
3.1 Syntax and Semantics . 12
3.2 Conjunctive Normal Forms 12
3.3 Tseitin Transformation . 12
3.4 Fresh Variables . 13

4 A Compiler for the Register Machine from Hell (2 persons) 14
4.1 A Compiler . 16
4.2 Compiler Verification . 16

5 Propositional Logic (2 persons) 16
5.1 Syntax and Semantics . 17
5.2 Natural Deduction . 17
5.3 Soundness . 19
5.4 Completeness . 19

1

6 BIGNAT - Natural Numbers of Arbitrary Size (1 person) 19
6.1 Representation . 20
6.2 Addition . 20
6.3 Multiplication . 21

7 The Euclidean Algorithm - Inductively (1 person) 21
7.1 Soundness . 22
7.2 Completeness . 22
7.3 Uniqueness . 22
7.4 Code . 22

1 Pattern-Completeness (2-3 persons)

Pattern-completeness is the question whether in a given functional program
all constructor ground terms can be matched by some left-hand-side of a
defining equation.
In this project you will verify an algorithm for deciding pattern-completeness
on an abstract-level, refine it to an executable one, and prove termination
of the latter.
The algorithm is a variant of the one presented in the "Program Verification"
lecture, chapter 4. It is a simplified version: instead of using types there is
just a fixed finite list of constructors; and instead of invoking an matching-
algorithm, the variant in this theory integrates the matching algorithm. The
latter deviation speeds up the execution time and simplifies the termination
argument.

1.1 Preliminaries

We integrate some properties of the Archive of Formal Proofs, in particular
first-order terms.
theory Project-Pattern-Completeness

imports
First-Order-Terms.Term
Polynomial-Factorization.Missing-List
Knuth-Bendix-Order .Term-Aux
Decreasing−Diagrams−II .Decreasing-Diagrams-II

begin

A definition of being linear
fun linear-term :: (′f , ′v) term ⇒ bool where

linear-term (Var -) = True
| linear-term (Fun - ts) = (is-partition (map vars-term ts) ∧ (∀ t∈set ts. linear-term
t))

2

The linearity condition implies that several substitution τ i (for each argu-
ment ts ! i) can be merged into a single substitution σ.
lemma subst-merge:

assumes part: is-partition (map vars-term ts)
shows ∃σ. ∀ i<length ts. ∀ x∈vars-term (ts ! i). σ x = τ i x

proof −
let ?τ = map τ [0 ..< length ts]
let ?σ = fun-merge ?τ (map vars-term ts)
show ?thesis

apply (rule exI [of - ?σ])
apply (intro allI impI ballI)
using fun-merge-part[OF part, of - - ?τ]

by auto
qed

A measure to count the number of function symbols of the second argument
that don’t occur in the first argument
fun fun-diff :: (′f , ′v)term ⇒ (′f , ′w)term ⇒ nat where

fun-diff t (Var -) = 0
| fun-diff (Var x) l = num-funs l
| fun-diff (Fun f ts) (Fun g ls) = (if f = g ∧ length ts = length ls then

sum-list (map2 fun-diff ts ls) else 0)

A pattern problem is a set of set of term pairs, or for the implementation
it will be a list of list of term pairs. Note that in the term pairs the type
of variables differ: Each left term has natural numbers as variables, so that
it is easy to generate new variables, whereas each right term has arbitrary
variables of type ′v without any further information.
type-synonym (′f , ′v)pat-problem = ((′f ,nat)term × (′f , ′v)term) set set
type-synonym (′f , ′v)pat-problem-impl = ((′f ,nat)term × (′f , ′v)term) list list

1.2 Task 1 – Soundness of the Abstract Inference System

In the sequel you find inference rules that describe a transformation of
pattern problems. Fill in the missing inference rule that corresponds to
a decomposition-rule in a matching-algorithm, and prove soundness of the
abstract algorithm.
definition linear-pat-problem where linear-pat-problem p = (∀ tl ∈ set p. ∀ (ti,pi)
∈ set tl. linear-term pi)

context
fixes C :: (′f × nat)list — list of constructors with arities

and m :: nat — upper bound on arities of constructors
assumes SORT-CONSTRAINT (′v :: type)
begin

A constructor-ground substitution for the fixed set of constructors

3

definition cg-subst :: (′f ,nat, ′v)gsubst ⇒ bool where
cg-subst σ = (∀ x. vars-term (σ x) = {} ∧ funas-term (σ x) ⊆ set C)

A definition of pattern completeness for linear pattern problems.
definition pat-complete-linear :: (′f , ′v)pat-problem ⇒ bool where

pat-complete-linear p = (∀ σ :: (′f ,nat, ′v)gsubst. cg-subst σ −→ (∃ tl ∈ p. ∀
(ti,li) ∈ tl. ∃ µ. ti · σ = li · µ))

definition subst-pat-problem :: (′f ,nat)subst ⇒ (′f , ′v)pat-problem ⇒ (′f , ′v)pat-problem
where

subst-pat-problem τ p = (λ tls. (map-prod (λ t. t · τ) id) ‘ tls) ‘ p

Specify a function to compute for a variable x all substitution that instan-
tiate x by c(xn, ..., xn+a) where c is an constructor of arity a and n is a
parameter that determines from where to start the numbering of variables.
Here, the function subst might be useful.
definition τs :: nat ⇒ nat ⇒ (′f ,nat)subst list where
τs x n = undefined

Specify that a given set of numbered variables are disjoint from those that
occur in a pattern problem. Note: the variables of a term can be computed
via vars-term.
definition tvars-disj-pp :: nat set ⇒ (′f , ′v)pat-problem ⇒ bool where

tvars-disj-pp V p = undefined

Fill in the missing parts in the decomposition rule.
inductive pp-trans :: (′f , ′v)pat-problem set ⇒ (′f , ′v)pat-problem set ⇒ bool where

pp-fail: pp-trans (insert {} P) {{}}
| pp-match-solved: pp-trans (insert (insert {} p) P) P
| pp-match-by-var : pp-trans (insert (insert (insert (t, Var x) tls) p) P) (insert
(insert tls p) P)
| pp-clash: (f ,length ts) 6= (g,length ls) =⇒ pp-trans (insert (insert (insert (Fun f
ts, Fun g ls) tls) p) P)

(insert p P)
| pp-decomp: (f ,length ts) = (g,length ls) =⇒ undefined ′′further condition ′′ =⇒
pp-trans (insert (insert (insert (Fun f ts, Fun g ls) tls) p) P)

(undefined ′′TODO ′′)
| pp-inst: tvars-disj-pp {n ..< n+m} p =⇒ pp-trans (insert p P) (set (map (λ τ.
subst-pat-problem τ p) (τs x n)) ∪ P)

Fix a context which assumes that m is sufficiently large and that there is at
least one constant constructor.
context

fixes c :: ′f
assumes c: (c,0) ∈ set C
and m-def : m = max-list (map snd C)

begin

4

lemma pp-trans: pp-trans P P ′ =⇒ (∀ p ∈ P. pat-complete-linear p) = (∀ p ∈
P ′. pat-complete-linear p)
proof (induct P P ′ rule: pp-trans.induct)

case ∗: (pp-clash f ts g ls tls p P)
show ?case sorry

next
case ∗: (pp-decomp f ts g ls tls p P)
show ?case sorry

next
case ∗: (pp-inst n pp P x)
show ?case sorry
— Further hints: there are useful things in the library such as substitution

composition subst-compose-def, equality on terms: term-subst-eq, equality on lists:
nth-equalityI.
At least one way to prove the result is considering both directions of the iff sepa-
rately.
qed (auto simp: pat-complete-linear-def)

1.3 Task 2 – Termination of Implementation

The following algorithm implements the abstract inference system. Com-
plete the definition for the decomposition rule and prove its termination via
the already specified measure.
definition subst-pat-problem-impl :: (′f ,nat)subst ⇒ (′f , ′v)pat-problem-impl ⇒ (′f , ′v)pat-problem-impl
where

subst-pat-problem-impl τ p = map (map (map-prod (λ t. t · τ) id)) p

function check-pat-complete :: nat ⇒ (′f , ′v)pat-problem-impl list ⇒ bool where
check-pat-complete n [] = True — all pattern problems solved
| check-pat-complete n ([] # P) = False — no left-hand sides left
| check-pat-complete n (([] # tls) # P) = check-pat-complete n P — match-list
empty
| check-pat-complete n ((((t,Var x) # tls) # other) # P) = check-pat-complete n
((tls # other) # P) — match by var
| check-pat-complete n ((((Fun f ts,Fun g ls) # tls) # other) # P) = (if f = g ∧
length ts = length ls

then check-pat-complete n undefined — decompose
else check-pat-complete n (other # P)) — clash

| check-pat-complete n ((((Var x ,Fun g ls) # tls) # other) # P) = check-pat-complete
(n + m) — instantiate

(map (λ τ. subst-pat-problem-impl τ (((Var x,Fun g ls) # tls) # other)) (τs
x n) @ P)

by pat-completeness auto

you might want to derive some additional lemmas on when two elements are
in the multiset-relation which correspond to the applications in the termi-
nation proof, e.g. if you replace one element x by several smaller ones

5

lemma add-many-mult: (
∧

y. y ∈# N =⇒ (y,x) ∈ R) =⇒ (N + M , add-mset x
M) ∈ mult R

sorry

For the termination, we use a lexicographic combination: First, the multiset
of function-symbol-differences is computed; second the size of terms in the
right-hand sides of the pairs is measured.
termination
proof −

define rel1-inner where rel1-inner = size-list (λxs.
∑

(t :: (′f ,nat)term, l ::
(′f , ′v)term)←xs. fun-diff t l)

define rel2 :: ((′f , ′v)pat-problem-impl list)rel where rel2 = measure (size-list
(size-list (size-list (size o snd))))

define rel1 where rel1 = mult {(x, y :: nat). x < y}
let ?R = inv-image (rel1 <∗lex∗> rel2) (λ (n,p). (mset (map rel1-inner p),p))

:: (nat × (′f , ′v)pat-problem-impl list)rel
have wf : wf ?R unfolding rel2-def rel1-def by (auto intro: wf-mult wf-less)
note defs = rel1-inner-def rel1-def rel2-def
show ?thesis
proof (standard, rule wf , goal-cases)

case (1 n tls P)
show ?case sorry

next
case (2 n t x tls other P)

show ?case unfolding defs by (auto simp: termination-simp o-def intro:
mult-singleton)

next
case (3 n f ts g ls tls other P)
show ?case sorry

next
case (4 n f ts g ls tls other P)
show ?case unfolding defs by simp

next
case (5 n x g ls tls other P)
show ?case unfolding defs in-inv-image split in-lex-prod

apply (rule disjI1)
apply simp
apply (rule add-many-mult)
apply clarsimp

proof goal-cases
case (1 τ)
thus ?case sorry

thm sum-list-mono
thm sum-list-mono2
thm size-list-pointwise

qed
qed

6

qed

1.4 Task 3 – Prove that the algorithm implements the ab-
stract inference system.

definition pp-of-impl :: (′f , ′v)pat-problem-impl ⇒ (′f , ′v)pat-problem where
pp-of-impl p = set ‘ set p

abbreviation pat-complete-linear-impl ≡ (λ p. pat-complete-linear (pp-of-impl p))

This is the a nice easy lemma to perform the upcoming proof: to show that
we can switch in the implementation from one state to another, we just
apply the corresponding abstract inference rule via local.pp-trans.
lemma pp-trans-impl: pp-trans P P ′ =⇒ pp-of-impl ‘ set PI = P =⇒ pp-of-impl
‘ set PI ′ = P ′ =⇒

Ball (set PI ′) pat-complete-linear-impl = Ball (set PI) pat-complete-linear-impl

using pp-trans[of P P ′] by auto

lemma pp-of-impl-subst[simp]: pp-of-impl (subst-pat-problem-impl τ p) = subst-pat-problem
τ (pp-of-impl p)

sorry

In the lemma we require linearity of the pattern problem and we also need a
condition that the parameter n is chosen correctly, so that all variables will
be fresh enough.
lemma check-pat-complete-linear-impl: assumes Ball (set P) linear-pat-problem

and undefined ′′Condition on n being fresh for P ′′

shows check-pat-complete n P = Ball (set P) pat-complete-linear-impl
proof −

note def = pp-of-impl-def linear-pat-problem-def
show ?thesis using assms
proof (induction P rule: check-pat-complete.induct)

case 1
show ?case sorry

next
case (2 n P)
show ?case sorry

next
case (3 n tls P)

from 3 have IH : check-pat-complete n P = (Ball (set P) pat-complete-linear-impl)

by auto
show ?case unfolding check-pat-complete.simps IH

by (rule pp-trans-impl[OF pp-match-solved - refl], auto simp: def)
next

case (4 n t x tls other P)

7

show ?case sorry
next

case (5 n f ts g ls tls other P)
show ?case
proof (cases f = g ∧ length ts = length ls)

case False
show ?thesis sorry

next
case True
show ?thesis sorry
thm set-zip
thm in-set-zipE

qed
next

case (6 n x g ls tls other P)
define pp where pp = ((Var x, Fun g ls) # tls) # other
show ?case sorry
thm max-list
thm set-map
thm vars-term-subst

qed
qed

end
end
end

2 Congruence Closure (2-3 persons)

We consider a set ground equations GE such as

• f(g(a)) = h(b)

• f(b) = b

• g(a) = b
and are interested in the question whether a particular equation is
implied GE. For instance the sequence of equality-steps

• f(h(b)) = f(f(g(a))) = f(f(b)) = f(b)
proves that f(h(b)) = f(b) follows from E.
Whereas it is easy to validate a given sequence of equality-steps, the
problem is to detect whether such a sequence exists for a given equa-
tion. To this end, the congruence closure algorithm has been developed
which should be partially verified in this project.

8

Basic knowledge of term rewriting is helpful for this project. The
describtion of the algorithm is based on Franz Baader and Tobias
Nipkow, Term Rewriting and All That, Chapter 4 .3.

theory Project-Congruence-Closure
imports

Main
begin

2.1 Definition of Algorithm

We start by definining ground terms where the type of symbols are just
strings.
type-synonym symbol = string

datatype trm = Fun symbol trm list

type-synonym eqs = (trm × trm)set

Define the set of subterms of a term, e.g., the subterms of f(g(a),b) would
be {f (g(a),b), g(a), a, b}.
fun subt :: trm ⇒ trm set where

subt (Fun f ts) = undefined

Prove two useful lemmas about subterms.
lemma self-subt: u ∈ subt u sorry

lemma subt-trans: s ∈ subt t =⇒ t ∈ subt u =⇒ s ∈ subt u sorry

For a set of ground-equalities, the congruence closure algorithm is in partic-
ular interested in all subterms that occur in the equalities.
definition subt-eqs where subt-eqs GE =

⋃
((λ (l,r). subt l ∪ subt r) ‘ GE)

From now on fix a specific set of ground-equalities GE.
context

fixes GE :: eqs
begin

Define an equality step where one can either replace one side of an equation
in GE by the other side (a root-step), or where one can apply a step in a
context.
inductive-set estep :: trm rel where

root: undefined =⇒ undefined ∈ estep
| ctxt: (s,t) ∈ estep =⇒ (Fun f (before @ s # after), Fun f (before @ t # after))
∈ estep

9

The other important definition is the Cong-operation which given a set of
equalities derives new equalities of these by reflexivity, symmetry, transitiv-
ity or context.
inductive-set Cong :: eqs ⇒ eqs for E where

C-keep: eq ∈ E =⇒ eq ∈ Cong E
| C-refl: (t,t) ∈ Cong E
| C-sym: (s,t) ∈ E =⇒ (t,s) ∈ Cong E
| C-trans: (s,t) ∈ E =⇒ (t,u) ∈ E =⇒ (s,u) ∈ Cong E
| C-cong: length ss = length ts =⇒ (∀ i < length ts. (ss ! i, ts ! i) ∈ E) =⇒ (Fun
f ss, Fun f ts) ∈ Cong E

Let us now fix to terms s and t where we are interested in whether GE
implies s = t.
context

fixes s t :: trm
begin

In the congruence closure algorithm one only is interested in equalities of
terms in S.
definition S where S = subt s ∪ subt t ∪ subt-eqs GE

definition CongS where CongS E = Cong E ∩ (S × S)

CCA defines the equalities that are obtained in the i-th iteration of the
congruence closure algorithm, which iteratively applies the local.CongS op-
eration starting from GE.
definition CCA where CCA i = (CongS ^^ i) GE

Prove the following simple inclusions.
lemma GE-S : GE ⊆ S × S sorry

lemma GE-CCA: GE ⊆ CCA i sorry

2.2 Completeness of CCA

The crucial result of the congruence closure algorithm is given in the fol-
lowing lemma on the completeness of the algorithm: if the algorithm has
stabilized in the i-th iteration, then all equations in local.S × local.S that
can be derived with arbitrary many steps are also contained in the equalities
of CCA.
lemma esteps-imp-CCA: assumes CongS (CCA i) = CCA i

shows (u,v) ∈ estep^∗ ∩ (S × S) −→ (u,v) ∈ CCA i
proof

The proof is by induction on the number of steps and then by the size of
the starting term u. This is expressed as follows in Isabelle.

10

assume (u,v) ∈ estep^∗ ∩ (S × S)
then obtain n where ∗: u ∈ S v ∈ S (u,v) ∈ estep^^n

by (auto simp: rtrancl-power)
obtain m where m = (n,size u) by auto
with ∗ show (u,v) ∈ CCA i
proof (induction m arbitrary: u v n rule: wf-induct[OF wf-measures[of [fst,snd]]])

case (1 m u v n)

For handling the induction, we first convert the derivation into a function
which gives us all intermediate terms via function w.

from 1 (4)[unfolded relpow-fun-conv] obtain w
where w: w 0 = u w n = v (∀ i<n. (w i, w (Suc i)) ∈ estep) by auto

And the proof now proceeds by case-analysis on whether any of these steps
was a root step or whether all steps are non-root.

show ?case sorry
qed

qed

Next, completeness of CCA is easily established
lemma esteps-imp-CCA-st: assumes CongS (CCA i) = CCA i

shows (s,t) ∈ estep^∗ −→ (s,t) ∈ CCA i
sorry

2.3 Soundness of CCA

The crucial step to prove soundness is the following lemma, which might
require some further auxiliary lemmas.
lemma Cong-esteps: E ⊆ estep^∗ =⇒ Cong E ⊆ estep^∗ sorry

But you can easily verify that ?E ⊆ estep∗ =⇒ Cong ?E ⊆ estep∗ is the
key to prove soundness of CCA.
lemma CCA-imp-esteps: CCA i ⊆ estep^∗ sorry

2.4 Correctness of CCA

Having soundness and completeness, correctness is simple.
theorem congruence-closure-correct: assumes CongS (CCA i) = CCA i

shows (s,t) ∈ estep^∗ ←→ (s, t) ∈ CCA i
sorry

2.5 Termination of CCA

The precondition local.CongS (local.CCA i) = local.CCA i can be dis-
charged proving termination of the congruence closure algorithm which just
computes the least i such that the precondition is satisfied. The existence

11

of such an i follows from the fact that CCA i is increasing with increasing i
and CCA i is bounded by the finite set of terms S x S, assuming finiteness
of GE.
Formulating and proving these facts in Isabelle is another task of this project,
if it is conducted as a 3-person project.
context

assumes finite GE
begin

lemma i-exists: ∃ i. CongS (CCA i) = CCA i sorry

definition fixpointI = (LEAST i. CongS (CCA i) = CCA i)

lemma fixpointI : CongS (CCA fixpointI) = CCA fixpointI
sorry

Design an algorithm to compute local.fixpointI and prove its termination.
The algorithm itself of course must not use local.fixpointI, but the measure
for proving termination might very well depend on this unknown constant.
end
end
end
end

3 Tseitin Transformation (2 persons)

Since most SAT solvers insist on formulas in conjunctive normal form (CNF)
as input, but in general the CNF of a given formula may be exponentially
larger, there is interest in efficient transformations that produce a small
equisatisfiable CNF for a given formula. Probably the earliest and most
well-known of these transformation is due to Tseitin.
In this project you will implement a two-step transformation of proposi-
tional formulas into equisatisfiable CNFs and formally prove results about
the complexity and that the resulting CNFs are indeed equisatisfiable to the
original formula.
theory Project-Tseitin-Fresh

imports Main
begin

3.1 Syntax and Semantics

For the purposes of this project propositional formulas (with atoms of an
arbitrary type) are restricted to the following (functionally complete) con-
nectives:

12

datatype ′a form =
Bot — the "always false" formula
| Top — the "always true" formula
| Var ′a — propositional variables
| Neg ′a form — negation
| Disj ′a form ′a form — disjunction
| Conj ′a form ′a form — conjunction

Define a function eval that evaluates the truth value of a formula with
respect to a given truth assignment α :: ′a ⇒bool.
fun eval :: (′a ⇒ bool) ⇒ ′a form ⇒ bool

where
eval α ϕ = undefined

Define a predicate sat that captures satisfiable formulas.
definition sat :: ′a form ⇒ bool

where
sat ϕ ←→ undefined

3.2 Conjunctive Normal Forms

Literals are positive or negative variables.
datatype ′a literal = P ′a | N ′a

A clause is a disjunction of literals, represented as a list of literals.
type-synonym ′a clause = ′a literal list

A CNF is a conjunction of clauses, represented as list of clauses.
type-synonym ′a cnf = ′a clause list

Implement a function of-cnf that, given a CNF (of ′a cnf, computes a logi-
cally equivalent formula (of ′a form).
fun of-cnf :: ′a cnf ⇒ ′a form

where
of-cnf cs = undefined

3.3 Tseitin Transformation

The idea of Tseitin’s transformation is to assign to each subformula ϕ a label
aϕ and use the following definitions

• a⊥ ←→ ⊥

• a> ←→ >

• a¬ϕ ←→ ¬ ϕ

13

• aϕ∨ψ ←→ (ϕ ∨ ψ)

• aϕ∧ψ ←→ (ϕ ∧ ψ)
to recursively compute clauses tseitin ϕ such that aϕ ∧ tseitin ϕ and
ϕ are equisatisfiable (that is, the former is satisfiable iff the latter is).
Define a function tseitin that computes the clauses corresponding to
the above idea.

fun tseitin :: ′a form ⇒ (′a form) cnf
where

tseitin ϕ = undefined

Prove that aϕ ∧ tseitin ϕ are equisatisfiable.
lemma tseitin-equisat:

sat (of-cnf ([P ϕ] # tseitin ϕ)) ←→ sat ϕ
sorry

Prove linear bounds on the number of clauses and literals by suitably re-
placing n and num-literals below:
lemma tseitin-num-clauses:

length (tseitin ϕ) ≤ n ∗ size ϕ
sorry

lemma tseitin-num-literals:
num-literals (tseitin ϕ) ≤ n ∗ size ϕ
sorry

3.4 Fresh Variables

One of the problems in the tseitin transformation above is that the type of
propositional variables is changed from ′a to ′a form.
Define a function to rename variables in a CNF.
fun rename-cnf :: (′a ⇒ ′b) ⇒ ′a cnf ⇒ ′b cnf

where
rename-cnf f cs = undefined

Think of a property such that renaming preserves satisfiability. Note that
injectivity is already defined in Isabelle (inj or inj-on.)
lemma property f cs =⇒ sat (of-cnf (rename-cnf f cs)) ←→ sat (of-cnf cs) sorry

Next, we define a tseitin transformation which does not change the type of
propositional variables.
definition tseitin-fresh :: ′your-type form ⇒ ′your-type cnf where

tseitin-fresh ϕ = (let
cs = [P ϕ] # tseitin ϕ;

14

renaming = undefined
in rename-cnf renaming cs)

Implement a corresponding renaming function such that the following sound-
ness property can be proved. Here, you also need to change the type-variable
′your-type, where for this project it is perfectly fine to use a concrete type
which has infinitely many elements, e.g., nat or int or string.
lemma tseitin-fresh: sat ϕ ←→ sat (of-cnf (tseitin-fresh ϕ)) sorry

Your function definitions should be executable.
definition X :: ′your-type where X = undefined
definition Y :: ′your-type where Y = undefined
definition Z :: ′your-type where Z = undefined

definition test-form :: ′your-type form where
test-form = Neg (Conj (Disj (Neg (Var X)) (Var Z)) (Neg (Var Y)))

The Isabelle command value (code) tseitin-fresh test-form should succeed.
end

4 A Compiler for the Register Machine from Hell
(2 persons)

Processors from Hell has released its next-generation RISC processor RMfH.
It features an infinite bank of registers R0, R1, . . . holding unbounded in-
tegers. Register R0 plays the role of the accumulator and is the implicit
source or destination register of all instructions. Any other register involved
in an instruction must be distinct from R0, which is enforced by implicitly
incrementing its index.
There are five instructions

LDI i has the effect R0 := i

LD n has the effect R0 := Rn+1

ST n has the effect Rn+1 := R0

ADD n has the effect R0 := R0 + Rn+1

MUL n has the effect R0 := R0 ∗ Rn+1

were i is an integer and n a natural number.
In this project you will implement and verify a compiler for the Register
Machine from Hell (RMfH).

15

(Adapted from https://isabelle.in.tum.de/exercises/advanced/regmachine/
ex.pdf)
theory Project-Register-Machine-from-Hell

imports Main
begin

Define a data type of instructions and an execution function exec that takes
an instruction and a state and returns the new state.
type-synonym state = nat ⇒ int
datatype instr = Undefined

fun exec :: instr ⇒ state ⇒ state
where

exec i s = undefined

Extend exec to lists of instructions:
fun execute :: instr list ⇒ state ⇒ state

where
execute is s = undefined

The engineers of PfH soon got tired of writing assembly language code and
designed their own high-level programming language of arithmetic expres-
sions. An expression can be

• an integer constant,

• one of the variables v0, v1, . . . , or

• the sum of two expressions

• the product of two expressions

• the difference of two expressions

• exponentiation of an expression with a fixed exponent, i.e., a natural
number constant

Define a data type of expressions and an evaluation function that takes an
expression and a state and returns the resulting value. Because this is a
clean language, there is no implicit increment going on: the value of vn in
state s is simply s n.
datatype expr = Undefined

fun value :: expr ⇒ state ⇒ int
where

value e s = undefined

16

https://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf
https://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf

4.1 A Compiler

You have been recruited to write a compiler from expr to instr list. You
remember your compiler course and decide to emulate a stack machine using
free registers, that is, registers not used by the expression you are compiling.
Implement a compiler compile :: expr ⇒ nat ⇒ instr list where the second
argument is the index of the first free register that can be used to store
intermediate results. The result of an expression should be returned in R0.
Because R0 is the accumulator, you decide on the following compilation
scheme: vi will be held in Ri+1.
Hint: perhaps you first treat a simplified version of expressions without the
difference- and exponentiation-operations, since these operations are not di-
rectly supported by the RMfH architecture.
Challenge: Can you do better than compiling exponentation xn into O(n)
multiplications?
fun compile :: expr ⇒ nat ⇒ instr list

where
compile e k = undefined

4.2 Compiler Verification

Although you are convinced about the correctness of your compiler, the boss
of PfH (which coincides with the lecturer of interactive theorem proving)
actually wants you to verify the compiler. Below is a sketch of the correctness
statement.
However, there is definitely a precondition missing because k should be large
enough not to interfere with any of the variables in e. Moreover, you have
some lingering doubts about having the same s on both sides despite the
index shift between variables and registers. But because all your definitions
are executable, you hope that Isabelle will spot any incorrect propositions
before you even start its proofs. What worries you most is the number of
auxiliary lemmas it may take to prove your proposition.
lemma

execute (compile e k) s 0 = value e s
sorry

end

5 Propositional Logic (2 persons)

Soundness and completeness of a logic establish that the syntactic notion of
provability is equivalent to the semantic notation of logical entailment.

17

In this project you will formally prove soundness and completeness of a
specific set of natural deduction rules for propositional logic.
theory Project-Logic

imports Main
begin

5.1 Syntax and Semantics

Propositional formulas are defined by the following data type (that comes
with some syntactic sugar):
type-synonym id = string
datatype form =

Atom id
| Bot (⊥p)
| Neg form (¬p - [68] 68)
| Conj form form (infixr ∧p 67)
| Disj form form (infixr ∨p 67)
| Impl form form (infixr →p 66)

Define a function eval that evaluates the truth value of a formula with
respect to a given truth assignment.
fun eval :: (id ⇒ bool) ⇒ form ⇒ bool

where
eval v ϕ ←→ undefined

Using eval, define semantic entailment of a formula from a list of formulas.
definition entails :: form list ⇒ form ⇒ bool (infix |= 51)

where
Γ |= ϕ ←→ undefined

5.2 Natural Deduction

The natural deduction rules we consider are captured by the following in-
ductive predicate proves P ϕ, with infix syntax P ` ϕ, that holds whenever
a formula ϕ is provable from a list of premises P.
inductive proves (infix ` 58)

where
premise: ϕ ∈ set P =⇒ P ` ϕ
| conjI : P ` ϕ =⇒ P ` ψ =⇒ P ` ϕ ∧p ψ
| conjE1 : P ` ϕ ∧p ψ =⇒ P ` ϕ
| conjE2 : P ` ϕ ∧p ψ =⇒ P ` ψ
| impI : ϕ # P ` ψ =⇒ P ` (ϕ →p ψ)
| impE : P ` ϕ =⇒ P ` ϕ →p ψ =⇒ P ` ψ
| disjI1 : P ` ϕ =⇒ P ` ϕ ∨p ψ
| disjI2 : P ` ψ =⇒ P ` ϕ ∨p ψ
| disjE : P ` ϕ ∨p ψ =⇒ ϕ # P ` χ =⇒ ψ # P ` χ =⇒ P ` χ

18

| negI : ϕ # P ` ⊥p =⇒ P ` ¬p ϕ
| negE : P ` ϕ =⇒ P ` ¬p ϕ =⇒ P ` ⊥p

| botE : P ` ⊥p =⇒ P ` ϕ
| dnegE : P ` ¬p¬p ϕ =⇒ P ` ϕ

Prove that ` is monotone with respect to premises, that is, we can arbitrarily
extend the list of premises in a valid prove.
lemma proves-mono:

assumes P ` ϕ and set P ⊆ set Q
shows Q ` ϕ
sorry

Prove the following derived natural deduction rules that might be useful
later on:
lemma dnegI :

assumes P ` ϕ
shows P ` ¬p¬p ϕ
sorry

lemma pbc:
assumes ¬p ϕ # P ` ⊥p

shows P ` ϕ
sorry

lemma lem:
P ` ϕ ∨p ¬p ϕ
sorry

lemma neg-conj:
assumes χ ∈ {ϕ, ψ} and P ` ¬p χ
shows P ` ¬p (ϕ ∧p ψ)
sorry

lemma neg-disj:
assumes P ` ¬p ϕ and P ` ¬p ψ
shows P ` ¬p (ϕ ∨p ψ)
sorry

lemma trivial-imp:
assumes P ` ψ
shows P ` ϕ →p ψ
sorry

lemma vacuous-imp:
assumes P ` ¬p ϕ
shows P ` ϕ →p ψ
sorry

lemma neg-imp:

19

assumes P ` ϕ and P ` ¬p ψ
shows P ` ¬p (ϕ →p ψ)
sorry

5.3 Soundness

Prove soundness of ` with respect to |=.
lemma proves-sound:

assumes P ` ϕ
shows P |= ϕ
sorry

5.4 Completeness

Prove completeness of ` with respect to |= in absence of premises.
lemma prove-complete-Nil:

assumes [] |= ϕ
shows [] ` ϕ
sorry

Now extend the above result to also incorporate premises.
lemma proves-complete:

assumes P |= ϕ
shows P ` ϕ
sorry

Conclude that semantic entailment is equivalent to provability.
lemma entails-proves-conv:

P |= ϕ ←→ P ` ϕ
sorry

end

6 BIGNAT - Natural Numbers of Arbitrary Size
(1 person)

Hardware platforms have a limit on the largest number they can represent.
This is usually fixed by the bit lengths of registers and ALUs used.
In order to be able to perform calculations that require arbitrarily large
numbers, the provided arithmetic operations need to be extended in order
for them to work on an abstract data type representing numbers of arbitrary
size.
In this project you will build and verify an implementation for BIGNAT, an
abstract data type representing natural numbers of arbitrary size.
(Adapted from http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf)

20

http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf

theory Project-BIGNAT
imports Main

begin

6.1 Representation

A BIGNAT is represented by a list of natural numbers in a range supported
by the target machine. In our case, this will be all natural numbers smaller
than a given base b.
Note: Natural numbers in Isabelle are of arbitrary size.
type-synonym bignat = nat list

Define a function valid that takes a base and checks if a given BIGNAT is
valid.
fun valid :: nat ⇒ bignat ⇒ bool

where
valid b n = undefined

Define a function val that takes a BIGNAT and its corresponding base, and
returns the natural number represented by the BIGNAT.
fun val :: nat ⇒ bignat ⇒ nat

where
val b n = undefined

6.2 Addition

Define a function add that adds two BIGNATs with the same base. Make
sure that your algorithm preserves the validity of the BIGNAT representa-
tion.
fun add :: nat ⇒ bignat ⇒ bignat ⇒ bignat

where
add b m n = undefined

Using val, verify formally that your add function computes the sum of two
BIGNATs correctly.
lemma val-add: val b (add b m n) = val b m + val b n

sorry

Using valid, verify formally that your function add preserves the validity of
the BIGNAT representation.
lemma valid-add:

assumes valid b m and valid b n
shows valid b (add b m n)
sorry

21

6.3 Multiplication

Define a function mult that multiplies two BIGNATs with the same base.
You may use add, but not so often as to make the solution trivial. Make sure
that your algorithm preserves the validity of the BIGNAT representation.
fun mult :: nat ⇒ bignat ⇒ bignat ⇒ bignat

where
mult b m n = undefined

Using val, verify formally that your mult function computes the product of
two BIGNATs correctly.
lemma val-mult: val b (mult b m n) = val b m ∗ val b n

sorry

Using valid, verify formally that your mult function preserves the validity of
the BIGNAT representation.
lemma valid-mult:

assumes valid b m and valid b n
shows valid b (mult b m n)
sorry

end

7 The Euclidean Algorithm - Inductively (1 per-
son)

In this project you will develop and verify an inductive specification of the
Euclidean algorithm.
(Adapted from http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf)
theory Project-GCD

imports Main
begin

Define the set gcd of triples (a,b,g) such that g is the greatest common
divisor of a and b inductively.
Your definition should closely follow the Euclidean algorithm, which repeat-
edly subtracts the smaller from the larger number, until one of them is zero
(at this point, the other number is the greatest common divisor).
inductive-set gcd :: (nat × nat × nat) set

Show that the greatest common divisor as given by gcd is indeed a divisor.
lemma gcd-divides: (a, b, g) ∈ gcd =⇒ g dvd a ∧ g dvd b

sorry

22

http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf

7.1 Soundness

Show that the greatest common divisor as given by gcd is greater than or
equal to any other common divisor.
lemma gcd-greatest:

assumes (a, b, g) ∈ gcd
and 0 < a ∨ 0 < b
and d dvd a
and d dvd b

shows d ≤ g
sorry

7.2 Completeness

So far, you have only shown that gcd is correct, but there might still be
values a and b such that there is no g with (a,b,g) ∈ gcd.
Thus, show completeness of your specification. First prove the following
result by course-of-value recursion, that is, using (

∧
n. ∀m<n. ?P m =⇒

?P n) =⇒ ?P ?n. (Inside the induction make a case analysis corresponding
to the different clauses of the algorithm.)
lemma gcd-defined-aux:

a + b ≤ n =⇒ ∃ g. (a, b, g) ∈ gcd
sorry

lemma gcd-defined: ∃ g. (a, b, g) ∈ gcd
sorry

7.3 Uniqueness

Show that the gcd is uniquely determined.
lemma gcd-unique: (a,b,g) ∈ gcd =⇒ (a,b,g ′) ∈ gcd =⇒ g = g ′

sorry

7.4 Code

Finally use the above results to generate code for computing gcds.

Gcd as function.
definition Gcd :: nat ⇒ nat ⇒ nat where

Gcd a b = (THE g. (a,b,g) ∈ gcd)

lemma gcd-to-Gcd: (a,b,g) ∈ gcd =⇒ Gcd a b = g
sorry

lemma Gcd-to-gcd: (a, b, Gcd a b) ∈ gcd
sorry

23

lemma Gcd-code[code]:
Gcd a b = undefined ′′some recursive equation ′′

sorry

This value-command should succeed.

Congratulations, you have just defined the recursive Gcd-function without
using the function package.
end

24

	Pattern-Completeness (2-3 persons)
	Preliminaries
	Task 1 – Soundness of the Abstract Inference System
	Task 2 – Termination of Implementation
	Task 3 – Prove that the algorithm implements the abstract inference system.

	Congruence Closure (2-3 persons)
	Definition of Algorithm
	Completeness of CCA
	Soundness of CCA
	Correctness of CCA
	Termination of CCA

	Tseitin Transformation (2 persons)
	Syntax and Semantics
	Conjunctive Normal Forms
	Tseitin Transformation
	Fresh Variables

	A Compiler for the Register Machine from Hell (2 persons)
	A Compiler
	Compiler Verification

	Propositional Logic (2 persons)
	Syntax and Semantics
	Natural Deduction
	Soundness
	Completeness

	BIGNAT - Natural Numbers of Arbitrary Size (1 person)
	Representation
	Addition
	Multiplication

	The Euclidean Algorithm - Inductively (1 person)
	Soundness
	Completeness
	Uniqueness
	Code

