Available Projects

René Thiemann

May 2, 2023

Contents

1 Pattern-Completeness (2-3 persons) 1
1.1 Preliminaries 1
1.2 Task 1 - Soundness of the Abstract Inference System 2
1.3 Task 2 - Termination of Implementation 4
1.4 Task 3 - Prove that the algorithm implements the abstract inference system. 6
2 Congruence Closure (2-3 persons) 7
2.1 Definition of Algorithm 8
2.2 Completeness of CCA 9
2.3 Soundness of CCA 10
2.4 Correctness of CCA 10
2.5 Termination of CCA 11
3 Tseitin Transformation (2 persons) 11
3.1 Syntax and Semantics 12
3.2 Conjunctive Normal Forms 12
3.3 Tseitin Transformation 12
3.4 Fresh Variables 13
4 A Compiler for the Register Machine from Hell (2 persons) 14
4.1 A Compiler 16
4.2 Compiler Verification 16
5 Propositional Logic (2 persons) 16
5.1 Syntax and Semantics 17
5.2 Natural Deduction 17
5.3 Soundness 19
5.4 Completeness 19
6 BIGNAT - Natural Numbers of Arbitrary Size (1 person) 19
6.1 Representation 20
6.2 Addition 20
6.3 Multiplication 21
7 The Euclidean Algorithm - Inductively (1 person) 21
7.1 Soundness 22
7.2 Completeness 22
7.3 Uniqueness 22
7.4 Code 22

1 Pattern-Completeness (2-3 persons)

Pattern-completeness is the question whether in a given functional program all constructor ground terms can be matched by some left-hand-side of a defining equation.
In this project you will verify an algorithm for deciding pattern-completeness on an abstract-level, refine it to an executable one, and prove termination of the latter.
The algorithm is a variant of the one presented in the "Program Verification" lecture, chapter 4. It is a simplified version: instead of using types there is just a fixed finite list of constructors; and instead of invoking an matchingalgorithm, the variant in this theory integrates the matching algorithm. The latter deviation speeds up the execution time and simplifies the termination argument.

1.1 Preliminaries

We integrate some properties of the Archive of Formal Proofs, in particular first-order terms.

```
theory Project-Pattern-Completeness
    imports
        First-Order-Terms.Term
        Polynomial-Factorization.Missing-List
    Knuth-Bendix-Order.Term-Aux
    Decreasing-Diagrams-II.Decreasing-Diagrams-II
begin
```

A definition of being linear
fun linear-term :: ('f,'v) term \Rightarrow bool where
linear-term (Var -) $=$ True
\mid linear-term $($ Fun - ts $)=($ is-partition (map vars-term ts $) \wedge(\forall t \in$ set ts. linear-term t))

The linearity condition implies that several substitution τi (for each argument $t s!i$) can be merged into a single substitution σ.

```
lemma subst-merge:
    assumes part: is-partition (map vars-term ts)
    shows \(\exists \sigma . \forall i<l e n g t h ~ t s . ~ \forall x \in\) vars-term (ts!i). \(\sigma x=\tau i x\)
proof -
    let \(? \tau=\operatorname{map} \tau[0 . .<\) length \(t s]\)
    let ? \(\sigma=\) fun-merge ? \(\tau\) (map vars-term ts)
    show ?thesis
        apply (rule exI[of - ? \(\sigma]\) )
        apply (intro allI impI ballI)
        using fun-merge-part[OF part, of - - ? \(\tau]\)
        by auto
qed
```

A measure to count the number of function symbols of the second argument that don't occur in the first argument

```
fun fun-diff :: ('f,'v)term \(\Rightarrow\left({ }^{\prime} f, ' w\right)\) term \(\Rightarrow\) nat where
    fun-diff \(t(\) Var -\()=0\)
\(\mid\) fun-diff \((\operatorname{Var} x) l=\) num-funs \(l\)
\(\mid\) fun-diff \((\) Fun \(f t s)(\) Fun \(g l s)=(\) if \(f=g \wedge\) length \(t s=\) length ls then
    sum-list (map2 fun-diff ts ls) else 0)
```

A pattern problem is a set of set of term pairs, or for the implementation it will be a list of list of term pairs. Note that in the term pairs the type of variables differ: Each left term has natural numbers as variables, so that it is easy to generate new variables, whereas each right term has arbitrary variables of type ' v without any further information.
type-synonym ($\left.{ }^{\prime} f,{ }^{\prime} v\right)$ pat-problem $=\left(\left({ }^{\prime} f, n a t\right)\right.$ term $\times\left(' f,{ }^{\prime} v\right)$ term $)$ set set type-synonym $\left({ }^{\prime} f,{ }^{\prime} v\right)$ pat-problem-impl $=\left((' f, n a t)\right.$ term $\times\left({ }^{\prime} f,^{\prime} v\right)$ term $)$ list list

1.2 Task 1 - Soundness of the Abstract Inference System

In the sequel you find inference rules that describe a transformation of pattern problems. Fill in the missing inference rule that corresponds to a decomposition-rule in a matching-algorithm, and prove soundness of the abstract algorithm.
definition linear-pat-problem where linear-pat-problem $p=(\forall$ tl \in set $p . \forall(t i, p i)$ \in set tl. linear-term pi)

context

fixes $C::\left({ }^{\prime} f \times n a t\right)$ list - list of constructors with arities and $m::$ nat - upper bound on arities of constructors
assumes SORT-CONSTRAINT(${ }^{\prime} v::$ type $)$
begin
A constructor-ground substitution for the fixed set of constructors
definition $c g$-subst $::\left({ }^{\prime} f, n a t,{ }^{\prime} v\right)$ gsubst \Rightarrow bool where

$$
\text { cg-subst } \sigma=(\forall x . \text { vars-term }(\sigma x)=\{ \} \wedge \text { funas-term }(\sigma x) \subseteq \text { set } C)
$$

A definition of pattern completeness for linear pattern problems.

```
definition pat-complete-linear :: (' \(\left.f,{ }^{\prime} v\right)\) pat-problem \(\Rightarrow\) bool where
    pat-complete-linear \(p=(\forall \sigma::(' f, n a t, ' v)\) gsubst. cg-subst \(\sigma \longrightarrow(\exists\) tl \(\in p . \forall\)
\((t i, l i) \in t l . \exists \mu . t i \cdot \sigma=l i \cdot \mu))\)
definition subst-pat-problem \(::(' f, n a t)\) subst \(\Rightarrow\left(' f,{ }^{\prime} v\right)\) pat-problem \(\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)\) pat-problem
where
    subst-pat-problem \(\tau p=(\lambda\) tls. \((\operatorname{map-prod}(\lambda t . t \cdot \tau) i d)\) 'tls \()\) ' \(p\)
```

Specify a function to compute for a variable x all substitution that instantiate x by $c\left(x_{n}, \ldots, x_{n+a}\right)$ where c is an constructor of arity a and n is a parameter that determines from where to start the numbering of variables. Here, the function subst might be useful.
definition $\tau s::$ nat \Rightarrow nat \Rightarrow ('f,nat)subst list where $\tau s \times n=$ undefined

Specify that a given set of numbered variables are disjoint from those that occur in a pattern problem. Note: the variables of a term can be computed via vars-term.
definition tvars-disj-pp :: nat set $\Rightarrow\left({ }^{\prime} f,^{\prime} v\right)$ pat-problem \Rightarrow bool where tvars-disj-pp V p $=$ undefined

Fill in the missing parts in the decomposition rule.
inductive pp-trans $::(' f, ' v)$ pat-problem set $\Rightarrow(' f, ' v)$ pat-problem set \Rightarrow bool where pp-fail: pp-trans (insert $\} P$) $\{\}\}$
$\mid p p$-match-solved: pp-trans (insert (insert $\} p) P) P$
| pp-match-by-var: pp-trans (insert (insert (insert (t, Var x) tls) p) P) (insert (insert tls p) P)
\mid pp-clash: $(f$, length $t s) \neq(g$,length $l s) \Longrightarrow p p$-trans (insert (insert (insert (Fun f ts, Fun $g l s) t l s) p) P$)
(insert p P)
\mid pp-decomp: $(f$, length $t s)=($ g,length $l s) \Longrightarrow$ undefined ${ }^{\prime \prime}$ 'further condition" \Longrightarrow pp-trans (insert (insert (insert (Fun fts, Fun gls) tls) p) P)
(undefined "TODO")
$\mid p p-$ inst: tvars-disj-pp $\{n . .<n+m\} p \Longrightarrow$ pp-trans (insert $p P)(\operatorname{set}(\operatorname{map}(\lambda \tau$. subst-pat-problem $\left.\left.\tau p)\left(\begin{array}{c}\tau \\ s\end{array} \quad n\right)\right) \cup P\right)$

Fix a context which assumes that m is sufficiently large and that there is at least one constant constructor.

```
context
    fixes c:: 'f
    assumes c:}(c,0)\in\operatorname{set}
    and m-def:m = max-list (map snd C)
begin
```

lemma pp-trans: pp-trans $P P^{\prime} \Longrightarrow(\forall p \in P$. pat-complete-linear $p)=(\forall p \in$ P^{\prime}. pat-complete-linear p) proof (induct $P P^{\prime}$ rule: pp-trans.induct)
case *: (pp-clash f ts g ls tls $p P)$
show ? case sorry
next
case $*$: $(p p$-decomp f ts g ls tls $p P)$
show ?case sorry
next
case $*$: ($p p$-inst $n p p P x)$
show ? case sorry

- Further hints: there are useful things in the library such as substitution composition subst-compose-def, equality on terms: term-subst-eq, equality on lists: nth-equalityI.
At least one way to prove the result is considering both directions of the iff separately.
qed (auto simp: pat-complete-linear-def)

1.3 Task 2 - Termination of Implementation

The following algorithm implements the abstract inference system. Complete the definition for the decomposition rule and prove its termination via the already specified measure.

```
definition subst-pat-problem-impl :: ('f,nat)subst \(\Rightarrow(' f, ' v)\) pat-problem-impl \(\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)\) pat-problem-impl
where
    subst-pat-problem-impl \(\tau p=\operatorname{map}(\operatorname{map}(\operatorname{map-prod}(\lambda t . t \cdot \tau) i d)) p\)
function check-pat-complete :: nat \(\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)\) pat-problem-impl list \(\Rightarrow\) bool where
    check-pat-complete \(n[]=\) True - all pattern problems solved
| check-pat-complete \(n([] \# P)=\) False - no left-hand sides left
| check-pat-complete \(n(([] \#\) tls \() \# P)=\) check-pat-complete \(n P\) - match-list
empty
| check-pat-complete \(n((((t, \operatorname{Var} x) \#\) tls \() \#\) other \() \# P)=\) check-pat-complete \(n\)
( tls \# other \() \# P)\) - match by var
| check-pat-complete \(n(((\) Fun \(f\) ts,Fun \(g l s) \#\) tls \() \#\) other \() \# P)=(\) if \(f=g \wedge\)
length \(t s=\) length \(l s\)
    then check-pat-complete \(n\) undefined - decompose
    else check-pat-complete \(n(\) other \(\# P)\) ) - clash
| check-pat-complete \(n((((\) Var \(x, F u n g l s) \# t l s) \#\) other \() \# P)=\) check-pat-complete
\((n+m)\) - instantiate
            (map \((\lambda \tau\). subst-pat-problem-impl \(\tau(((\) Var \(x, F u n g l s) \#\) tls \() \#\) other \())(\tau s\)
\(x n) @ P\) )
    by pat-completeness auto
```

you might want to derive some additional lemmas on when two elements are in the multiset-relation which correspond to the applications in the termination proof, e.g. if you replace one element x by several smaller ones
lemma add-many-mult: $(\bigwedge y . y \in \# N \Longrightarrow(y, x) \in R) \Longrightarrow(N+M$, add-mset x $M) \in$ mult R
sorry
For the termination, we use a lexicographic combination: First, the multiset of function-symbol-differences is computed; second the size of terms in the right-hand sides of the pairs is measured.

```
termination
proof -
    define rel1-inner where rel1-inner \(=\) size-list \(\left(\lambda x s . \sum(t::(' f, n a t) t e r m, l::\right.\)
\(\left({ }^{\prime} f, ' v\right)\) term \() \leftarrow x s\). fun-diff \(\left.t l\right)\)
    define rel2 :: (('f,'v)pat-problem-impl list)rel where rel2 \(=\) measure (size-list
(size-list (size-list (size o snd))))
    define rel1 where rel1 \(=\) mult \(\{(x, y::\) nat \() . x<y\}\)
    let ? \(R=\) inv-image \((\) rel1 \(<*\) lex \(*>\) rel2 \()(\lambda(n, p) .(\) mset \((\) map rel1-inner \(p), p))\)
\(::(\) nat \(\times(' f, ' v)\) pat-problem-impl list)rel
    have wf: wf ?R unfolding rel2-def rel1-def by (auto intro: wf-mult wf-less)
    note defs \(=\) rel1-inner-def rel1-def rel2-def
    show ?thesis
    proof (standard, rule wf, goal-cases)
        case (1 n tls P)
        show ?case sorry
    next
        case (2 \(n t x\) tls other \(P\) )
            show ?case unfolding defs by (auto simp: termination-simp o-def intro:
mult-singleton)
    next
        case (3nfts g ls tls other P)
        show ?case sorry
    next
        case (4 \(n f\) ts \(g\) ls tls other \(P\) )
        show ?case unfolding defs by simp
    next
        case (5 n x g ls tls other P)
        show ?case unfolding defs in-inv-image split in-lex-prod
            apply (rule disjI1)
            apply simp
            apply (rule add-many-mult)
            apply clarsimp
    proof goal-cases
            case ( \(1 \tau\) )
            thus ?case sorry
            thm sum-list-mono
            thm sum-list-mono2
            thm size-list-pointwise
    qed
qed
```


1.4 Task 3 - Prove that the algorithm implements the abstract inference system.

definition pp-of-impl :: ('f,'v)pat-problem-impl $\Rightarrow\left({ }^{\prime} f,{ }^{\prime} v\right)$ pat-problem where $p p-o f-i m p l p=$ set ' set p
abbreviation pat-complete-linear-impl $\equiv(\lambda$ p. pat-complete-linear $(p p-o f-i m p l p))$
This is the a nice easy lemma to perform the upcoming proof: to show that we can switch in the implementation from one state to another, we just apply the corresponding abstract inference rule via local.pp-trans.
lemma pp-trans-impl: pp-trans $P P^{\prime} \Longrightarrow p p$-of-impl' set $P I=P \Longrightarrow p p$-of-impl - set $P I^{\prime}=P^{\prime} \Longrightarrow$

Ball (set PI') pat-complete-linear-impl = Ball (set PI) pat-complete-linear-impl
using pp-trans[of P P $]$ by auto
lemma pp-of-impl-subst[simp]: pp-of-impl (subst-pat-problem-impl τ p) $=$ subst-pat-problem $\tau(p p-o f-i m p l p)$
sorry
In the lemma we require linearity of the pattern problem and we also need a condition that the parameter n is chosen correctly, so that all variables will be fresh enough.

```
lemma check-pat-complete-linear-impl: assumes Ball (set P) linear-pat-problem
    and undefined "Condition on n being fresh for P"
    shows check-pat-complete n P}=\mathrm{ Ball (set P) pat-complete-linear-impl
proof -
    note def = pp-of-impl-def linear-pat-problem-def
    show ?thesis using assms
    proof (induction P rule: check-pat-complete.induct)
        case 1
        show ?case sorry
    next
        case (2 n P)
        show ?case sorry
    next
        case (3 n tls P)
    from 3 have IH: check-pat-complete n P}=(\mathrm{ Ball (set P) pat-complete-linear-impl)
        by auto
        show ?case unfolding check-pat-complete.simps IH
            by (rule pp-trans-impl[OF pp-match-solved - refl], auto simp: def)
    next
    case (4 nt x tls other P)
```

```
    show ?case sorry
next
    case (5 n f ts g ls tls other P)
    show ?case
    proof (cases f=g^ length ts = length ls)
            case False
            show ?thesis sorry
    next
            case True
            show ?thesis sorry
            thm set-zip
            thm in-set-zipE
    qed
next
    case (6 n x g ls tls other P)
    define pp where pp =((Var x, Fun gls) # tls) # other
    show ?case sorry
    thm max-list
    thm set-map
    thm vars-term-subst
    qed
qed
end
end
end
```


2 Congruence Closure (2-3 persons)

We consider a set ground equations GE such as

- $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{h}(\mathrm{b})$
- $\mathrm{f}(\mathrm{b})=\mathrm{b}$
- $g(a)=b$
and are interested in the question whether a particular equation is implied GE. For instance the sequence of equality-steps
- $\mathrm{f}(\mathrm{h}(\mathrm{b}))=\mathrm{f}(\mathrm{f}(\mathrm{g}(\mathrm{a})))=\mathrm{f}(\mathrm{f}(\mathrm{b}))=\mathrm{f}(\mathrm{b})$
proves that $f(h(b))=f(b)$ follows from E.
Whereas it is easy to validate a given sequence of equality-steps, the problem is to detect whether such a sequence exists for a given equation. To this end, the congruence closure algorithm has been developed which should be partially verified in this project.

Basic knowledge of term rewriting is helpful for this project. The describtion of the algorithm is based on Franz Baader and Tobias Nipkow, Term Rewriting and All That, Chapter 4.3.

```
theory Project-Congruence-Closure
    imports
        Main
begin
```


2.1 Definition of Algorithm

We start by definining ground terms where the type of symbols are just strings.
type-synonym symbol $=$ string
datatype trm $=$ Fun symbol trm list
type-synonym eqs $=($ trm \times trm $)$ set
Define the set of subterms of a term, e.g., the subterms of $f(g(a), b)$ would be $\{f(g(a), b), g(a), a, b\}$.

```
fun subt :: trm }=>\mathrm{ trm set where
    subt (Funfts)=undefined
```

Prove two useful lemmas about subterms.
lemma self-subt: $u \in$ subt u sorry
lemma subt-trans: $s \in$ subt $t \Longrightarrow t \in \operatorname{subt} u \Longrightarrow s \in$ subt u sorry
For a set of ground-equalities, the congruence closure algorithm is in particular interested in all subterms that occur in the equalities.
definition subt-eqs where subt-eqs $G E=\bigcup((\lambda(l, r)$. subt $l \cup$ subt $r)$ ' $G E)$
From now on fix a specific set of ground-equalities GE.

```
context
    fixes GE :: eqs
begin
```

Define an equality step where one can either replace one side of an equation in GE by the other side (a root-step), or where one can apply a step in a context.

```
inductive-set estep :: trm rel where
    root: undefined \(\Longrightarrow\) undefined \(\in\) estep
\(\mid\) ctxt \(:(s, t) \in\) estep \(\Longrightarrow(\) Fun \(f\) (before @ \(s \#\) after), Fun \(f\) (before @ \(t \#\) after \()\) )
\(\in\) estep
```

The other important definition is the Cong-operation which given a set of equalities derives new equalities of these by reflexivity, symmetry, transitivity or context.

```
inductive-set Cong :: eqs \(\Rightarrow\) eqs for \(E\) where
    C-keep: eq \(\in E \Longrightarrow e q \in \operatorname{Cong} E\)
C-refl: \((t, t) \in\) Cong \(E\)
C-sym: \((s, t) \in E \Longrightarrow(t, s) \in\) Cong \(E\)
|C-trans: \((s, t) \in E \Longrightarrow(t, u) \in E \Longrightarrow(s, u) \in \operatorname{Cong} E\)
\(\mid C\)-cong: length ss \(=\) length \(t s \Longrightarrow(\forall i<\) length \(t s .(s s!i, t s!i) \in E) \Longrightarrow(\) Fun
\(f\) ss, Fun \(f t s) \in \operatorname{Cong} E\)
```

Let us now fix to terms s and t where we are interested in whether GE implies $\mathrm{s}=\mathrm{t}$.

```
context
    fixes st :: trm
begin
```

In the congruence closure algorithm one only is interested in equalities of terms in S .
definition S where $S=$ subt $s \cup$ subt $t \cup$ subt-eqs $G E$
definition CongS where CongS $E=$ Cong $E \cap(S \times S)$
CCA defines the equalities that are obtained in the i-th iteration of the congruence closure algorithm, which iteratively applies the local.CongS operation starting from $G E$.
definition $C C A$ where $C C A i=(C o n g S \leadsto$ i) $G E$
Prove the following simple inclusions.
lemma $G E-S: G E \subseteq S \times S$ sorry
lemma $G E-C C A: G E \subseteq C C A$ i sorry

2.2 Completeness of CCA

The crucial result of the congruence closure algorithm is given in the following lemma on the completeness of the algorithm: if the algorithm has stabilized in the i-th iteration, then all equations in local. $S \times$ local. S that can be derived with arbitrary many steps are also contained in the equalities of CCA.
lemma esteps-imp-CCA: assumes CongS $(C C A i)=C C A i$
shows $(u, v) \in$ estep $^{*} * \cap(S \times S) \longrightarrow(u, v) \in C C A i$
proof
The proof is by induction on the number of steps and then by the size of the starting term u. This is expressed as follows in Isabelle.

```
assume \((u, v) \in\) estep \({ }^{*} \cap(S \times S)\)
then obtain \(n\) where \(*: u \in S v \in S(u, v) \in\) estep \(^{\sim} n\)
    by (auto simp: rtrancl-power)
obtain \(m\) where \(m=(n\),size \(u)\) by auto
with \(*\) show \((u, v) \in C C A i\)
proof (induction \(m\) arbitrary: \(u\) v \(n\) rule: wf-induct \([O F\) wf-measures \([o f[f s t, s n d]]])\)
    case (1muvn)
```

For handling the induction, we first convert the derivation into a function which gives us all intermediate terms via function w .

```
from 1 (4)[unfolded relpow-fun-conv] obtain \(w\)
    where \(w: w 0=u w n=v(\forall i<n .(w i, w(\) Suc \(i)) \in\) estep \()\) by auto
```

And the proof now proceeds by case-analysis on whether any of these steps was a root step or whether all steps are non-root.

```
    show ?case sorry
    qed
qed
```

Next, completeness of CCA is easily established

```
lemma esteps-imp-CCA-st: assumes CongS (CCA i) = CCA i
    shows (s,t) \in estep `}*\longrightarrow(s,t)\inCCA i
    sorry
```


2.3 Soundness of CCA

The crucial step to prove soundness is the following lemma, which might require some further auxiliary lemmas.
lemma Cong-esteps $: E \subseteq$ estep ${ }^{*} \Longrightarrow$ Cong $E \subseteq$ estep ${ }^{*}$ sorry
But you can easily verify that $? E \subseteq$ estep $^{*} \Longrightarrow$ Cong ? $E \subseteq$ estep * is the key to prove soundness of CCA.
lemma CCA-imp-esteps: CCA $i \subseteq$ estep ${ }^{*}$ sorry

2.4 Correctness of CCA

Having soundness and completeness, correctness is simple.

```
theorem congruence-closure-correct: assumes CongS (CCA i) = CCA i
    shows (s,t) \in estep ` * \longleftrightarrow (s,t) \inCCA i
    sorry
```


2.5 Termination of CCA

The precondition local.CongS (local.CCA i) $=$ local. $C C A$ can be discharged proving termination of the congruence closure algorithm which just computes the least i such that the precondition is satisfied. The existence
of such an i follows from the fact that CCA i is increasing with increasing i and CCA i is bounded by the finite set of terms $\mathrm{S} \times \mathrm{S}$, assuming finiteness of GE.
Formulating and proving these facts in Isabelle is another task of this project, if it is conducted as a 3-person project.

```
context
    assumes finite GE
begin
lemma i-exists: \existsi.CongS (CCA i)=CCA i sorry
definition fixpointI =(LEAST i. CongS (CCA i) = CCA i)
lemma fixpointI: CongS (CCA fixpointI) = CCA fixpointI
    sorry
```

Design an algorithm to compute local.fixpointI and prove its termination. The algorithm itself of course must not use local.fixpointI, but the measure for proving termination might very well depend on this unknown constant.

end

end
end
end

3 Tseitin Transformation (2 persons)

Since most SAT solvers insist on formulas in conjunctive normal form (CNF) as input, but in general the CNF of a given formula may be exponentially larger, there is interest in efficient transformations that produce a small equisatisfiable CNF for a given formula. Probably the earliest and most well-known of these transformation is due to Tseitin.
In this project you will implement a two-step transformation of propositional formulas into equisatisfiable CNFs and formally prove results about the complexity and that the resulting CNFs are indeed equisatisfiable to the original formula.

```
theory Project-Tseitin-Fresh
    imports Main
begin
```


3.1 Syntax and Semantics

For the purposes of this project propositional formulas (with atoms of an arbitrary type) are restricted to the following (functionally complete) connectives:

```
datatype ' \(a\) form \(=\)
    Bot - the "always false" formula
    | Top - the "always true" formula
    | Var 'a - propositional variables
    | Neg 'a form - negation
    | Disj 'a form 'a form - disjunction
    | Conj 'a form 'a form - conjunction
```

Define a function eval that evaluates the truth value of a formula with respect to a given truth assignment $\alpha::^{\prime} a \Rightarrow$ bool.

```
fun eval \(::\left({ }^{\prime} a \Rightarrow\right.\) bool \() \Rightarrow{ }^{\prime}\) ' form \(\Rightarrow\) bool
    where
    eval \(\alpha \varphi=\) undefined
```

Define a predicate sat that captures satisfiable formulas.

```
definition sat :: 'a form \(\Rightarrow\) bool
    where
        sat \(\varphi \longleftrightarrow\) undefined
```


3.2 Conjunctive Normal Forms

Literals are positive or negative variables.
datatype 'a literal $=P^{\prime} a \mid N^{\prime} a$
A clause is a disjunction of literals, represented as a list of literals.
type-synonym 'a clause $=$ ' a literal list
A CNF is a conjunction of clauses, represented as list of clauses.
type-synonym 'a cnf $=$ ' a clause list
Implement a function of-cnf that, given a CNF (of 'a cnf, computes a logically equivalent formula (of 'a form).

```
fun of-cnf :: 'a cnf 歽'a form
    where
        of-cnf cs = undefined
```


3.3 Tseitin Transformation

The idea of Tseitin's transformation is to assign to each subformula φ a label a_{φ} and use the following definitions

- $a_{\perp} \longleftrightarrow \perp$
- $a_{\top} \longleftrightarrow \top$
- $a_{\neg \varphi} \longleftrightarrow \neg \varphi$
- $a_{\varphi \vee \psi} \longleftrightarrow(\varphi \vee \psi)$
- $a_{\varphi \wedge \psi} \longleftrightarrow(\varphi \wedge \psi)$
to recursively compute clauses $\operatorname{tseitin} \varphi$ such that $a_{\varphi} \wedge \operatorname{tseitin} \varphi$ and φ are equisatisfiable (that is, the former is satisfiable iff the latter is).
Define a function tseitin that computes the clauses corresponding to the above idea.

```
fun tseitin :: 'a form \(\Rightarrow\) ('a form) cnf
    where
        tseitin \(\varphi=\) undefined
```

Prove that $a_{\varphi} \wedge$ tseitin φ are equisatisfiable.
lemma tseitin-equisat:

```
sat (of-cnf ([P\varphi] # tseitin \varphi))\longleftrightarrow sat \varphi
```

sorry

Prove linear bounds on the number of clauses and literals by suitably replacing n and num-literals below:
lemma tseitin-num-clauses:
length $($ tseitin $\varphi) \leq n *$ size φ
sorry
lemma tseitin-num-literals:
num-literals $($ tseitin $\varphi) \leq n *$ size φ
sorry

3.4 Fresh Variables

One of the problems in the tseitin transformation above is that the type of propositional variables is changed from ' a to ' a form.
Define a function to rename variables in a CNF.

```
fun rename-cnf :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a c n f \Rightarrow{ }^{\prime} b c n f\)
    where
    rename-cnff cs \(=\) undefined
```

Think of a property such that renaming preserves satisfiability. Note that injectivity is already defined in Isabelle (inj or inj-on.)
lemma property $f c s \Longrightarrow$ sat $(o f-c n f(r e n a m e-c n f f c s)) \longleftrightarrow$ sat (of-cnf cs) sorry
Next, we define a tseitin transformation which does not change the type of propositional variables.

```
definition tseitin-fresh :: 'your-type form \(\Rightarrow\) 'your-type cnf where
    tseitin-fresh \(\varphi=\) (let
    \(c s=\left[\begin{array}{ll}P & \varphi\end{array}\right]\) tseitin \(\varphi ;\)
```

$$
\begin{aligned}
& \text { renaming }=\text { undefined } \\
& \text { in rename-cnf renaming cs) }
\end{aligned}
$$

Implement a corresponding renaming function such that the following soundness property can be proved. Here, you also need to change the type-variable 'your-type, where for this project it is perfectly fine to use a concrete type which has infinitely many elements, e.g., nat or int or string.
lemma tseitin-fresh: sat $\varphi \longleftrightarrow$ sat (of-cnf (tseitin-fresh φ)) sorry
Your function definitions should be executable.
definition X :: 'your-type where $X=$ undefined
definition $Y::$ 'your-type where $Y=$ undefined
definition Z :: 'your-type where $Z=$ undefined
definition test-form :: 'your-type form where
test-form $=\operatorname{Neg}(\operatorname{Conj}(\operatorname{Disj}(\operatorname{Neg}(\operatorname{Var} X))(\operatorname{Var} Z))(\operatorname{Neg}(\operatorname{Var} Y)))$
The Isabelle command value (code) tseitin-fresh test-form should succeed.
end

4 A Compiler for the Register Machine from Hell (2 persons)

Processors from Hell has released its next-generation RISC processor RMfH. It features an infinite bank of registers R_{0}, R_{1}, \ldots holding unbounded integers. Register R_{0} plays the role of the accumulator and is the implicit source or destination register of all instructions. Any other register involved in an instruction must be distinct from R_{0}, which is enforced by implicitly incrementing its index.
There are five instructions
LDI i has the effect $R_{0}:=i$
$L D n$ has the effect $R_{0}:=R_{n+1}$
$S T n$ has the effect $R_{n+1}:=R_{0}$
$A D D n$ has the effect $R_{0}:=R_{0}+R_{n+1}$
$M U L n$ has the effect $R_{0}:=R_{0} * R_{n+1}$
were i is an integer and n a natural number.
In this project you will implement and verify a compiler for the Register Machine from Hell (RMfH).
(Adapted from https://isabelle.in.tum.de/exercises/advanced/regmachine/ ex.pdf)
theory Project-Register-Machine-from-Hell imports Main
begin
Define a data type of instructions and an execution function exec that takes an instruction and a state and returns the new state.

```
type-synonym state \(=\) nat \(\Rightarrow\) int
datatype instr \(=\) Undefined
fun exec :: instr \(\Rightarrow\) state \(\Rightarrow\) state
    where
        exec is \(=\) undefined
```

Extend exec to lists of instructions:

```
fun execute :: instr list \(\Rightarrow\) state \(\Rightarrow\) state
    where
        execute is \(s=\) undefined
```

The engineers of $P f H$ soon got tired of writing assembly language code and designed their own high-level programming language of arithmetic expressions. An expression can be

- an integer constant,
- one of the variables v_{0}, v_{1}, \ldots, or
- the sum of two expressions
- the product of two expressions
- the difference of two expressions
- exponentiation of an expression with a fixed exponent, i.e., a natural number constant

Define a data type of expressions and an evaluation function that takes an expression and a state and returns the resulting value. Because this is a clean language, there is no implicit increment going on: the value of v_{n} in state s is simply $s n$.
datatype expr $=$ Undefined
fun value :: expr \Rightarrow state \Rightarrow int where
value e $s=$ undefined

4.1 A Compiler

You have been recruited to write a compiler from expr to instr list. You remember your compiler course and decide to emulate a stack machine using free registers, that is, registers not used by the expression you are compiling. Implement a compiler compile :: expr \Rightarrow nat \Rightarrow instr list where the second argument is the index of the first free register that can be used to store intermediate results. The result of an expression should be returned in R_{0}. Because R_{0} is the accumulator, you decide on the following compilation scheme: v_{i} will be held in R_{i+1}.
Hint: perhaps you first treat a simplified version of expressions without the difference- and exponentiation-operations, since these operations are not directly supported by the RMfH architecture.
Challenge: Can you do better than compiling exponentation x^{n} into $O(n)$ multiplications?

```
fun compile :: expr }=>\mathrm{ nat }=>\mathrm{ instr list
    where
        compile e k= undefined
```


4.2 Compiler Verification

Although you are convinced about the correctness of your compiler, the boss of PfH (which coincides with the lecturer of interactive theorem proving) actually wants you to verify the compiler. Below is a sketch of the correctness statement.
However, there is definitely a precondition missing because k should be large enough not to interfere with any of the variables in e. Moreover, you have some lingering doubts about having the same s on both sides despite the index shift between variables and registers. But because all your definitions are executable, you hope that Isabelle will spot any incorrect propositions before you even start its proofs. What worries you most is the number of auxiliary lemmas it may take to prove your proposition.

```
lemma
    execute (compile e k) s 0 = value e s
    sorry
end
```


5 Propositional Logic (2 persons)

Soundness and completeness of a logic establish that the syntactic notion of provability is equivalent to the semantic notation of logical entailment.

In this project you will formally prove soundness and completeness of a specific set of natural deduction rules for propositional logic.

```
theory Project-Logic
    imports Main
begin
```


5.1 Syntax and Semantics

Propositional formulas are defined by the following data type (that comes with some syntactic sugar):

```
type-synonym \(i d=\) string
datatype form \(=\)
    Atom id
    | Bot \(\left(\perp_{p}\right)\)
    | Neg form ( \(\neg p\) - [68] 68)
    | Conj form form (infixr \(\wedge_{p} 67\) )
    | Disj form form (infixr \(\vee_{p}\) 67)
    | Impl form form (infixr \(\rightarrow_{p} 66\) )
```

Define a function eval that evaluates the truth value of a formula with respect to a given truth assignment.

```
fun eval \(::(\) id \(\Rightarrow\) bool \() \Rightarrow\) form \(\Rightarrow\) bool
    where
        eval \(v \varphi \longleftrightarrow\) undefined
```

Using eval, define semantic entailment of a formula from a list of formulas.

```
definition entails :: form list \(\Rightarrow\) form \(\Rightarrow\) bool (infix \(\models 51\) )
    where
    \(\Gamma \models \varphi \longleftrightarrow\) undefined
```


5.2 Natural Deduction

The natural deduction rules we consider are captured by the following inductive predicate proves $P \varphi$, with infix syntax $P \vdash \varphi$, that holds whenever a formula φ is provable from a list of premises P.

```
inductive proves (infix \(\vdash 58\) )
    where
        premise: \(\varphi \in \operatorname{set} P \Longrightarrow P \vdash \varphi\)
    | conjI: \(P \vdash \varphi \Longrightarrow P \vdash \psi \Longrightarrow P \vdash \varphi \wedge_{p} \psi\)
    |conjE1: \(P \vdash \varphi \wedge_{p} \psi \Longrightarrow P \vdash \varphi\)
    | conjE2: \(P \vdash \varphi \wedge_{p} \psi \Longrightarrow P \vdash \psi\)
    | impI: \(\varphi\) \# \(P \vdash \psi \Longrightarrow P \vdash\left(\varphi \rightarrow_{p} \psi\right)\)
    | impE: \(P \vdash \varphi \Longrightarrow P \vdash \varphi \rightarrow_{p} \psi \Longrightarrow P \vdash \psi\)
    |disjI1: \(P \vdash \varphi \Longrightarrow P \vdash \varphi \vee_{p} \psi\)
    | disjI2: \(P \vdash \psi \Longrightarrow P \vdash \varphi \vee_{p} \psi\)
    |disjE: \(P \vdash \varphi \vee_{p} \psi \Longrightarrow \varphi \# P \vdash \chi \Longrightarrow \psi \# P \vdash \chi \Longrightarrow P \vdash \chi\)
```

$$
\begin{aligned}
& \text { negI: } \varphi \# P \vdash \perp_{p} \Longrightarrow P \vdash \neg_{p} \varphi \\
& \mid \text { negE: } P \vdash \varphi \Longrightarrow P \vdash \neg_{p} \varphi \Longrightarrow P \vdash \perp_{p} \\
& \mid \text { botE: } P \vdash \perp_{p} \Longrightarrow P \vdash \varphi \\
& \text { dnegE: } P \vdash \neg_{p} \neg_{p} \varphi \Longrightarrow P \vdash \varphi
\end{aligned}
$$

Prove that \vdash is monotone with respect to premises, that is, we can arbitrarily extend the list of premises in a valid prove.
lemma proves-mono:
assumes $P \vdash \varphi$ and set $P \subseteq$ set Q
shows $Q \vdash \varphi$ sorry

Prove the following derived natural deduction rules that might be useful later on:
lemma dnegI:
assumes $P \vdash \varphi$
shows $P \vdash \neg_{p} \neg_{p} \varphi$
sorry
lemma $p b c$:
assumes $\neg_{p} \varphi \# P \vdash \perp_{p}$
shows $P \vdash \varphi$
sorry

lemma lem:

$$
\begin{aligned}
& P \vdash \varphi \vee_{p} \neg_{p} \varphi \\
& \text { sorry }
\end{aligned}
$$

lemma neg-conj:
assumes $\chi \in\{\varphi, \psi\}$ and $P \vdash \neg_{p} \chi$
shows $P \vdash \neg_{p}\left(\varphi \wedge_{p} \psi\right)$
sorry
lemma neg-disj:
assumes $P \vdash \neg_{p} \varphi$ and $P \vdash \neg_{p} \psi$
shows $P \vdash \neg_{p}\left(\varphi \vee_{p} \psi\right)$
sorry
lemma trivial-imp:
assumes $P \vdash \psi$
shows $P \vdash \varphi \rightarrow_{p} \psi$ sorry
lemma vacuous-imp: assumes $P \vdash \neg_{p} \varphi$ shows $P \vdash \varphi \rightarrow_{p} \psi$ sorry
lemma neg-imp:

```
assumes }P\vdash\varphi\mathrm{ and }P\vdash\mp@subsup{\neg}{p}{}
shows }P\vdash\mp@subsup{\neg}{p}{}(\varphi\mp@subsup{->}{p}{}\psi
sorry
```


5.3 Soundness

Prove soundness of \vdash with respect to \vDash.
lemma proves-sound:
assumes $P \vdash \varphi$
shows $P \models \varphi$
sorry

5.4 Completeness

Prove completeness of \vdash with respect to \vDash in absence of premises.
lemma prove-complete-Nil:

assumes [] $\models \varphi$

shows [] $\vdash \varphi$
sorry
Now extend the above result to also incorporate premises.

```
lemma proves-complete:
    assumes }P\models
    shows P}\vdash
    sorry
```

Conclude that semantic entailment is equivalent to provability.
lemma entails-proves-conv:

$$
\begin{aligned}
& P \models \varphi \longleftrightarrow P \vdash \varphi \\
& \text { sorry }
\end{aligned}
$$

end

6 BIGNAT - Natural Numbers of Arbitrary Size (1 person)

Hardware platforms have a limit on the largest number they can represent. This is usually fixed by the bit lengths of registers and ALUs used.
In order to be able to perform calculations that require arbitrarily large numbers, the provided arithmetic operations need to be extended in order for them to work on an abstract data type representing numbers of arbitrary size.
In this project you will build and verify an implementation for BIGNAT, an abstract data type representing natural numbers of arbitrary size.
(Adapted from http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf)

```
theory Project-BIGNAT
    imports Main
begin
```


6.1 Representation

A BIGNAT is represented by a list of natural numbers in a range supported by the target machine. In our case, this will be all natural numbers smaller than a given base b.
Note: Natural numbers in Isabelle are of arbitrary size.
type-synonym bignat $=$ nat list
Define a function valid that takes a base and checks if a given BIGNAT is valid.

```
fun valid \(::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) bool
    where
        valid \(b n=\) undefined
```

Define a function val that takes a BIGNAT and its corresponding base, and returns the natural number represented by the BIGNAT.

```
fun val :: nat }=>\mathrm{ bignat }=>\mathrm{ nat
    where
        val b n = undefined
```


6.2 Addition

Define a function add that adds two BIGNATs with the same base. Make sure that your algorithm preserves the validity of the BIGNAT representation.

```
fun add \(::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) bignat \(\Rightarrow\) bignat
    where
        add \(b m n=\) undefined
```

Using val, verify formally that your add function computes the sum of two BIGNATs correctly.
lemma val-add: val $b(a d d b m n)=$ val $b m+$ val $b n$ sorry

Using valid, verify formally that your function add preserves the validity of the BIGNAT representation.

```
lemma valid-add:
    assumes valid b m}\mathrm{ and valid b n
    shows valid b (add b m n)
    sorry
```


6.3 Multiplication

Define a function mult that multiplies two BIGNATs with the same base. You may use $a d d$, but not so often as to make the solution trivial. Make sure that your algorithm preserves the validity of the BIGNAT representation.

```
fun mult \(::\) nat \(\Rightarrow\) bignat \(\Rightarrow\) bignat \(\Rightarrow\) bignat
    where
        mult \(b\) m \(n=\) undefined
```

Using val, verify formally that your mult function computes the product of two BIGNATs correctly.

```
lemma val-mult: val b (mult b m n) = val b m*val b n
    sorry
```

Using valid, verify formally that your mult function preserves the validity of the BIGNAT representation.

```
lemma valid-mult:
    assumes valid b m}\mathrm{ and valid b n
    shows valid b (mult b m n)
    sorry
```

end

7 The Euclidean Algorithm - Inductively (1 person)

In this project you will develop and verify an inductive specification of the Euclidean algorithm.
(Adapted from http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf)

```
theory Project-GCD
    imports Main
begin
```

Define the set $g c d$ of triples (a, b, g) such that g is the greatest common divisor of a and b inductively.
Your definition should closely follow the Euclidean algorithm, which repeatedly subtracts the smaller from the larger number, until one of them is zero (at this point, the other number is the greatest common divisor).
inductive-set gcd $::($ nat \times nat \times nat $)$ set
Show that the greatest common divisor as given by $g c d$ is indeed a divisor.
lemma gcd-divides: $(a, b, g) \in g c d \Longrightarrow g d v d a \wedge g d v d b$
sorry

7.1 Soundness

Show that the greatest common divisor as given by $g c d$ is greater than or equal to any other common divisor.

```
lemma gcd-greatest:
    assumes (a,b,g)\ingcd
    and 0<a\vee0<b
    and d dvd a
    and d dvd b
shows d}\leq
sorry
```


7.2 Completeness

So far, you have only shown that $g c d$ is correct, but there might still be values a and b such that there is no g with $(a, b, g) \in g c d$.
Thus, show completeness of your specification. First prove the following result by course-of-value recursion, that is, using ($\bigwedge n . \forall m<n$. ?P $m \Longrightarrow$ $? P n) \Longrightarrow$?P ?n. (Inside the induction make a case analysis corresponding to the different clauses of the algorithm.)

lemma gcd-defined-aux:

```
a+b\leqn\Longrightarrow\existsg. (a,b,g)\ingcd
sorry
lemma gcd-defined: \existsg. (a,b,g) \in gcd
sorry
```


7.3 Uniqueness

Show that the gcd is uniquely determined.

```
lemma gcd-unique: }(a,b,g)\ingcd\Longrightarrow(a,b,\mp@subsup{g}{}{\prime})\ingcd\Longrightarrowg=\mp@subsup{g}{}{\prime
    sorry
```


7.4 Code

Finally use the above results to generate code for computing gcds.
Gcd as function.
definition $G c d::$ nat \Rightarrow nat \Rightarrow nat where Gcd $a b=($ THE $g .(a, b, g) \in g c d)$
lemma gcd-to-Gcd: $(a, b, g) \in g c d \Longrightarrow G c d a b=g$ sorry
lemma Gcd-to-gcd: $(a, b, G c d$ a $b) \in g c d$ sorry

```
lemma Gcd-code[code]:
    Gcd a b = undefined '"some recursive equation"
    sorry
```

This value-command should succeed.
Congratulations, you have just defined the recursive Gcd-function without using the function package.
end

