





# Interactive Theorem Proving using Isabelle/HOL

Session 1

René Thiemann

Department of Computer Science

# Outline

- Organization
- Motivation and Introduction
- Higher-Order Logic
- First Steps with Isabelle/HOL

Organization

# Course Info (VU 3)

- LV-Number: 703315
- instructor: René Thiemann
- VU: attendance mandatory, shared lecture and proseminar
- website: http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa (slides and Isabelle files are available online)
- consultation hours: Tuesday 10:00 11:00 in 3M09 (ICT building)

Grading

RT (DCS @ UIBK)

- weekly exercises (50 %)
- project (50 %) (finished projects must be submitted through OLAT deadline: August 1, 2023)



#### The Exercises

- weakly exercise will be handed out each Thursday
- mark and upload solved exercises in OLAT until Thursday, 6am
- solutions will be discussed at start of each VU

The Project

- list of potential formalization projects will be made available
- projects will be assigned on April 27
- work alone or in small groups (depending on specific project)
- projects have to be finished before August 1
- be able to answer project related questions

#### **Course Information**

- two courses on interactive theorem proving provided by CL
- VU3 Interactive Theorem Proving (Cezary Kaliszyk)
  - broader: different proof assistants based on different logics
  - covers foundations of interactive theorem provers
- VU3 Interactive Theorem Proving using Isabelle/HOL (this course)
  - focussed: single proof assistant (Isabelle), one logic (HOL: higher-order logic)
  - practical course to obtain hands-on experience
- $\hookrightarrow$  good idea to attend both courses

#### Literature

- Isabelle documentation (https://isabelle.in.tum.de)
  - Tobias Nipkow: Programming and Proving in Isabelle/HOL
  - ...
- Tobias Nipkow and Gerwin Klein: Concrete Semantics with Isabelle/HOL (http://www.concrete-semantics.org)

Acknowledgement

• Several slides have been taken from a previous course on interactive theorem proving given by Christian Sternagel

# Motivation and Introduction

#### Motivation

- bugs in unverified software and hardware may have severe consequences
- these can be costly (crash of Ariane, Pentium bug, ...)
- or fatal (control software of aircrafts, medical devices, ...)

**One Solution: Formal Verification** 

Proving program correctness with respect to given formal specification

State of the Art in Formal Verification

- verified SAT solver wins against unverified SAT solvers in competition
- verified operating system kernel (seL4) (no arithmetic exceptions, deadlocks, buffer overflows, ...)
- verification of Kepler conjecture: optimal density of packing spheres is  $\pi/\sqrt{18}$
- 99 % of a top 100 mathematical theorems list has been verified

https://www.cs.ru.nl/~freek/100/

Formal Verification via Theorem Proving

- various logics to write formal specifications
  - propositional logic, SMT, first-order logic
  - higher-order logic (HOL), calculus of inductive constructions
- logics differ in expressivity and automation
  - automated theorem proving (ATP)
    - push button verification (SAT solver, SMT solver, first-order resolution prover, ...)
    - limited expressivity
  - interactive theorem proving (ITP)
    - proofs are developed manually (within a proof assistant)
    - less automation
    - high expressivity (mathematical theorems, program verification, ...)
- Isabelle is a popular proof assistant (besides Coq, Lean, PVS, ...) that supports HOL
- HOL is sweet spot between expressivity and automation

# What is a Proof Assistant?

- combination of automated theorem prover (ATP) and proof checker
- structure of proofs is designed manually, some subproofs are found automatically
- all proofs are checked rigorously, e.g., in an LCF-style proof assistant such as Isabelle

# Examples

- automatic methods
  - logical reasoning (e.g., linear arithmetic, first-order reasoning)
  - equational reasoning
  - ...
- manual steps
  - provide intermediate statements or auxiliary lemmas
  - perform induction or case analysis
  - ...
- proof checking
  - check that all cases have been covered, that inference rules are applied correctly, ...

# What is LCF-Style?

- theorems are represented by abstract data type (thm)
- set of (basic) logical inferences provided as interface (trusted kernel)
- no other ways to create theorem (value of type thm) due to abstraction barrier and strong type system

# Example

- kernel provides functions assume : cterm -> thm and implies\_elim : thm -> thm -> thm
- implements inference rules

$$\frac{\Gamma \vdash A \Longrightarrow B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

• if desired, inspect implementation of kernel functions to increase trust

# History of Isabelle

- 1986: creation of Isabelle, a proof assistant for various logics (University of Cambridge, Technische Universität München)
- 1993: support for higher-order logic: Isabelle/HOL
- 1996: human-readable proof language: Isabelle/Isar
- 2011: prover IDE: Isabelle/jEdit
- since 2004: archive of formal proofs

   (a library of formalized proofs with currently 447 authors and 231 100 lemmas)



Tobias Nipkow



Lawrence Paulson



Makarius Wenzel



Higher-Order Logic

Higher-Order Logic

- we assume knowledge of first-order logic
- higher-order logic has two main differences to first-order logic
  - terms are typed
  - quantification for each type, including function-types
- higher-order logic will be used both to specify functional programs as well as logical specifications

HOL = Functional Programming + Logic

Types in HOL

- very similar to Haskell types
  - basic types for booleans, natural numbers, integers, ...
  - type variables
  - function types
  - algebraic data types: lists, trees, pairs, tuples, ...
- in Isabelle
  - function types have form  $input\_type \Rightarrow output\_type$
  - $ty_1 \Rightarrow ty_2 \Rightarrow ty_3$  is the same as  $ty_1 \Rightarrow (ty_2 \Rightarrow ty_3)$
  - type variables are written with a leading prime: 'a, 'b, ...
  - most type constructors are written postfix: 'a list, nat list list, ...
  - tuples are encoded as nested pairs: 'a  $\times$  'b  $\times$  'c is the same as 'a  $\times$  ('b  $\times$  'c)
  - new algebraic data types can be created via datatype as in
     datatype ('a,'b)tree = Leaf 'a | Node "('a,'b)tree" 'b "('a,'b)tree"
  - type synonyms (abbreviations) can be created via type\_synonym as in type\_synonym ('a)special\_tree = "(nat × 'a, 'a list)tree" type\_synonym string = "char list"

#### Inner and Outer Syntax

- Isabelle contains various languages
  - implementation languages Scala and ML
  - language to write Isabelle theories: outer syntax
    - add a function definition
    - add a type definition
    - state a lemma
    - perform a proof step
    - ...
  - language to specify terms and types: inner syntax
    - provide defining equations of a function
    - provide definition of type
    - provide a formula that describes the lemma
    - instantiate some inference rule, e.g., provide a term as existential witness
    - ...
- important
  - content of inner syntax needs to be surrounded by double-quotes
  - exception: if content is atomic, then double-quotes can be dropped

Example for Outer and Inner Syntax: Data Type Definitions

- general definition is specified by outer syntax: datatype ('a<sub>1</sub>, ..., 'a<sub>n</sub>) ty =C<sub>1</sub>  $ty_{11}$  ...  $ty_{1k_1} | ... | C_m ty_{m1} ... ty_{mk_m}$
- each  $ty_{ij}$  is a type, i.e., something that is specified by inner syntax
- consider concrete data type definition from previous slide datatype ('a, 'b)tree = Leaf 'a | Node "('a, 'b)tree" 'b "('a, 'b)tree"
  - the first argument of Node is "('a, 'b)tree" double-quotes required
  - the second argument of Node is 'b double-quotes not required
  - further examples
    - both nat and "nat" are okay
    - "nat  $\Rightarrow$  bool"
    - "nat list"
    - "(nat  $\times$  'a) list"
  - once we are inside inner syntax, no further double-quotes are allowed:
    - "("nat  $\times$  'a") list" is not permitted

Difference Between Types in Haskell and in HOL

- although HOL types look similar to Haskell types there are two import differences
- data type definitions in Isabelle/HOL do not include infinite applications of constructors
  - consider datatype 'a list = Nil | Cons 'a "'a list"
  - in Haskell, lists can be infinite, e.g., ones = Cons 1 ones
  - in Isabelle/HOL, only finite lists are covered by type 'a list
- all types in HOL must be inhabited
  - for each datatype invocation, Isabelle internally checks that at least one term of the new type can be created, and if not, the new type is not accepted
  - example: datatype foo = Bar foo is refused

### Terms in HOL

- terms in Isabelle/HOL are similar to Haskell terms, they include
  - literals: 0, 5, ''hello'', CHR ''c'', ...
  - variables: free x, y, xs, ... or bound x, y, xs, ...
  - constants: True, False, Nil, Cons, ( $\lor$ ), ( $\land$ ), ( $\neg$ ), ( $\rightarrow$ ), (=), (<), (+), map, ...
  - application:  $t_1$   $t_2$  multiple arguments  $t_1$   $t_2$   $t_3$  are encoded as ( $t_1$   $t_2$ )  $t_3$
  - $\lambda$ -abstractions:  $\lambda \times t$  multiple arguments  $\lambda \times y$ . t are encoded as  $\lambda \times t$ . ( $\lambda y, t$ )
  - type constraints: *t* :: *ty*
  - Isabelle/HOL provides further syntactic conveniences like if-then-else, let, case, infix-syntax, special syntax for lists and quantifiers, ...
- terms are typed, Isabelle performs type inference and type checking
- HOL-formulas are just terms of type bool
- example terms
  - map ( $\lambda$  x :: nat. x + 1) [1, 3] is a term with type nat list
  - map f (Cons x xs) = Cons (f x) (map f xs) might be a defining equation of map
  - $(x :: nat) + (y + z) = (x + y) + z \land x + y = y + x :: bool states that addition of natural numbers is associative and commutative$

# Quantors and Equality in HOL

- unlike in Haskell, equality is available for all types
- two consequences
  - equality is not necessarily executable
  - quantors are not primitive in HOL, but can be encoded
- example
  - define universal quantification as a function All :: ('a ⇒ bool) ⇒ bool via definition "All P = (P = (λ x. True))"
  - ∀-quantifier is nothing else than syntactic sugar, e.g.
     ∀ x. P x y is syntax for All (λ x. P x y)
  - properties of universal quantifiers (introduction and elimination rules) can be derived
     → we will work with these derived properties and ignore the internal definition
- facts
  - Isabelle/HOL contains only very few axiomatized types and constants (bool and some infinite type, (→), (=) and The, Eps :: ('a ⇒ bool) ⇒ 'a)
  - all other types and constants are defined on top of these
  - we won't cover the details of these foundations in this course

**Examples Beyond First Order Logic** 

(\* well-foundedness of a binary relation can be expressed \*)
type\_synonym 'a rel = "'a ⇒ 'a ⇒ bool"
definition "well\_founded (R :: 'a rel)
 = (¬ (∃ f :: nat ⇒ 'a . ∀ n :: nat. R (f n) (f (n + 1))))"

(\* the transitive closure of a relation can be expressed \*) definition "trans\_cl (R :: 'a rel) a b

$$= (\exists (f :: nat \Rightarrow 'a) (n :: nat).$$
  
f 0 = a  $\land$  f n = b  $\land$  n  $\neq$  0  $\land$   
( $\forall$  i. i < n  $\longrightarrow$  R (f i) (f (i + 1))))"

lemma "well\_founded (trans\_cl R) = well\_founded R" oops

```
(* induction on natural numbers is sound *)
lemma "\forall P :: nat \Rightarrow bool.
P 0 \longrightarrow (\forall n. P n \longrightarrow P (n + 1)) \longrightarrow (\forall n. P n)" oops
```

# **Color-Codes of Isabelle**

- a keyword of outer syntax • keyword command a command of outer syntax a constant that has been defined before ٠ const a free variable • free • bound a bound variable (of  $\lambda$  or quantifier) a fixed variable (e.g., after  $\forall$ -introduction in a proof) • fixed • colors help to identify mistakes, e.g. in definition "select\_first fst \_ = fst" the black color of fst indicates that fst is an already defined constant (and not a bound variable fst), so that a name clash needs to be resolved
- at the time of a definition, the used name is free (name), only afterwards it turns to black (name)
- **free** variables in lemmas are implicitly universally quantified (and can be instantiated after the lemma has been proven)

# **Functional Programming in HOL**

- functional programs can be written similarly to Haskell
- already seen: type definitions
- new: function definitions
- non-recursive function (or constant) definitions
  - outer syntax: definition name :: ty where eqn or just definition eqn
  - eqn is a boolean term of the shape
     name x<sub>1</sub> ... x<sub>n</sub> = t
  - important: often t needs to be put in parenthesis
     definition "sorted\_triple x y z = (x ≤ y ∧ y ≤ z)"
- recursive function definitions
  - outer syntax: fun name :: ty where  $eqn_1 \mid \ldots \mid eqn_m$
  - each eqn<sub>i</sub> is a boolean term of the shape name pat<sub>1</sub> ... pat<sub>n</sub> = t
  - example

```
fun append :: "'a list ⇒ 'a list ⇒ 'a list" where
"append Nil ys = ys"
| "append (Cons x xs) ys = Cons x (append xs ys)"
```

Function Definitions in Isabelle/HOL

- syntactic differences to Haskell
  - let-expressions are of form let  $x_1 = t_1$ ; ...;  $x_n = t_n$  in t
  - case-expressions are of form case t of  $pat_1 \Rightarrow t_1 \mid \ldots \mid pat_n \Rightarrow t_n$
  - let, case, and if-then-else often have to be surrounded by parenthesis
  - let-expressions are sequential and non-recursive:  $t_i$  may not refer to  $x_i$ , ...,  $x_n$
  - no local recursive function definitions
  - no restriction to executable functions:

fun f where "f P = (if ( $\forall x :: nat. P x$ ) then 0 else 1)"

- semantic difference to Haskell
  - functions defined by **fun** have to be terminating
  - if Isabelle is not able to prove termination, a function definition is not accepted

First Steps with Isabelle/HOL

#### Isabelle 2022 in RR 20

- from now on prefix "\$ " indicates bash prompt
- start Isabelle via
  - \$ isabelle jedit (optional: File.thy)
- in case isabelle is not found, add \$ISABELLE\_HOME/bin/ to your PATH where ISABELLE\_HOME is /usr/site/isabelle/2022/

Isabelle 2022 on Your Machine

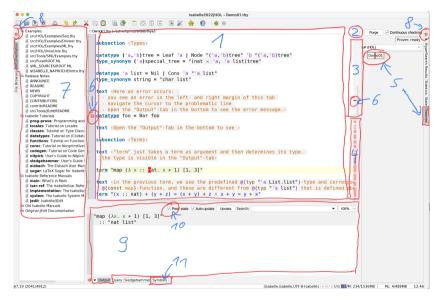
• download and installation instructions available at

https://isabelle.in.tum.de

Demo

\$ isabelle jedit Demo01.thy

#### Isabelle/jEdit - Overview of User Interface



# **Explanation of Previous Slide**

- 1. main text area
- 2. switch between different theories
- 3. processed part of theory
- 4. unprocessed part of theory
- 5. progress indicator of several theories
- 6. indication of problem
- 7. documentation
- 8. click to close left or right panel
- 9. main output window
- 10. enable to view proof state in output (and not just errors)
- 11. symbol panel for information on special symbols

# Theory Files - General Structure theory T imports T<sub>1</sub> ... T<sub>n</sub> begin (\* definitions, theorems and proofs \*) ... end

Notes

- store theory T in file T.thy
- definitions and theorems from theories  $T_1, \ldots, T_n$  available after begin
- new definitions, theorems and proofs go between begin and end
- qualify identifiers by theory name (like T.f) to disambiguate names
- theory Main is collection of basic definitions (like Haskell's Prelude) and should always be imported

**Entering Special Symbols** 

- aim: enter symbols like  $\forall$ , ×,  $\lambda$ , ...
- four methods
  - switch to Symbols-panel in Isabelle/jEdit, find and click on symbol; important: hovering over symbol will reveal internal name and abbreviations
  - enter internal name prefixed by backslash and use auto-completion via TAB;
     example: (\f) (f) (r) will result in \<forall>, i.e., ∀
  - enter abbreviation followed by TAB, e.g.,  $\forall$  is also obtained via [] TAB
  - some abbreviations have an auto completion where no TAB is required, e.g., (/) will immediately result in  $\land$

# Frequently Used Symbols

| symbol                | internal                                    | auto completion   | abbreviations                     |
|-----------------------|---------------------------------------------|-------------------|-----------------------------------|
| λ                     | \ <lambda></lambda>                         |                   | <b>%</b>                          |
| $\Rightarrow$         | \ <rightarrow></rightarrow>                 | = >               | .>                                |
| 7                     | \ <not></not>                               |                   | ~                                 |
| $\wedge$              | $\langle and \rangle$                       | $\square$         | 8                                 |
| V                     | \ <or></or>                                 | $\mathbb{N}$      |                                   |
| $\longrightarrow$     | \ <longrightarrow></longrightarrow>         | >                 | .>                                |
| $\longleftrightarrow$ | \ <longleftrightarrow></longleftrightarrow> | $\langle \rangle$ | $\langle \rangle$                 |
| $\forall$             | \ <forall></forall>                         |                   | ! and $A L L$                     |
| Ξ                     | \ <exists></exists>                         |                   | $?$ and $\mathbf{E}$ $\mathbf{X}$ |
| ×                     | \ <times></times>                           | < * >             |                                   |
| $\leq$                | \ <le></le>                                 | < =               |                                   |