
Summer Term 2023

Interactive Theorem Proving using Isabelle/HOL
Session 1

René Thiemann

Department of Computer Science

Outline

• Organization

• Motivation and Introduction

• Higher-Order Logic

• First Steps with Isabelle/HOL

RT (DCS @ UIBK) session 1 2/32

Organization

Organization

Course Info (VU 3)
• LV-Number: 703315
• instructor: René Thiemann
• VU: attendance mandatory, shared lecture and proseminar
• website: http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa

(slides and Isabelle files are available online)
• consultation hours: Tuesday 10:00 – 11:00 in 3M09 (ICT building)

Grading
• weekly exercises (50 %)
• project (50 %)

(finished projects must be submitted through OLAT
deadline: August 1, 2023)

RT (DCS @ UIBK) session 1 4/32

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=23S&lvnr_id_in=703315
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa
https://lms.uibk.ac.at/url/RepositoryEntry/5373624454/CourseNode/5373624454
https://lms.uibk.ac.at/url/RepositoryEntry/5373624454/CourseNode/5373624454
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Organization

The Exercises
• weakly exercise will be handed out each Thursday
• mark and upload solved exercises in OLAT until Thursday, 6am
• solutions will be discussed at start of each VU

The Project

• list of potential formalization projects will be made available
• projects will be assigned on April 27
• work alone or in small groups (depending on specific project)
• projects have to be finished before August 1
• be able to answer project related questions

RT (DCS @ UIBK) session 1 5/32

Organization

Course Information
• two courses on interactive theorem proving provided by CL
• VU3 Interactive Theorem Proving (Cezary Kaliszyk)

• broader: different proof assistants based on different logics
• covers foundations of interactive theorem provers

• VU3 Interactive Theorem Proving using Isabelle/HOL (this course)
• focussed: single proof assistant (Isabelle), one logic (HOL: higher-order logic)
• practical course to obtain hands-on experience

,→ good idea to attend both courses

RT (DCS @ UIBK) session 1 6/32

Organization

Literature
• Isabelle documentation

(https://isabelle.in.tum.de)
• Tobias Nipkow: Programming and Proving in Isabelle/HOL
• . . .

• Tobias Nipkow and Gerwin Klein: Concrete Semantics with Isabelle/HOL
(http://www.concrete-semantics.org)

Acknowledgement

• Several slides have been taken from a previous course on interactive theorem proving
given by Christian Sternagel

RT (DCS @ UIBK) session 1 7/32

Motivation and Introduction

https://lms.uibk.ac.at/url/RepositoryEntry/5373624454/CourseNode/5373624454
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://isabelle.in.tum.de
http://www.concrete-semantics.org
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation and Introduction
Motivation
• bugs in unverified software and hardware may have severe consequences
• these can be costly (crash of Ariane, Pentium bug, . . .)
• or fatal (control software of aircrafts, medical devices, . . .)

One Solution: Formal Verification

Proving program correctness with respect to given formal specification

State of the Art in Formal Verification
• verified SAT solver wins against unverified SAT solvers in competition
• verified operating system kernel (seL4)

(no arithmetic exceptions, deadlocks, buffer overflows, . . .)
• verification of Kepler conjecture: optimal density of packing spheres is π/

p
18

• 99 % of a top 100 mathematical theorems list has been verified

https://www.cs.ru.nl/~freek/100/

RT (DCS @ UIBK) session 1 9/32

Motivation and Introduction

Formal Verification via Theorem Proving

• various logics to write formal specifications
• propositional logic, SMT, first-order logic
• higher-order logic (HOL), calculus of inductive constructions

• logics differ in expressivity and automation
• automated theorem proving (ATP)

• push button verification (SAT solver, SMT solver, first-order resolution prover, . . .)
• limited expressivity

• interactive theorem proving (ITP)
• proofs are developed manually (within a proof assistant)
• less automation
• high expressivity (mathematical theorems, program verification, . . .)

• Isabelle is a popular proof assistant (besides Coq, Lean, PVS, . . .) that supports HOL
• HOL is sweet spot between expressivity and automation

RT (DCS @ UIBK) session 1 10/32

Motivation and Introduction

What is a Proof Assistant?
• combination of automated theorem prover (ATP) and proof checker
• structure of proofs is designed manually, some subproofs are found automatically
• all proofs are checked rigorously, e.g., in an LCF-style proof assistant such as Isabelle

Examples

• automatic methods
• logical reasoning (e.g., linear arithmetic, first-order reasoning)
• equational reasoning
• . . .

• manual steps
• provide intermediate statements or auxiliary lemmas
• perform induction or case analysis
• . . .

• proof checking
• check that all cases have been covered, that inference rules are applied correctly, . . .

RT (DCS @ UIBK) session 1 11/32

Motivation and Introduction

What is LCF-Style?
• theorems are represented by abstract data type (thm)
• set of (basic) logical inferences provided as interface (trusted kernel)
• no other ways to create theorem (value of type thm) due to abstraction barrier and

strong type system

Example

• kernel provides functions assume : cterm -> thm
and implies_elim : thm -> thm -> thm

• implements inference rules

A⊢ A

Γ ⊢ A=⇒ B ∆ ⊢ A

Γ ,∆ ⊢ B

• if desired, inspect implementation of kernel functions to increase trust

RT (DCS @ UIBK) session 1 12/32

http://web.archive.org/web/20080105074243/http://personal.stevens.edu/~nkahl/Top100Theorems.html
https://www.cs.ru.nl/~freek/100/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Motivation and Introduction

History of Isabelle

• 1986: creation of Isabelle, a proof assistant for various logics
(University of Cambridge, Technische Universität München)

• 1993: support for higher-order logic: Isabelle/HOL
• 1996: human-readable proof language: Isabelle/Isar
• 2011: prover IDE: Isabelle/jEdit
• since 2004: archive of formal proofs

(a library of formalized proofs with currently 447 authors and 231 100 lemmas)

Lawrence PaulsonTobias Nipkow Makarius Wenzel

RT (DCS @ UIBK) session 1 13/32

Higher-Order Logic

Higher-Order Logic

Higher-Order Logic

• we assume knowledge of first-order logic
• higher-order logic has two main differences to first-order logic

• terms are typed
• quantification for each type, including function-types

• higher-order logic will be used both to specify functional programs as well as logical
specifications

HOL = Functional Programming + Logic

RT (DCS @ UIBK) session 1 15/32

Higher-Order Logic

Types in HOL
• very similar to Haskell types

• basic types for booleans, natural numbers, integers, . . .
• type variables
• function types
• algebraic data types: lists, trees, pairs, tuples, . . .

• in Isabelle
• function types have form input_ type ⇒ output_type
• ty 1 ⇒ ty 2 ⇒ ty 3 is the same as ty 1 ⇒ (ty 2 ⇒ ty 3)
• type variables are written with a leading prime: 'a, 'b, . . .
• most type constructors are written postfix: 'a list, nat list list, . . .
• tuples are encoded as nested pairs: 'a × 'b × 'c is the same as 'a × ('b × 'c)
• new algebraic data types can be created via datatype as in
datatype ('a,'b)tree = Leaf 'a | Node "('a,'b)tree" 'b "('a,'b)tree"

• type synonyms (abbreviations) can be created via type_synonym as in
type_synonym ('a)special_tree = "(nat × 'a, 'a list)tree"
type_synonym string = "char list"

RT (DCS @ UIBK) session 1 16/32

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Logic

Inner and Outer Syntax
• Isabelle contains various languages

• implementation languages Scala and ML
• language to write Isabelle theories: outer syntax

• add a function definition
• add a type definition
• state a lemma
• perform a proof step
• . . .

• language to specify terms and types: inner syntax
• provide defining equations of a function
• provide definition of type
• provide a formula that describes the lemma
• instantiate some inference rule, e.g., provide a term as existential witness
• . . .

• important
• content of inner syntax needs to be surrounded by double-quotes
• exception: if content is atomic, then double-quotes can be dropped

RT (DCS @ UIBK) session 1 17/32

Higher-Order Logic

Example for Outer and Inner Syntax: Data Type Definitions

• general definition is specified by outer syntax:
datatype ('a 1, . . . , 'a n) ty =
C1 ty 1 1 . . . ty 1 k1

| . . . | Cm ty m1 . . . ty mkm

• each ty i j is a type, i.e., something that is specified by inner syntax
• consider concrete data type definition from previous slide
datatype ('a,'b)tree = Leaf 'a | Node "('a,'b)tree" 'b "('a,'b)tree"
• the first argument of Node is "('a,'b)tree" – double-quotes required
• the second argument of Node is 'b – double-quotes not required
• further examples

• both nat and "nat" are okay
• "nat ⇒ bool"
• "nat list"
• "(nat × 'a) list"

• once we are inside inner syntax, no further double-quotes are allowed:
"("nat × 'a") list" is not permitted

RT (DCS @ UIBK) session 1 18/32

Higher-Order Logic

Difference Between Types in Haskell and in HOL

• although HOL types look similar to Haskell types there are two import differences
• data type definitions in Isabelle/HOL do not include infinite applications of constructors

• consider datatype 'a list = Nil | Cons 'a "'a list"
• in Haskell, lists can be infinite, e.g., ones = Cons 1 ones
• in Isabelle/HOL, only finite lists are covered by type 'a list

• all types in HOL must be inhabited
• for each datatype invocation, Isabelle internally checks that at least one term of the new

type can be created, and if not, the new type is not accepted
• example: datatype foo = Bar foo is refused

RT (DCS @ UIBK) session 1 19/32

Higher-Order Logic

Terms in HOL

• terms in Isabelle/HOL are similar to Haskell terms, they include
• literals: 0, 5, ''hello'', CHR ''c'', . . .
• variables: free x, y, xs, . . . or bound x, y, xs, . . .
• constants: True, False, Nil, Cons, (∨), (∧), (¬), (−→), (=), (<), (+), map, . . .
• application: t 1 t 2 – multiple arguments t 1 t 2 t 3 are encoded as (t 1 t 2) t 3
• λ-abstractions: λ x. t – multiple arguments λ x y. t are encoded as λ x. (λ y. t)
• type constraints: t :: ty
• Isabelle/HOL provides further syntactic conveniences like if-then-else, let, case, infix-syntax,

special syntax for lists and quantifiers, . . .

• terms are typed, Isabelle performs type inference and type checking
• HOL-formulas are just terms of type bool
• example terms

• map (λ x :: nat. x + 1) [1, 3] is a term with type nat list
• map f (Cons x xs) = Cons (f x) (map f xs) might be a defining equation of map
• (x :: nat) + (y + z) = (x + y) + z ∧ x + y = y + x :: bool

states that addition of natural numbers is associative and commutative

RT (DCS @ UIBK) session 1 20/32

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Logic

Quantors and Equality in HOL

• unlike in Haskell, equality is available for all types
• two consequences

• equality is not necessarily executable
• quantors are not primitive in HOL, but can be encoded

• example
• define universal quantification as a function All :: ('a ⇒ bool) ⇒ bool via
definition "All P = (P = (λ x. True))"

• ∀-quantifier is nothing else than syntactic sugar, e.g.
∀ x. P x y is syntax for All (λ x. P x y)

• properties of universal quantifiers (introduction and elimination rules) can be derived
,→ we will work with these derived properties and ignore the internal definition

• facts
• Isabelle/HOL contains only very few axiomatized types and constants

(bool and some infinite type, (−→), (=) and The, Eps :: ('a ⇒ bool) ⇒ 'a)
• all other types and constants are defined on top of these
• we won’t cover the details of these foundations in this course

RT (DCS @ UIBK) session 1 21/32

Higher-Order Logic
Examples Beyond First Order Logic

(* well-foundedness of a binary relation can be expressed *)
type_synonym 'a rel = "'a ⇒ 'a ⇒ bool"
definition "well_founded (R :: 'a rel)

= (¬ (∃ f :: nat ⇒ 'a . ∀ n :: nat. R (f n) (f (n + 1))))"

(* the transitive closure of a relation can be expressed *)
definition "trans_cl (R :: 'a rel) a b

= (∃ (f :: nat ⇒ 'a) (n :: nat).
f 0 = a ∧ f n = b ∧ n ̸= 0 ∧
(∀ i. i < n −→ R (f i) (f (i + 1))))"

lemma "well_founded (trans_cl R) = well_founded R" oops

(* induction on natural numbers is sound *)
lemma "∀ P :: nat ⇒ bool.

P 0 −→ (∀ n. P n −→ P (n + 1)) −→ (∀ n. P n)" oops

RT (DCS @ UIBK) session 1 22/32

Higher-Order Logic

Color-Codes of Isabelle

• keyword a keyword of outer syntax
• command a command of outer syntax
• const a constant that has been defined before
• free a free variable
• bound a bound variable (of λ or quantifier)
• fixed a fixed variable (e.g., after ∀-introduction in a proof)
• colors help to identify mistakes, e.g. in
definition "select_first fst _ = fst"
the black color of fst indicates that fst is an already defined constant
(and not a bound variable fst), so that a name clash needs to be resolved

• at the time of a definition, the used name is free (name),
only afterwards it turns to black (name)

• free variables in lemmas are implicitly universally quantified
(and can be instantiated after the lemma has been proven)

RT (DCS @ UIBK) session 1 23/32

Higher-Order Logic
Functional Programming in HOL
• functional programs can be written similarly to Haskell
• already seen: type definitions
• new: function definitions
• non-recursive function (or constant) definitions

• outer syntax: definition name :: ty where eqn or just definition eqn
• eqn is a boolean term of the shape

name x 1 . . . x n = t
• important: often t needs to be put in parenthesis
definition "sorted_triple x y z = (x ≤ y ∧ y ≤ z)"

• recursive function definitions
• outer syntax: fun name :: ty where eqn 1 | . . . | eqnm
• each eqn i is a boolean term of the shape

name pat 1 . . . pat n = t
• example
fun append :: "'a list ⇒ 'a list ⇒ 'a list" where

"append Nil ys = ys"
| "append (Cons x xs) ys = Cons x (append xs ys)"

RT (DCS @ UIBK) session 1 24/32

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Logic

Function Definitions in Isabelle/HOL

• syntactic differences to Haskell
• let-expressions are of form let x 1 = t 1; . . . ; x n = t n in t
• case-expressions are of form case t of pat 1 ⇒ t 1 | . . . | pat n ⇒ t n
• let, case, and if-then-else often have to be surrounded by parenthesis
• let-expressions are sequential and non-recursive: t i may not refer to x i, . . . , x n
• no local recursive function definitions
• no restriction to executable functions:
fun f where "f P = (if (∀ x :: nat. P x) then 0 else 1)"

• semantic difference to Haskell
• functions defined by fun have to be terminating
• if Isabelle is not able to prove termination, a function definition is not accepted

RT (DCS @ UIBK) session 1 25/32

First Steps with Isabelle/HOL

First Steps with Isabelle/HOL

Isabelle 2022 in RR 20

• from now on prefix “$ ” indicates bash prompt
• start Isabelle via
$ isabelle jedit (optional: File.thy)

• in case isabelle is not found, add $ISABELLE_HOME/bin/ to your PATH where
ISABELLE_HOME is /usr/site/isabelle/2022/

Isabelle 2022 on Your Machine
• download and installation instructions available at

https://isabelle.in.tum.de

Demo

$ isabelle jedit Demo01.thy

RT (DCS @ UIBK) session 1 27/32

First Steps with Isabelle/HOL

Isabelle/jEdit – Overview of User Interface

RT (DCS @ UIBK) session 1 28/32

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa/thys/Demo01.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

First Steps with Isabelle/HOL

Explanation of Previous Slide

1. main text area

2. switch between different theories

3. processed part of theory

4. unprocessed part of theory

5. progress indicator of several theories

6. indication of problem

7. documentation

8. click to close left or right panel

9. main output window

10. enable to view proof state in output (and not just errors)

11. symbol panel for information on special symbols

RT (DCS @ UIBK) session 1 29/32

First Steps with Isabelle/HOL

Theory Files – General Structure

theory T
imports T1 . . . T n

begin
(* definitions, theorems and proofs *)
. . .
end

Notes

• store theory T in file T.thy
• definitions and theorems from theories T1, . . . , T n available after begin
• new definitions, theorems and proofs go between begin and end
• qualify identifiers by theory name (like T.f) to disambiguate names
• theory Main is collection of basic definitions (like Haskell’s Prelude) and should always

be imported

RT (DCS @ UIBK) session 1 30/32

First Steps with Isabelle/HOL

Entering Special Symbols
• aim: enter symbols like ∀, ×, λ, . . .
• four methods

• switch to Symbols-panel in Isabelle/jEdit, find and click on symbol;
important: hovering over symbol will reveal internal name and abbreviations

• enter internal name prefixed by backslash and use auto-completion via TAB ;
example: \ f o r will result in \<forall>, i.e., ∀

• enter abbreviation followed by TAB , e.g., ∀ is also obtained via ! TAB

• some abbreviations have an auto completion where no TAB is required,
e.g., / \ will immediately result in ∧

RT (DCS @ UIBK) session 1 31/32

First Steps with Isabelle/HOL
Frequently Used Symbols

symbol internal auto completion abbreviations

λ \<lambda> %

⇒ \<Rightarrow> = > . >

¬ \<not> ~

∧ \<and> / \ &

∨ \<or> \ / |

−→ \<longrightarrow> - - > . >

←→ \<longleftrightarrow> < - - > < >

∀ \<forall> ! and A L L

∃ \<exists> ? and E X

× \<times> < * >

≤ \<le> < =

RT (DCS @ UIBK) session 1 32/32

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Organization
	Motivation and Introduction
	Higher-Order Logic
	First Steps with Isabelle/HOL

