

Summer Term 2023

Outline

Organization

Interactive Theorem Proving using Isabelle/HOL

Session 1

René Thiemann

Department of Computer Science

- Organization
- Motivation and Introduction
- Higher-Order Logic
- First Steps with Isabelle/HOL

RT (DCS @ UIBK)

session 1

2/32

Organization

- Course Info (VU 3)
 - LV-Number: 703315
 - instructor: René Thiemann
 - VU: attendance mandatory, shared lecture and proseminar
 - website: http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa (slides and Isabelle files are available online)
 - consultation hours: Tuesday 10:00 11:00 in 3M09 (ICT building)

Grading

- weekly exercises (50 %)
- project (50 %) (finished projects must be submitted through OLAT deadline: August 1, 2023)

Organization

The Exercises

- weakly exercise will be handed out each Thursday
- mark and upload solved exercises in OLAT until Thursday, 6am
- solutions will be discussed at start of each VU

The Project

- list of potential formalization projects will be made available
- projects will be assigned on April 27
- work alone or in small groups (depending on specific project)
- projects have to be finished before August 1
- be able to answer project related questions

Course Information

- two courses on interactive theorem proving provided by CL
- VU3 Interactive Theorem Proving (Cezary Kaliszyk)
 - broader: different proof assistants based on different logics
 - covers foundations of interactive theorem provers
- VU3 Interactive Theorem Proving using Isabelle/HOL (this course)
 - focussed: single proof assistant (Isabelle), one logic (HOL: higher-order logic)
 - practical course to obtain hands-on experience
- $\, \hookrightarrow \,$ good idea to attend both courses

RT (DCS @ UIBK)	session 1	5/32	RT (DCS @ UIBK)	5	ession 1
	0000	nization			
	- 0-				
<pre>Literature Isabelle documentation (https://isabelle.in.tum.de) Tobias Nipkow: Programming and Pr Tobias Nipkow and Gerwin Klein: Con (http://www.concrete-semantics) </pre>	crete Semantics with Isabelle/HOL			Motivation a	nd Introduction
 Acknowledgement Several slides have been taken from a given by Christian Sternagel 	previous course on interactive theorem proving				

RT (DCS @ UIBK)

Motivation

- bugs in unverified software and hardware may have severe consequences
- these can be costly (crash of Ariane, Pentium bug, ...)
- or fatal (control software of aircrafts, medical devices, ...)

One Solution: Formal Verification

Proving program correctness with respect to given formal specification

State of the Art in Formal Verification

- verified SAT solver wins against unverified SAT solvers in competition
- verified operating system kernel (seL4) (no arithmetic exceptions, deadlocks, buffer overflows, ...)
- verification of Kepler conjecture: optimal density of packing spheres is $\pi/\sqrt{18}$
- 99 % of a top 100 mathematical theorems list has been verified

https://www.cs.ru.nl/~freek/100/

```
RT (DCS @ UIBK)
```

```
session 1
```

Formal Verification via Theorem Proving

- various logics to write formal specifications
 - propositional logic, SMT, first-order logic
 - higher-order logic (HOL), calculus of inductive constructions
- logics differ in expressivity and automation
 - automated theorem proving (ATP)
 - push button verification (SAT solver, SMT solver, first-order resolution prover, ...)
 - limited expressivity
 - interactive theorem proving (ITP)
 - proofs are developed manually (within a proof assistant)
 - less automation
 - high expressivity (mathematical theorems, program verification, ...)
- Isabelle is a popular proof assistant (besides Coq, Lean, PVS, ...) that supports HOL
- HOL is sweet spot between expressivity and automation
- 9/32 RT (DCS @ UIBK)

session

10/32

Motivation and Introduction

What is a Proof Assistant?

- combination of automated theorem prover (ATP) and proof checker
- structure of proofs is designed manually, some subproofs are found automatically
- all proofs are checked rigorously, e.g., in an LCF-style proof assistant such as Isabelle

Examples

- automatic methods
 - logical reasoning (e.g., linear arithmetic, first-order reasoning)
 - equational reasoning
 - ...
- manual steps
 - provide intermediate statements or auxiliary lemmas
 - perform induction or case analysis
 - ...
- proof checking
 - check that all cases have been covered, that inference rules are applied correctly, ...

What is LCF-Style?

- theorems are represented by abstract data type (thm)
- set of (basic) logical inferences provided as interface (trusted kernel)
- no other ways to create theorem (value of type thm) due to abstraction barrier and strong type system

Example

RT (DCS @ UIBK)

- kernel provides functions assume : cterm -> thm implies_elim : thm -> thm -> thm and
- implements inference rules

 $\Gamma \vdash A \Longrightarrow B \quad \Delta \vdash A$ $\Gamma, \Delta \vdash B$

if desired, inspect implementation of kernel functions to increase trust

 $A \vdash A$

Motivation and Introduction

History of Isabelle

- 1986: creation of Isabelle, a proof assistant for various logics (University of Cambridge, Technische Universität München)
- 1993: support for higher-order logic: Isabelle/HOL
- 1996: human-readable proof language: Isabelle/Isar
- 2011: prover IDE: Isabelle/jEdit
- since 2004: archive of formal proofs
 (a library of formalized proofs with currently 447 authors and 231 100 lemmas)

Tobias Nipkow

Lawrence Paulson

Makarius Wenzel

RT (DCS @ UIBK)

session 1

13/32

Higher-Order Logic

Higher-Order Logic

- we assume knowledge of first-order logic
- higher-order logic has two main differences to first-order logic
 - terms are typed
 - quantification for each type, including function-types
- higher-order logic will be used both to specify functional programs as well as logical specifications
 - HOL = Functional Programming + Logic

Types in HOL

- very similar to Haskell types
 - basic types for booleans, natural numbers, integers, ...
 - type variables
 - function types
 - algebraic data types: lists, trees, pairs, tuples, ...
- in Isabelle
 - function types have form *input_type* ⇒ *output_type*
 - $ty_1 \Rightarrow ty_2 \Rightarrow ty_3$ is the same as $ty_1 \Rightarrow (ty_2 \Rightarrow ty_3)$
 - type variables are written with a leading prime: 'a, 'b, ...
 - most type constructors are written postfix: 'a list, nat list list, ...
 - tuples are encoded as nested pairs: 'a \times 'b \times 'c is the same as 'a \times ('b \times 'c)

Higher-Order Logic

- new algebraic data types can be created via datatype as in
 - datatype ('a,'b)tree = Leaf 'a | Node "('a,'b)tree" 'b "('a,'b)tree"
- type synonyms (abbreviations) can be created via type_synonym as in
- type_synonym ('a)special_tree = "(nat × 'a, 'a list)tree"
- type_synonym string = "char list"

Higher-Order Logic

	Higher-Order Logic Higher-Order Logic
Inner and Outer Syntax	Example for Outer and Inner Syntax: Data Type Definitions
 Isabelle contains various languages implementation languages Scala and ML language to write Isabelle theories: outer syntax add a function definition add a type definition state a lemma perform a proof step language to specify terms and types: inner syntax provide defining equations of a function provide definition of type provide a formula that describes the lemma instantiate some inference rule, e.g., provide a term as existential witness important content of inner syntax needs to be surrounded by double-quotes exception: if content is atomic, then double-quotes can be dropped 	 general definition is specified by outer syntax: datatype ('a₁,, 'a_n) ty = C₁ ty₁₁ ty_{1k₁} C_m ty_{m1} ty_{mk_m} each ty_{ij} is a type, i.e., something that is specified by inner syntax consider concrete data type definition from previous slide datatype ('a, 'b)tree = Leaf 'a Node "('a, 'b)tree" 'b "('a, 'b)tree" • the first argument of Node is "('a, 'b)tree" - double-quotes required the second argument of Node is 'b - double-quotes not required further examples both nat and "nat" are okay "nat ⇒ bool" "(nat × 'a) list" once we are inside inner syntax, no further double-quotes are allowed: "("nat × 'a") list" is not permitted

RT (DCS @ UIBK)	session 1	17/32	RT (DCS @ UIBK)	session 1

Higher-Order Logic

Difference Between Types in Haskell and in HOL

- although HOL types look similar to Haskell types there are two import differences
- data type definitions in Isabelle/HOL do not include infinite applications of constructors
 - consider datatype 'a list = Nil | Cons 'a "'a list"
 - in Haskell, lists can be infinite, e.g., ones = Cons 1 ones
 - in Isabelle/HOL, only finite lists are covered by type 'a list
- all types in HOL must be inhabited
 - for each datatype invocation, Isabelle internally checks that at least one term of the new type can be created, and if not, the new type is not accepted
 - example: datatype foo = Bar foo is refused

Terms in HOL

- terms in Isabelle/HOL are similar to Haskell terms, they include
 - literals: 0, 5, ''hello'', CHR ''c'',...
 - variables: free x, y, xs, ... or bound x, y, xs, ...
 - constants: True, False, Nil, Cons, (∨), (∧), (¬), (→), (=), (<), (+), map, ...
 - application: t_1 t_2 multiple arguments t_1 t_2 t_3 are encoded as $(t_1$ $t_2)$ t_3
 - λ -abstractions: $\lambda \times t$ multiple arguments $\lambda \times y$. t are encoded as $\lambda \times (\lambda y, t)$
 - type constraints: *t* :: *ty*
 - Isabelle/HOL provides further syntactic conveniences like if-then-else, let, case, infix-syntax, special syntax for lists and quantifiers, ...
- terms are typed, Isabelle performs type inference and type checking
- HOL-formulas are just terms of type bool
- example terms
 - map ($\lambda \times ::$ nat. x + 1) [1, 3] is a term with type nat list
 - map f (Cons x xs) = Cons (f x) (map f xs) might be a defining equation of map
 - $(x :: nat) + (y + z) = (x + y) + z \land x + y = y + x :: bool states that addition of natural numbers is associative and commutative$

18/32

Higher-Order Logic

Higher-Order Logic

Quantors and Equality in HOL

- unlike in Haskell, equality is available for all types
- two consequences
 - equality is not necessarily executable
 - quantors are not primitive in HOL, but can be encoded
- example
 - define universal quantification as a function All :: ('a \Rightarrow bool) \Rightarrow bool via definition "All P = (P = $(\lambda x. True)$)"
 - \forall -quantifier is nothing else than syntactic sugar, e.g. $\forall x. P x y \text{ is syntax for All } (\lambda x. P x y)$
 - properties of universal quantifiers (introduction and elimination rules) can be derived \hookrightarrow we will work with these derived properties and ignore the internal definition
- facts
 - Isabelle/HOL contains only very few axiomatized types and constants (bool and some infinite type, (\rightarrow) , (=) and The, Eps :: $(a \Rightarrow bool) \Rightarrow a$
 - all other types and constants are defined on top of these
 - we won't cover the details of these foundations in this course

```
RT (DCS @ UIBK)
```

```
session 1
```

```
Examples Beyond First Order Logic
```

```
(* well-foundedness of a binary relation can be expressed *)
type_synonym 'a rel = "'a \Rightarrow 'a \Rightarrow bool"
definition "well_founded (R :: 'a rel)
  = (\neg (\exists f :: nat \Rightarrow 'a . \forall n :: nat. R (f n) (f (n + 1))))"
```

(* the transitive closure of a relation can be expressed *) definition "trans cl (R :: 'a rel) a b = $(\exists (f :: nat \Rightarrow 'a) (n :: nat).$ $f 0 = a \land f n = b \land n \neq 0 \land$ $(\forall i, i < n \longrightarrow R (f i) (f (i + 1)))$ "

lemma "well_founded (trans_cl R) = well_founded R" oops

(* induction on natural numbers is sound *) lemma " \forall P :: nat \Rightarrow bool. $P 0 \longrightarrow (\forall n. P n \longrightarrow P (n + 1)) \longrightarrow (\forall n. P n)" oops$

RT (DCS @ UIBK) 21/32

session 1

22/32

```
Higher-Order Logic
                                                                                                                                                                                                 Higher-Order Logic
                                                                                                           Functional Programming in HOL
  Color-Codes of Isabelle
                                                                                                              • functional programs can be written similarly to Haskell
                                                                      a keyword of outer syntax
    keyword
                                                                                                              • already seen: type definitions
                                                                     a command of outer syntax
     • command

    new: function definitions

                                                         a constant that has been defined before
     • const
                                                                                                              • non-recursive function (or constant) definitions
    • free
                                                                                  a free variable
                                                                                                                   • outer syntax: definition name :: ty where ean or just definition ean
    • bound
                                                           a bound variable (of \lambda or quantifier)
                                                                                                                   • eqn is a boolean term of the shape
    • fixed
                                           a fixed variable (e.g., after \forall-introduction in a proof)
                                                                                                                     name x_1 \ldots x_n = t
                                                                                                                   • important: often t needs to be put in parenthesis
    • colors help to identify mistakes, e.g. in
                                                                                                                     definition "sorted_triple x y z = (x \le y \land y \le z)"
       definition "select_first fst _ = fst"
                                                                                                              • recursive function definitions
       the black color of fst indicates that fst is an already defined constant
                                                                                                                   • outer syntax: fun name :: ty where eqn_1 \mid \dots \mid eqn_m
       (and not a bound variable fst), so that a name clash needs to be resolved
                                                                                                                   • each eqn i is a boolean term of the shape
    • at the time of a definition, the used name is free (name).
                                                                                                                     name pat_1 \dots pat_n = t
       only afterwards it turns to black (name)
                                                                                                                   • example
                                                                                                                     fun append :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where
    • free variables in lemmas are implicitly universally quantified
                                                                                                                        "append Nil ys = ys"
       (and can be instantiated after the lemma has been proven)
                                                                                                                     | "append (Cons x xs) ys = Cons x (append xs ys)"
RT (DCS @ UIBK)
                                               session 1
                                                                                               23/32
```

Higher-Order Logic

Function Definitions in Isabelle/HOL

- syntactic differences to Haskell
 - let-expressions are of form let $x_1 = t_1$; ...; $x_n = t_n$ in t
 - case-expressions are of form case t of $pat_1 \Rightarrow t_1 \mid \dots \mid pat_n \Rightarrow t_n$
 - let, case, and if-then-else often have to be surrounded by parenthesis
 - let-expressions are sequential and non-recursive: t_i may not refer to x_i , ..., x_n
 - no local recursive function definitions
 - no restriction to executable functions:

fun f where "f P = (if ($\forall x :: nat. P x$) then 0 else 1)"

- semantic difference to Haskell
 - functions defined by **fun** have to be terminating
 - if Isabelle is not able to prove termination, a function definition is not accepted

First Steps with Isabelle/HOL

session 1

25/32

First Steps with Isabelle/HOL

- Isabelle 2022 in RR 20
 - from now on prefix "\$ " indicates bash prompt
 - start Isabelle via
 - \$ isabelle jedit (optional: File.thy)
 - in case isabelle is not found, add \$ISABELLE_HOME/bin/ to your PATH where ISABELLE_HOME is /usr/site/isabelle/2022/

Isabelle 2022 on Your Machine

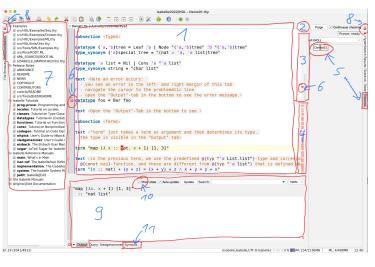
• download and installation instructions available at

https://isabelle.in.tum.de

Demo

\$ isabelle jedit Demo01.thy

Isabelle/jEdit – Overview of User Interface



First Steps with Isabelle/HOL

First Steps with Isabelle/HOL

First Steps with Isabelle/HOL

Explanation of Previous Slide

1. main text area

2. switch between different theories

- 3. processed part of theory
- 4. unprocessed part of theory
- 5. progress indicator of several theories
- 6. indication of problem
- 7. documentation
- 8. click to close left or right panel
- 9. main output window
- 10. enable to view proof state in output (and not just errors)
- 11. symbol panel for information on special symbols

```
Theory Files – General Structure
theory T
  imports T<sub>1</sub> ... T<sub>n</sub>
begin
(* definitions, theorems and proofs *)
. . .
```

end

Notes

• store theory T in file T.thy

Frequently Used Symbols

\<exists>

\<times>

\<le>

symbol

λ

⇒

-

Λ

V

 \rightarrow

 \longleftrightarrow

A

Ξ

Х

 \leq

- definitions and theorems from theories T_1, \ldots, T_n available after begin
- new definitions, theorems and proofs go between begin and end
- qualify identifiers by theory name (like T.f) to disambiguate names
- theory Main is collection of basic definitions (like Haskell's Prelude) and should always be imported

RT (DCS @ UIBK)	session 1	29/32	RT (DCS @ UIBK)	session 1	30/32

Entering Special Symbols • aim: enter symbols like $\forall, \times, \lambda, \dots$

- four methods
 - switch to Symbols-panel in Isabelle/jEdit, find and click on symbol; important: hovering over symbol will reveal internal name and abbreviations
 - enter internal name prefixed by backslash and use auto-completion via TAB; example: $[\fi] o r$ will result in \<forall>, i.e., \forall
 - enter abbreviation followed by TAB, e.g., \forall is also obtained via [!] TAB
 - some abbreviations have an auto completion where no TAB is required, e.g., 7 will immediately result in \land

First Steps with Isabelle/HOL

internal	auto completion	abbreviations
\ <lambda></lambda>		%
\ <rightarrow></rightarrow>	= >	$\overline{\cdot}$
\ <not></not>		$\tilde{\sim}$
$\langle and \rangle$	\Box	&
\ <or></or>	\mathbb{N}	
<pre>\<longrightarrow></longrightarrow></pre>	>	.>
<pre>\<longleftrightarrow></longleftrightarrow></pre>	<>	$\langle \rangle$
\ <forall></forall>		! and A L I

<

<|*|>