

Interactive Theorem Proving using Isabelle/HOL

Session 2

René Thiemann

Department of Computer Science

Outline

• The Pure Framework

Structured Proofs

The Minimal Logic Isabelle/Pure

Pure = Generic Natural Deduction Framework

Pure Terms

- inference rules
- logical propositions

Deduction

higher-order resolution (that is, resolution using higher-order unification)

The type prop

- Isabelle/Pure contains a type of propositions: prop
- let φ :: prop and ψ :: prop, then
 - $\varphi \Longrightarrow \psi :: \text{prop}$ • $\bigwedge x. \varphi :: \text{prop}$

(meta-)implication (meta-)quantification

• in Isabelle/HOL, every HOL-formula (t:: bool) is also of type prop

Isabelle Symbols

symbol	internal	auto completion	abbreviation
\Longrightarrow	\ <longrightarrow></longrightarrow>		. >
\wedge	\ <and></and>	!!	

Remarks

- ⇒ is right-associative
- propositions with multiple assumptions are encoded by currying

Demo02.thy

(conjunction introduction)

(implication introduction)

Natural Deduction via Pure Connectives

- every Pure proposition can be read as natural deduction rule
- proposition $P_1 \Longrightarrow ... \Longrightarrow P_n \Longrightarrow C$ corresponds to rule

$$\frac{P_1 \quad \dots \quad P_n}{C}$$

session 2

with premises P_1, \ldots, P_n and conclusion C

- scope of variables (like eigenvariable condition) enforced by \bigwedge • there is no distinction between inference rules and theorems!

Examples

- \bullet A \Longrightarrow B \Longrightarrow A \land B
- $(A \Longrightarrow B) \Longrightarrow A \longrightarrow B$
- $(\land y. P y) \Longrightarrow \forall x. P x$
- in order to prove A \longrightarrow B it suffices to prove B under the assumption A (all introduction)

in order to prove $\forall x. P x$, fix some variable y and prove P y

Schematic Variables

- besides free and bound variables, there are schematic variables (dark blue; these have leading?)
- schematic variables can be instantiated arbitrarily
- proven inference rules such as $A \implies B \implies A \land B$ in Isabelle are written via schematic variables:

$$?A \implies ?B \implies ?A \land ?B$$
 (thm conjI)

- whenever a proof of a statement is finished, all free variables and outermost ∧-variables in that statement are turned into schematic ones; example: each of the following two lines result in ?A ⇒ ?B ⇒ ?A ∧ ?B
 - lemma "A \Longrightarrow B \Longrightarrow A \land B" $\langle proof \rangle$
 - lemma " \bigwedge A B. A \Longrightarrow B \Longrightarrow A \bigwedge B" $\langle proof \rangle$
- schematic variables may occur in proof goals, then the user can choose how to instantiate

Apply Single Inference Rule – The rule Method

- remember: each theorem can be seen as inference rule
- assume we have to prove goal with conclusion G • assume thm has shape $P_1 \implies \dots \implies P_n \implies C$
- proof (rule thm) tries to unify C with G via unifier σ and replaces G by new subgoals coming from instantiated premises $P_1\sigma, \ldots, P_n\sigma$

Example

- consider goal $x < 5 \implies x < 3 \land x < 2$
- the command proof (rule conjI) (conjI: $?A \implies ?B \implies ?A \land ?B$)
 - successfully unifies conclusion $x < 3 \land x < 2$ with ?A \land ?B
 - only schematic variables can be instantiated in unification, i.e., here ?A and ?B, but not x
 - unifier: replace ?A by x < 3 and ?B by x < 2
 - and replaces the previous goal by two new subgoals
 - $x < 5 \implies x < 3$ • $x < 5 \implies x < 2$

Another Example

- consider goal $\exists y. 5 < y$
- the command proof (rule exI) (exI: ?P ?x \Longrightarrow \exists x. ?P x) delivers one new subgoal: 5 < ?y Demo02.thy
- details
 - try higher-order unification of $\exists x. ?P x$ and $\exists y. 5 < y$
 - solution: replace ?P by λ z. 5 < z
 - reason: after instantiation we get two terms
 - $\exists x. (\lambda z. 5 < z) x$
 - ∃ y. 5 < y
 - these two terms are equivalent modulo $\alpha\beta\eta$
 - the unused schematic variable ?x is renamed to ?y since the goal used the name y in the existential quantor
 - the new subgoal is (λ z. 5 < z) ?y which is equal to 5 < ?y modulo $\alpha\beta\eta$
- higher-order unification of terms s and t: find σ such that $s\sigma$ and $t\sigma$ are equivalent modulo $\alpha\beta\eta$

Equality in Isabelle

- all terms are normalized w.r.t. $\alpha\beta\eta$
- α -conversion: the names of bound variables are ignored:

example:
$$\exists x. P x \text{ is the same as } \exists y. P y$$

• β -reduction

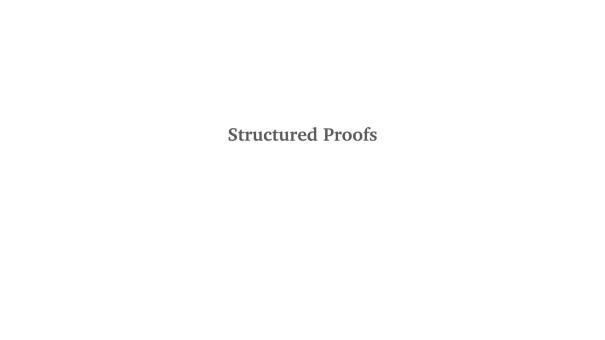
$$(\lambda \times t)$$
 u is the same as $t[x/u]$

(here, t[x/u] denotes the term t where x gets replaced by u)

• η -expansion

$$t :: ty \Rightarrow ty'$$
 is the same as $\lambda \times x$. $t \times x$

Demo02.thy



fake proof

atomic proof

Proofs – Outer Syntax

proof ∷= sorry

by method method?

method := auto | fact | rule fact | - | ...

```
| proof method? statement* qed method? structured proof

statement ::= fix variables (:: type)? arbitrary but fixed values

| assume proposition+ local assumptions
| (from fact+)? (have | show) proposition proof (intermediate) result
| { statement* } raw proof block

proposition ::= (label:)? term

fact ::= label
| (term) literal fact
```

command ::= lemma proposition proof | ...

Remarks

• *symbol*? denotes optional *symbol*; *symbol** denotes arbitrarily many occurrences of *symbol*

RT (DCS @ UIBK) session 2 12/21

Demo – Drinker's Paradox

- statement: there is a person p, that if p drinks then everyone drinks
- formal proof is contained in Demo02.thy and it will illustrate various elements and variations of a proof w.r.t. the previous slide
- the upcoming slides mainly serve as a written down explanation, if something was not mentioned in the theory file or during the live demonstration

Remarks (cont'd)

- without *method* argument proof applies method standard
- idiom for starting structured proof without initial method "proof -"
- special label this refers to latest fact
- show used for statement that shows conclusion of surrounding proof ... qed

Some Proof Methods

- rule fact apply single inference rule, namely fact
 - standard perform a single standard (with respect to current context) inference step
 - \bullet - do nothing
 - auto combines classical reasoning with simplification

Isabelle Symbols - Cartouches

symbol internal auto completion abbreviations \<open> and < \<close>

15/21

Structured Proofs

• prove " $\bigwedge x$. P x" by fix x have "P x" \(\rho proof\)

Proving Propositions

• prove " $A \implies B$ " by assume "A"

have "B" (proof)

Raw Proof Blocks

RT (DCS @ UIBK)

- the block
 - fix x y assume "P x y" "Q x"
- have "S x" \(\rho proof\)

have "R y" \(\rho proof\)

(* intermediate statement *)

(* last statement *)

Further Remarks and Statements

- introduce arbitrary but fixed value x by fix x
- introduce assumption by assume "..."
- indicate proposition to be proved by have " ... " $\langle proof \rangle$
- local definition of c by define c where "c = term"
 (definition becomes available as theorem c_def)
- local abbreviation of ?c by let ?c = term
- abbreviation ?thesis refers to proposition before current proof-qed-block
- obtain witness satisfying P by obtain x where "P x" (proof)

The rule Method using Current Facts

- on slide 8 it was explained what the rule method does without current facts
 - example Isabelle statement: have P proof (rule thm)
 - *thm* should have form of an introduction rule
 - conclusion in thm introduces some specific connective, e.g. ... \implies ?A \land ?B
- if there are current facts, the behavior is different and it is tried to apply an elimination rule
 - example Isabelle statement: from Q have P proof (rule thm)
 - thm should have form of an elimination rule
 - major premise in *thm* contains specific connective, e.g., ?A \land ?B \Longrightarrow ..., which is then unified with Q
 - in detail: given theorem $P_1 \implies \dots \implies P_n \implies C$, unify major premise P_1 of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Example

```
have "x > 5 \vee x = 2" \langle proof \rangle from this have "A x" proof (rule disjE)

- \langle disjE: ?P \vee ?Q \implies (?P \implies ?R) \implies (?Q \implies ?R) \implies ?R \rangle

show "x > 5 \implies A x" \langle proof \rangle
show "x = 2 \implies A x" \langle proof \rangle
```

The Difference Between have and show

- have is used to state arbitrary intermediate propositions
- show is used to discharge a current proof obligation
- show might reject a statement if it does not match a proof obligation
 - if assumptions have been used that are not present in proof obligation
 - if the types of variables are too specific or differ

Examples

```
• lemma "P x"
proof -
   assume "Q x"
   from this show "P x" (* rejected, because of assumption Q x *)
• lemma "∃ x. x < 5"
proof (rule exI)</pre>
```

show "(3 :: nat) < 5" (* rejected, since type is too specific *)</pre>

The Difference Between HOL- and Meta-Implication/Quantification

- there are meta-connectives \bigwedge and \Longrightarrow
- there are HOL-connectives \forall and \longrightarrow
- usually the meta-connectives are preferable; example:
 - in A \Longrightarrow B \Longrightarrow C \Longrightarrow D we can just assume B
 - ullet in A \longrightarrow B \longrightarrow C \longrightarrow D we first have to apply implication introduction to access B
- the meta-connectives can only be used on the outside, so certain statements require HOL-connectives; example:
 - ∃ x. x > 5 → (∀ y. P x y) (implication and universal quantor appear below existential quantor)
- consequence: most theorems in Isabelle are written using meta-connectives
 - lemma "P x \Longrightarrow Q \Longrightarrow R x" is preferred over lemma " \forall x. P x \longrightarrow Q \longrightarrow R x"

fake proof

```
by method method?
                                                                  atomic proof
                proof method? statement* qed method?
                                                                  structured proof
 statement ::= fix variables (:: type)^?
                                                                  arbitrary but fixed values
                assume proposition<sup>+</sup>
                                                                  local assumptions
                (from fact<sup>+</sup>)? (have | show) proposition proof
                                                                  (intermediate) result
                { statement* }
                                                                  raw proof block
                let ?x = term
                                                                  local abbreviation
                 (from fact<sup>+</sup>)? obtain vars where prop. proof
                                                                  get witness
proposition ::= (label:)^? term
      fact ∷= label
                this
                                                                  previous proposition
                                                                  literal fact
   method ::= auto | fact | rule fact | - | ...
```

proof ∷= sorry

command ::= lemma proposition proof | ...