

Summer Term 2023

Outline

RT (DCS @ UIBK)

UNIVERSITAS LEOPOLDINO - FRANCISCEA

The Pure Framework

Interactive Theorem Proving using Isabelle/HOL

Session 2

René Thiemann

Department of Computer Science

- The Pure Framework
- Structured Proofs

session 2

2/21

The Pure Framework

The Minimal Logic Isabelle/Pure

Pure = Generic Natural Deduction Framework

- inference rules
- logical propositions

Deduction

Pure Terms

higher-order resolution (that is, resolution using higher-order unification)

The type prop

- Isabelle/Pure contains a type of propositions: prop
- let φ :: prop and ψ :: prop, then
 - $\varphi \Longrightarrow \psi :: \operatorname{prop}$
 - $\bigwedge x. \varphi :: prop$
- in Isabelle/HOL, every HOL-formula (t :: bool) is also of type prop

Isabelle Symbols

symbol	internal	auto completion	abbreviation
\Rightarrow	\ <longrightarrow> \<and></and></longrightarrow>	= = > !!	

Remarks

- \implies is right-associative
- propositions with multiple assumptions are encoded by currying

```
RT (DCS @ UIBK)
```

```
session 2
```

```
Natural Deduction via Pure Connectives
```

- every Pure proposition can be read as natural deduction rule
- proposition $P_1 \Longrightarrow \ldots \Longrightarrow P_n \Longrightarrow C$ corresponds to rule

$$\frac{P_1 \quad \dots \quad P_n}{C}$$

with premises P_1, \ldots, P_n and conclusion *C*

- scope of variables (like eigenvariable condition) enforced by \land Demo02.thy
- there is no distinction between inference rules and theorems!

Examples

• $A \implies B \implies A \land$	B (conjunction introduction)
• $(A \implies B) \implies A$	\longrightarrow B	(implication introduction)
in order to prove A	\rightarrow B it suffices to prove B under the assu	mption <mark>A</mark>
• $(\land y. P y) \Longrightarrow$	$\forall x. P x$	(all introduction)
in order to prove \forall	x. P x, fix some variable y and prove P	У
RT (DCS @ UIBK)	session 2	6/21

The Pure Framework

5/21

The Pure Framework

(meta-)implication

(meta-)quantification

Schematic Variables

- besides free and bound variables, there are schematic variables (dark blue; these have leading ?)
- schematic variables can be instantiated arbitrarily
- proven inference rules such as $A \implies B \implies A \land B$ in Isabelle are written via schematic variables:

$$?A \implies ?B \implies ?A \land ?B$$
 (thm conjI)

 whenever a proof of a statement is finished, all free variables and outermost ∧-variables in that statement are turned into schematic ones;

example: each of the following two lines result in ?A \implies ?B \implies ?A \land ?B

• lemma "A
$$\implies$$
 B \implies A \land B" $\langle proof \rangle$

- lemma " \land A B. A \Longrightarrow B \Longrightarrow A \land B" $\langle proof \rangle$
- schematic variables may occur in proof goals, then the user can choose how to instantiate

Apply Single Inference Rule – The rule Method

- remember: each theorem can be seen as inference rule
- assume we have to prove goal with conclusion G
- assume thm has shape $P_1 \implies \dots \implies P_n \implies C$
- proof (rule *thm*) tries to unify C with G via unifier σ and replaces G by new subgoals coming from instantiated premises $P_1\sigma, \ldots, P_n\sigma$

Example

- consider goal $x < 5 \implies x < 3 \land x < 2$
- the command proof (rule conjI) $(conjI: ?A \implies ?B \implies ?A \land ?B)$
 - successfully unifies conclusion x < 3 \land x < 2 with ?A \land ?B
 - only schematic variables can be instantiated in unification, i.e., here ?A and ?B, but not x
 - unifier: replace ?A by x < 3 and ?B by x < 2
 - and replaces the previous goal by two new subgoals

$$x < 5 \implies x < 3$$

$$\mathbf{x} < 5 \implies \mathbf{x} < 2$$

The Pure Framework

The Pure Framework

Another Example • consider goal $\exists y. 5 < y$ **Equality in Isabelle** • the command proof (rule exI) (exI: ?P ?x $\implies \exists x. ?P x$) • all terms are normalized w.r.t. $\alpha\beta\eta$ delivers one new subgoal: 5 < ?yDemo02.thy • *α*-conversion: the names of bound variables are ignored: • details example: $\exists x. P x \text{ is the same as } \exists y. P y$ • try higher-order unification of $\exists x. ?P x and \exists y. 5 < y$ • β -reduction • solution: replace ?P by λ z. 5 < z • reason: after instantiation we get two terms $(\lambda x. t)$ u is the same as t[x/u]• $\exists x. (\lambda z. 5 < z) x$ (here, t[x/u] denotes the term *t* where x gets replaced by *u*) • ∃ y. 5 < y • *n*-expansion • these two terms are equivalent modulo $\alpha\beta\eta$ • the unused schematic variable ?x is renamed to ?y since the goal used the name y in the $t :: ty \Rightarrow ty'$ is the same as $\lambda x \cdot t x$ existential quantor • Demo02.thy • the new subgoal is $(\lambda z. 5 < z)$?y which is equal to 5 < ?y modulo $\alpha\beta\eta$ • higher-order unification of terms *s* and *t*: find σ such that $s\sigma$ and $t\sigma$ are equivalent modulo $\alpha\beta\eta$

The Pure Framework

RT (DCS @ UIBK)	session 2	9/21	RT (DCS @ UIBK)	session 2

Structured Proofs

Structured Proofs

10/21

The Pure Framework

Proofs – Ou	iter S	Syntax	Structured Proois
proof		sorry by method method [?] proof method [?] statement [*] qed method [?]	fake proof atomic proof structured proof
statement		<pre>fix variables (:: type)? assume proposition+ (from fact⁺)? (have show) proposition proof { statement[*] }</pre>	arbitrary but fixed values local assumptions (intermediate) result raw proof block
proposition	::=	(label:) [?] term	
fact	::= 	label 〈term〉	literal fact
		auto fact rule fact - lemma proposition proof	

Remarks

• symbol? denotes optional symbol; symbol* denotes arbitrarily many occurrences of symbol

Structured Proofs

Demo – Drinker's Paradox

RT (DCS @ UIBK)

- statement: there is a person *p*, that if *p* drinks then everyone drinks
- formal proof is contained in Demo02.thy and it will illustrate various elements and variations of a proof w.r.t. the previous slide
- the upcoming slides mainly serve as a written down explanation, if something was not mentioned in the theory file or during the live demonstration

session 2

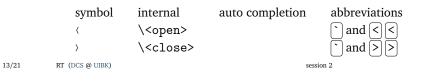
Remarks (cont'd)

- without *method* argument **proof** applies method standard
- idiom for starting structured proof without initial method "proof -"
- special label this refers to latest fact
- show used for statement that shows conclusion of surrounding proof ... qed

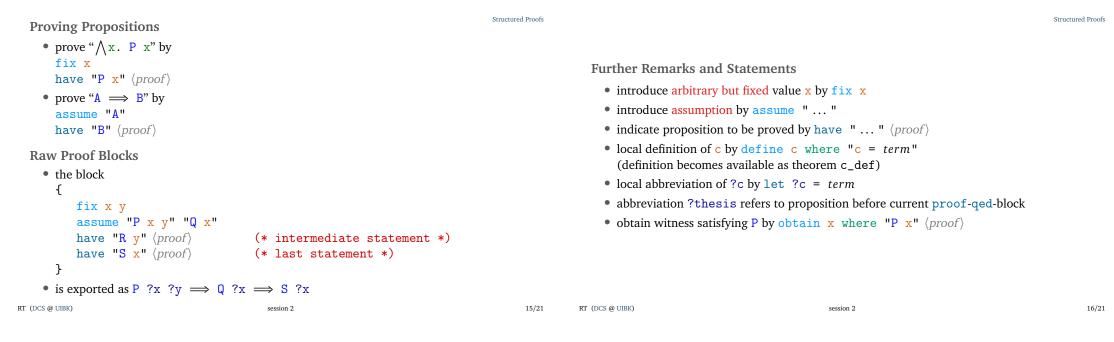
Some Proof Methods

- rule fact apply single inference rule, namely fact
- standard perform a single standard (with respect to current context) inference step
- – do nothing
- auto combines classical reasoning with simplification

Isabelle Symbols – Cartouches



14/21



The rule Method using Current Facts

• on slide 8 it was explained what the rule method does without current facts

- example Isabelle statement: have P proof (rule *thm*)
- *thm* should have form of an introduction rule
- conclusion in *thm* introduces some specific connective, e.g. ... ⇒ ?A ∧ ?B

• if there are current facts, the behavior is different and it is tried to apply an elimination rule

- example Isabelle statement: from Q have P proof (rule thm)
- *thm* should have form of an elimination rule
- major premise in *thm* contains specific connective, e.g., ?A ∧ ?B ⇒ ..., which is then unified with Q
- in detail: given theorem P₁ ⇒ ... ⇒ P_n ⇒ C, unify major premise P₁ of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Example

```
have "x > 5 \vee x = 2" \langle proof \rangle
from this have "A x"
proof (rule disjE)
- \langle disjE: ?P \vee ?Q \implies (?P \implies ?R) \implies (?Q \implies ?R) \implies ?R\rangle
show "x > 5 \implies A x" \langle proof \rangle
show "x = 2 \implies A x" \langle proof \rangle
qed
```

RT (DCS @ UIBK)	session 2	17/21	RT (DCS @ UIBK)	session 2	18/21

Structured Proofs

The Difference Between have and show

- have is used to state arbitrary intermediate propositions
- show is used to discharge a current proof obligation
- show might reject a statement if it does not match a proof obligation
 - if assumptions have been used that are not present in proof obligation
 - if the types of variables are too specific or differ

Examples

lemma "P x" proof assume "Q x" from this show "P x" (* rejected, because of assumption Q x *)
lemma "∃ x. x < 5" proof (rule exI) show "(3 :: nat) < 5" (* rejected, since type is too specific *) The Difference Between HOL- and Meta-Implication/Quantification

- there are meta-connectives \land and \implies
- there are HOL-connectives \forall and \longrightarrow
- usually the meta-connectives are preferable; example:
 - in $A \implies B \implies C \implies D$ we can just assume B
 - in A \longrightarrow B \longrightarrow C \longrightarrow D we first have to apply implication introduction to access B
- the meta-connectives can only be used on the outside, so certain statements require HOL-connectives; example:
 - $\exists x. x > 5 \longrightarrow (\forall y. P x y)$

(implication and universal quantor appear below existential quantor)

- consequence: most theorems in Isabelle are written using meta-connectives
 - lemma "P x \implies Q \implies R x" is preferred over lemma " \forall x. P x \implies Q \implies R x"

Structured Proof

Proofs – Outer Syntax, Extended Grammar

Structured Proofs

proof		sorry by method method [?] proof method [?] statement [*] qed method [?]	fake proof atomic proof structured proof	
statement	::= 	<pre>fix variables (:: type)? assume proposition+ (from fact⁺)? (have show) proposition proof { statement* } let ?x = term (from fact⁺)? obtain vars where prop. proof</pre>	arbitrary but fixed valu local assumptions (intermediate) result raw proof block local abbreviation get witness	es
proposition	::=	(label:) [?] term		
fact	::=	label		
		this (<i>term</i>)	previous proposition literal fact	
		auto fact rule fact -		
command	::=	lemma proposition proof		
RT (DCS @ UIBK)		session 2		21/21