

Interactive Theorem Proving using Isabelle/HOL

Session 3

René Thiemann

Department of Computer Science

Outline

• Natural Deduction Revisited

• Case Analysis and Structural Induction for Data Types

Natural Deduction Revisited

Last Lecture: Natural Deduction in Isabelle

- typical proof step: from this more_facts have label: term by (rule thm)
- three problems
 - finding names of theorems such as *thm*
 - repetitive long commands, e.g., from this have
 - management of labels (tedious, not informative, ...)

Use the Isabelle Library

- Isabelle already provides several theorems, e.g., inference rules of natural deduction, properties of numbers, properties of lists, ...
- to increase efficiency, these theorems should be re-used, not re-proved
- problem: how to know the name of all these theorems, e.g., thm excluded_middle disjI1 exE ccontr
 thm add.commute add_le_cancel_right
- solution: use search engine to quickly find
 - already proven theorems
 - already defined constants, e.g., algorithms on lists, numbers, sets, ...

6/18

Finding Existing Theorems

- enter query in "Query/Find Theorems" panel or after find_theorems command
- scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo search for facts whose name contains substring "foo"
- "pattern" search for facts that match pattern
- prefix criterion by "-" to exclude facts that match
- combine several criteria by juxtaposition

Search Patterns

HOL terms with schematic variables ?x, ?y, ... or _ instead of free variables

Examples

RT

query	finds facts mentioning	query	finds facts mentioning
"_ + _"	addition	2"(+)"	2 and addition function
"?x + ?x"	addition of same value	"_ * (_ + _) = _"	distributive law
(DCS @ UIBK)		session 3	

Finding Existing Constants

- enter query in "Query/Find Constants" panel or after find_consts command
- scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo search for constants whose name contains substring "foo"
- "*type*" search for constants that match a specific *type*
- combine several criteria by juxtaposition

Search Types

HOL types with schematic type variables ? 'a, ? 'b, ... or _ instead of free type variables

Example

find_consts "?'a \Rightarrow ?'a \Rightarrow _ list" name: "List" searches for all binary functions where first and second argument have the same type, that return a list, and whose names includes "List" (e.g., as theory-prefix of a long name)

Abbreviations of Statements

- then = from this (unlike to from, after then no further facts may be stated)
 hence = then have
- thus = then show
- with facts = from facts this

Passing Auxiliary Facts

• instead of passing facts before the property to be proven, one can also state facts after the property via using:

```
from facts have proposition (proof)
```

is equivalent to

```
have proposition using facts \langle proof \rangle
```

- style: state important facts before, and auxiliary facts after proposition
- caution: label this is not available after using

Avoiding Labels: moreover and ultimately

- often proofs are of the form that auxiliary properties 1, ..., n are proven and then one can conclude
- manually labeling all these properties is tedious, in particular if labels are somehow sorted and one needs to insert something in the middle
- use moreover and ultimately to write these proofs without explicit labels
- example

```
with labels
have 1: A \langle proof \rangle
have B \langle proof \rangle
hence 2: C \langle proof \rangle
hence 3: E \langle proof \rangle
from 1 2 3 show ?thesis
```

without labels
have A \proof \
moreover (* store A *)
have B \proof \
hence C \proof \
moreover (* store C *)
have D \proof \
hence E \proof \
ultimately show ?thesis (* A C E are avail. *)

Case Analysis on Booleans

- Isabelle provides special syntax to perform proofs by case analysis
- this slide: case analysis on Booleans (general case: later)
- structure is as follows, where *term* is of type bool (copy outline from output panel)

```
proof (cases term) (* here outline is displayed in output panel *)
case True
    (* label True refers to fact "term" *)
```

```
... (* label True refers to fact "term" *)
show ?thesis (proof)
```

```
next
```

```
case ownLabel: False
    ... (* label ownLabel refers to fact "~ term" *)
    show ?thesis \proof \
ged
```

- order of cases is irrelevant, separation of cases via next
- user-defined labels become important in nested case analyses
- omitted case(s) can be solved via final method, e.g., qed auto

(last week)

 $(\ldots \implies A \land B)$

The rule Method – Revisited

- rule *fact* if provided facts are empty, apply *fact* as introduction rule
- otherwise, apply fact as elimination rule
- introduction rule: conclusion introduces connective
- elimination rule: premise contains connective that is eliminated (A \land B \implies ...)

Rule Application

- given rule $P_1 \implies \dots \implies P_n \implies C$
- intro unify C with conclusion of current subgoal and add correspondingly instantiated premises $P_1\sigma, \ldots, P_n\sigma$ as new subgoals
- elim unify major premise P₁ of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Beyond rule - intro and elim

- the rule method applies exactly one rule (intro or elim)
- the intro method applies several introduction rules exhaustively
- the elim method applies several elimination rules exhaustively

Example

```
lemma "A \land (\exists x :: nat. B x \land (C \lor D x))"
proof (intro conjI exI)
   - (three subgoals: A, B ?x, C \lor D ?x)
   show A \langle proof \rangle
   show "B 5" \langle proof \rangle (* here we choose witness 5 *)
   show "C \lor D 5" \langle proof \rangle (* no choice of witness anymore *)
qed
```

Case Analysis and Structural Induction for Data Types

Data Type Definitions

- whenever a data type ty is defined, in the background several theorems are proven
 - they can be inspected via print_theorems directly after the definition
 - simplification rules: ty.simps
 - case analysis rule: ty.exhaust
 - induction rule: ty.induct

- (automatically used by auto)
- (used by cases "term :: ty")
- (used by induction "variable :: ty")

Example

- consider Isabelle's lists: datatype 'a list = Nil | Cons 'a "'a list"
- special syntax: [] is the same as Nil, # is an infix operator for Cons, and there is syntax such as [x, y, z]
- list.simps contains among others $(x \# xs = y \# ys) = (x = y \land xs = ys)$ $(case x \# xs of [] \Rightarrow e | y \# ys \Rightarrow f y ys) = f x xs$
- list.exhaust: (ys = [] \implies P) \implies (\bigwedge x xs. ys = x # xs \implies P) \implies P
- list.induct: P [] \implies ($\bigwedge x xs. P xs \implies P (x \# xs)$) \implies P ys

Function Definitions

- whenever a function **f** is defined, in the background several theorems are proven
 - they can be inspected via print_theorems directly after the definition
 - simplification rules: f.simps
 - induction rule: f.induct

Example

- consider append function:
 - fun app :: "'a list ⇒ 'a list ⇒ 'a list" where
 "app [] ys = ys"
 | "app (x # xs) ys = x # (app xs ys)"
- app.simps are the two defining equations as theorems

(automatically used by auto) (details in upcoming lecture)

The induction Method

- induction x induction on parameter x (rule chosen according to type of x)
- use case to start case
 - syntax: case (*CName* $\mathbf{x}_1 \dots \mathbf{x}_n$) where
 - *CName* is name of constructor
 - $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are freely chosen variable names that represent the arguments of *CName*
 - *CName* is also label that contains the IHs; e.g., for binary tree with constructor Node, the fact Node(1) would be the first IH (left subtree) and Node(2) would be the second IH (right subtree)
- ?case abbreviates goal of current case, separate cases by next
- outline of induction proof is available in output panel for induction x method

The cases Method

- cases *term* case analysis on parameter *term* (rule chosen according to type of *term*)
- same structure as induction method, with two differences
 - goals of current case are still **?thesis**, not **?case**
 - no IHs are available as facts, but equalities term = CName $x_1 \dots x_n$

```
Demo – List Reversal
```

```
fun app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where
"app [] ys = ys"
| "app (x # xs) ys = x # (app xs ys)"
```

```
fun reverse :: "'a list ⇒ 'a list" where
  "reverse [] = []"
| "reverse (x # xs) = app (reverse xs) ([x])"
```

lemma rev_rev: "reverse (reverse xs) = xs"

Proof Strategies

- 1. perform induction on suitable variable (more on that next week)
- 2. copy proof outline by click in blue part of output panel; adjust variable names on demand
- 3. handle each case, replace **sorry** by **proof** auto
 - if successful, replace proof auto by by auto
 - if not, either
 - perform proof manually (natural deduction, add intermediate statements, ...)
 - or identify required lemma to make progress and first prove that lemma
- 4. cleanup proof, e.g., drop trivial cases and replace final qed by qed auto

Auxiliary Lemmas

- currently: assume auxiliary lemmas are just equations *lhs* = *rhs*
- formulate lemmas such that *lhs* is larger than *rhs*, so that terms get smaller
- activate lemma globally via [simp]-attribute: lemma useful[simp]: "lhs = rhs"
- activate lemmas locally: proof (auto simp: useful ...)
- warning: if the activated equations do not terminate, then auto might not terminate