
Summer Term 2023

Interactive Theorem Proving using Isabelle/HOL
Session 3

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Outline

• Natural Deduction Revisited

• Case Analysis and Structural Induction for Data Types

RT (DCS @ UIBK) session 3 2/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

Natural Deduction Revisited

Last Lecture: Natural Deduction in Isabelle

• typical proof step: from this more_facts have l a b e l: term by (rule thm)
• three problems
• finding names of theorems such as thm
• repetitive long commands, e.g., from this have
• management of labels (tedious, not informative, . . .)

RT (DCS @ UIBK) session 3 4/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

Use the Isabelle Library

• Isabelle already provides several theorems, e.g., inference rules of natural deduction,
properties of numbers, properties of lists, . . .
• to increase efficiency, these theorems should be re-used, not re-proved
• problem: how to know the name of all these theorems, e.g.,
thm excluded_middle disjI1 exE ccontr
thm add.commute add_le_cancel_right
• solution: use search engine to quickly find
• already proven theorems
• already defined constants, e.g., algorithms on lists, numbers, sets, . . .

RT (DCS @ UIBK) session 3 5/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited
Finding Existing Theorems
• enter query in “Query/Find Theorems” panel or after find_theorems command
• scope: search is restricted to accessible content in current theory, including imports

Search Criteria
• name: foo – search for facts whose name contains substring “foo”
• "pattern" – search for facts that match pattern
• prefix criterion by “-” to exclude facts that match
• combine several criteria by juxtaposition

Search Patterns
HOL terms with schematic variables ?x, ?y, . . . or _ instead of free variables

Examples

query finds facts mentioning query finds facts mentioning
"_ + _" addition 2 "(+)" 2 and addition function
"?x + ?x" addition of same value "_ * (_ + _) = _" distributive law

RT (DCS @ UIBK) session 3 6/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited
Finding Existing Constants
• enter query in “Query/Find Constants” panel or after find_consts command
• scope: search is restricted to accessible content in current theory, including imports

Search Criteria
• name: foo – search for constants whose name contains substring “foo”
• "type" – search for constants that match a specific type
• combine several criteria by juxtaposition

Search Types
HOL types with schematic type variables ?'a, ?'b, . . . or _ instead of free type variables

Example

find_consts "?'a ⇒ ?'a ⇒ _ list" name: "List"
searches for all binary functions where first and second argument have the same type, that
return a list, and whose names includes "List" (e.g., as theory-prefix of a long name)

RT (DCS @ UIBK) session 3 7/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

Abbreviations of Statements
• then = from this

(unlike to from, after then no further facts may be stated)
• hence = then have
• thus = then show
• with f a c t s = from f a c t s this

Passing Auxiliary Facts

• instead of passing facts before the property to be proven, one can also state facts after
the property via using:

from f a c t s have propo s i t i on 〈proof 〉
is equivalent to

have propo s i t i on using f a c t s 〈proof 〉
• style: state important facts before, and auxiliary facts after p r o po s i t i on
• caution: label this is not available after using

RT (DCS @ UIBK) session 3 8/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

Avoiding Labels: moreover and ultimately
• often proofs are of the form that auxiliary properties 1, . . . , n are proven and then one

can conclude
• manually labeling all these properties is tedious, in particular if labels are somehow

sorted and one needs to insert something in the middle
• use moreover and ultimately to write these proofs without explicit labels
• example

with labels
have 1: A 〈proof 〉
have B 〈proof 〉
hence 2: C 〈proof 〉
have D 〈proof 〉
hence 3: E 〈proof 〉
from 1 2 3 show ?thesis

without labels
have A 〈proof 〉
moreover (* store A *)
have B 〈proof 〉
hence C 〈proof 〉
moreover (* store C *)
have D 〈proof 〉
hence E 〈proof 〉
ultimately show ?thesis (* A C E are avail. *)

RT (DCS @ UIBK) session 3 9/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited
Case Analysis on Booleans
• Isabelle provides special syntax to perform proofs by case analysis
• this slide: case analysis on Booleans (general case: later)
• structure is as follows, where term is of type bool (copy outline from output panel)

proof (cases term) (* here outline is displayed in output panel *)
case True
. . . (* label True refers to fact "term" *)
show ?thesis 〈proof 〉

next
case ownLabel: False
. . . (* label ownLabel refers to fact "~ term" *)
show ?thesis 〈proof 〉

qed
• order of cases is irrelevant, separation of cases via next
• user-defined labels become important in nested case analyses
• omitted case(s) can be solved via final method, e.g., qed auto

RT (DCS @ UIBK) session 3 10/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

The rule Method – Revisited

• rule fact – if provided facts are empty, apply fact as introduction rule (last week)
• otherwise, apply fact as elimination rule
• introduction rule: conclusion introduces connective (. . . =⇒ A ∧ B)
• elimination rule: premise contains connective that is eliminated (A ∧ B =⇒ . . .)

Rule Application
• given rule P1 =⇒ . . . =⇒ P n =⇒ C
• intro – unify C with conclusion of current subgoal and add correspondingly instantiated

premises P1σ, . . . , P nσ as new subgoals
• elim – unify major premise P1 of rule with first of current facts; unify remaining current

facts with remaining premises; add rest of premises correspondingly instantiated as new
subgoals

RT (DCS @ UIBK) session 3 11/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Natural Deduction Revisited

Beyond rule – intro and elim
• the rule method applies exactly one rule (intro or elim)
• the intro method applies several introduction rules exhaustively
• the elim method applies several elimination rules exhaustively

Example

lemma "A ∧ (∃ x :: nat. B x ∧ (C ∨ D x))"
proof (intro conjI exI)

⟨three subgoals: A, B ?x, C ∨ D ?x ⟩

show A 〈proof 〉
show "B 5" 〈proof 〉 (* here we choose witness 5 *)
show "C ∨ D 5" 〈proof 〉 (* no choice of witness anymore *)

qed

RT (DCS @ UIBK) session 3 12/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis and Structural Induction for Data Types

Case Analysis and Structural Induction for Data Types

Data Type Definitions

• whenever a data type ty is defined, in the background several theorems are proven
• they can be inspected via print_theorems directly after the definition
• simplification rules: ty.simps (automatically used by auto)
• case analysis rule: ty.exhaust (used by cases "term :: ty")
• induction rule: ty.induct (used by induction " v a r i a b l e :: ty")

Example

• consider Isabelle’s lists: datatype 'a list = Nil | Cons 'a "'a list"
• special syntax: [] is the same as Nil, # is an infix operator for Cons, and there is syntax

such as [x, y, z]
• list.simps contains among others (x # xs = y # ys) = (x = y ∧ xs = ys)

(case x # xs of [] ⇒ e | y # ys ⇒ f y ys) = f x xs
• list.exhaust: (ys = [] =⇒ P) =⇒ (

∧

x xs. ys = x # xs =⇒ P) =⇒ P
• list.induct: P [] =⇒ (

∧

x xs. P xs =⇒ P (x # xs)) =⇒ P ys

RT (DCS @ UIBK) session 3 14/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis and Structural Induction for Data Types

Function Definitions

• whenever a function f is defined, in the background several theorems are proven
• they can be inspected via print_theorems directly after the definition
• simplification rules: f.simps (automatically used by auto)
• induction rule: f.induct (details in upcoming lecture)

Example

• consider append function:
fun app :: "'a list ⇒ 'a list ⇒ 'a list" where

"app [] ys = ys"
| "app (x # xs) ys = x # (app xs ys)"
• app.simps are the two defining equations as theorems

RT (DCS @ UIBK) session 3 15/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis and Structural Induction for Data Types
The induction Method
• induction x – induction on parameter x (rule chosen according to type of x)
• use case to start case
• syntax: case (CName x 1 . . . x n) where

• CName is name of constructor
• x 1, . . . , x n are freely chosen variable names that represent the arguments of CName

• CName is also label that contains the IHs;
e.g., for binary tree with constructor Node, the fact Node(1) would be the first IH (left
subtree) and Node(2) would be the second IH (right subtree)

• ?case abbreviates goal of current case, separate cases by next
• outline of induction proof is available in output panel for induction x method

The cases Method
• cases term – case analysis on parameter term (rule chosen according to type of term)
• same structure as induction method, with two differences
• goals of current case are still ?thesis, not ?case
• no IHs are available as facts, but equalities term = CName x 1 . . . x n

RT (DCS @ UIBK) session 3 16/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis and Structural Induction for Data Types

Demo – List Reversal

fun app :: "'a list ⇒ 'a list ⇒ 'a list" where
"app [] ys = ys"

| "app (x # xs) ys = x # (app xs ys)"

fun reverse :: "'a list ⇒ 'a list" where
"reverse [] = []"

| "reverse (x # xs) = app (reverse xs) ([x])"

lemma rev_rev: "reverse (reverse xs) = xs"

RT (DCS @ UIBK) session 3 17/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Case Analysis and Structural Induction for Data Types
Proof Strategies

1. perform induction on suitable variable (more on that next week)

2. copy proof outline by click in blue part of output panel; adjust variable names on demand
3. handle each case, replace sorry by proof auto

• if successful, replace proof auto by by auto
• if not, either

• perform proof manually (natural deduction, add intermediate statements, . . .)
• or identify required lemma to make progress and first prove that lemma

4. cleanup proof, e.g., drop trivial cases and replace final qed by qed auto

Auxiliary Lemmas
• currently: assume auxiliary lemmas are just equations l h s = rhs
• formulate lemmas such that l h s is larger than rhs , so that terms get smaller
• activate lemma globally via [simp]-attribute: lemma useful[simp]: " l h s = rhs"
• activate lemmas locally: proof (auto simp: useful . . .)
• warning: if the activated equations do not terminate, then auto might not terminate

RT (DCS @ UIBK) session 3 18/18

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Natural Deduction Revisited
	Case Analysis and Structural Induction for Data Types

