\square universität
innsbruck

Interactive Theorem Proving using Isabelle/HOL
Session 3

René Thiemann

Department of Computer Science

- Natural Deduction Revisited
- Case Analysis and Structural Induction for Data Types

Last Lecture: Natural Deduction in Isabelle

- typical proof step: from this more facts have label: term by (rule thm)
- three problems
- finding names of theorems such as thm
repetitive long commands, e.g., from this have
- management of labels (tedious, not informative, ...)

Use the Isabelle Library

- Isabelle already provides several theorems, e.g., inference rules of natural deduction, properties of numbers, properties of lists, ...
- to increase efficiency, these theorems should be re-used, not re-proved
problem: how to know the name of all these theorems, e.g.,
thm excluded_middle disjI1 exE ccontr
thm add.commute add_le_cancel_right
- solution: use search engine to quickly find
already proven theorems
- already defined constants, e.g., algorithms on lists, numbers, sets, ...

Finding Existing Constant

- enter query in "Query/Find Constants" panel or after find_consts command
scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo - search for constants whose name contains substring "foo"
"type" - search for constants that match a specific type
- combine several criteria by juxtaposition

Search Types

HOL types with schematic type variables ? ' a, ?'b, ... or _ instead of free type variables
Example
find_consts "?'a \Rightarrow ?'a \Rightarrow _ list" name: "List"
searches for all binary functions where first and second argument have the same type, that return a list, and whose names includes "List" (e.g., as theory-prefix of a long name)

- enter query in "Query/Find Theorems" panel or after find_theorems command
- scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo-search for facts whose name contains substring "foo"
- "pattern" - search for facts that match pattern
- prefix criterion by "-" to exclude facts that match
- combine several criteria by juxtaposition

Search Patterns

HOL terms with schematic variables ? x, ?y, ... or _ instead of free variables

Examples

query	finds facts mentioning	query	finds facts mentioning
+	addition	2 " (+)"	2 and addition function
"?x + ?x"	addition of same value	*	distributive law

"? $\quad+$ session 3

Abbreviations of Statements

- then
-

from this
(unlike to from, after then no further facts may be stated)

- hence $=\quad$ then have
- thus $=\quad$ then show
- with facts $=\quad$ from facts this

Passing Auxiliary Facts

instead of passing facts before the property to be proven, one can also state facts after the property via using:

$$
\text { from facts have proposition }\langle\text { proof }\rangle
$$

is equivalent to
have proposition using facts 〈proof〉

- style: state important facts before, and auxiliary facts after proposition
- caution: label this is not available after using

Avoiding Labels: moreover and ultimately

- often proofs are of the form that auxiliary properties $1, \ldots, n$ are proven and then one can conclude
- manually labeling all these properties is tedious, in particular if labels are somehow sorted and one needs to insert something in the middle
- use moreover and ultimately to write these proofs without explicit labels
- example

The rule Method - Revisited

- rule fact - if provided facts are empty, apply fact as introduction rule
(last week)
- otherwise, apply fact as elimination rule
- introduction rule: conclusion introduces connective
$(\ldots \Longrightarrow A \wedge B)$
- elimination rule: premise contains connective that is eliminated
$(\mathrm{A} \wedge \mathrm{B} \Longrightarrow \ldots)$

Rule Application

- given rule $\mathrm{P}_{1} \Longrightarrow \ldots \Longrightarrow P_{n} \Longrightarrow \mathrm{C}$
- intro - unify C with conclusion of current subgoal and add correspondingly instantiated premises $\mathrm{P}_{1} \sigma, \ldots, \mathrm{P}_{n} \sigma$ as new subgoals
- elim - unify major premise P_{1} of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Case Analysis on Booleans

- Isabelle provides special syntax to perform proofs by case analysis
- this slide: case analysis on Booleans (general case: later)
- structure is as follows, where term is of type bool (copy outline from output panel) proof (cases term) (* here outline is displayed in output panel *) case True
... (* label True refers to fact "term" *) show ?thesis $\langle p r o o f\rangle$

next

case ownLabel: False

(* label ownLabel refers to fact "~ term" *) show ?thesis 〈proof〉 qed

- order of cases is irrelevant, separation of cases via next
- user-defined labels become important in nested case analyses
- omitted case(s) can be solved via final method, e.g., qed auto RT (DCS @ UIBK) session 3

Beyond rule - intro and elim

- the rule method applies exactly one rule (intro or elim)
- the intro method applies several introduction rules exhaustively
- the elim method applies several elimination rules exhaustively

Example

```
lemma "A ^ (\exists x :: nat. B x ^ (C \vee D x))"
proof (intro conjI exI)
    - (three subgoals: A, B ?x, C \vee D ?x)
    show A <proof\rangle
    show "B 5" <proof\rangle (* here we choose witness 5 *)
    show "C V D 5" {proof\rangle (* no choice of witness anymore *)
qed
```


Case Analysis and Structural Induction for Data Types

Case Analysis and Structural Induction for Data Types

Function Definitions

- whenever a function f is defined, in the background several theorems are proven
- they can be inspected via print_theorems directly after the definition
- simplification rules: f.simps
(automatically used by auto)
- induction rule: f .induct
(details in upcoming lecture)

Example

- consider append function:
fun app : : "'a list \Rightarrow 'a list \Rightarrow 'a list" where
"app [] ys = ys"
"app (x \# xs) ys = x \# (app xs ys)"
- app.simps are the two defining equations as theorems

Data Type Definitions

- whenever a data type ty is defined, in the background several theorems are proven
- they can be inspected via print_theorems directly after the definition
- simplification rules: ty.simps (automatically used by auto)
- case analysis rule: ty.exhaust (used by cases "term :: ty")
- induction rule: ty. induct (used by induction "variable :: ty")

Example

- consider Isabelle’s lists: datatype 'a list = Nil | Cons 'a "'a list"
- special syntax: [] is the same as Nil, \# is an infix operator for Cons, and there is syntax such as [x, y, z]
- list. simps contains among others $\quad(x \# x s=y \# y s)=(x=y \wedge x s=y s)$ (case $x \#$ xs of []$\Rightarrow e \mid y \# y s \Rightarrow f y y s)=f x$ xs
- list.exhaust: $(y s=[] \Longrightarrow P) \Longrightarrow(\bigwedge x$ xs. ys $=x \# x s \Longrightarrow P) \Longrightarrow P$
- list.induct: $P[] \Longrightarrow(\Lambda x \mathrm{xs} . \mathrm{P} x \mathrm{x} \Longrightarrow P(\mathrm{x} \# \mathrm{xs})) \Longrightarrow \mathrm{P}$ ys

The induction Method

- induction x - induction on parameter x (rule chosen according to type of x)
- use case to start case
- syntax: case (CName $\mathrm{x}_{1} \ldots \mathrm{x}_{n}$) where
- CName is name of constructor
- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ are freely chosen variable names that represent the arguments of CName
- CName is also label that contains the IHs;
e.g., for binary tree with constructor Node, the fact Node (1) would be the first IH (left subtree) and Node (2) would be the second IH (right subtree)
- ?case abbreviates goal of current case, separate cases by next
- outline of induction proof is available in output panel for induction x method

The cases Method

- cases term - case analysis on parameter term (rule chosen according to type of term)
- same structure as induction method, with two differences
- goals of current case are still ?thesis, not ?case
- no IHs are available as facts, but equalities term $=$ CName $\mathrm{x}_{1} \ldots \mathrm{x}_{n}$

```
Demo - List Reversal
fun app :: "'a list }=>\mathrm{ 'a list }=>\mathrm{ ' a list" where
    "app [] ys = ys"
| "app (x # xs) ys = x # (app xs ys)"
fun reverse :: "'a list g 'a list" where
    "reverse [] = []"
| "reverse (x # xs) = app (reverse xs) ([x])"
lemma rev_rev: "reverse (reverse xs) = xs"
```


Proof Strategies

1. perform induction on suitable variable (more on that next week)
2. copy proof outline by click in blue part of output panel; adjust variable names on demand
3. handle each case, replace sorry by proof auto

- if successful, replace proof auto by by auto
- if not, either
- perform proof manually (natural deduction, add intermediate statements, ...)
- or identify required lemma to make progress and first prove that lemma

4. cleanup proof, e.g., drop trivial cases and replace final qed by qed auto

Auxiliary Lemmas

- currently: assume auxiliary lemmas are just equations $l h s=r h s$
- formulate lemmas such that $l h s$ is larger than $r h s$, so that terms get smaller
- activate lemma globally via [simp]-attribute: lemma useful[simp]: "lhs = rhs"
- activate lemmas locally: proof (auto simp: useful ...)
- warning: if the activated equations do not terminate, then auto might not terminate

