- universität
innsbruck



## Interactive Theorem Proving using Isabelle/HOL

Session 4

René Thiemann

Department of Computer Science

- Proofs by Induction Revisited
- Controlling the Proof State and Isabelle's Simplifier

Aim: Support Proofs with Chains of (In)Equalities

$$
a=b \leq c=d<e=f \quad \hookrightarrow \quad a<f
$$

Solution: Combination of (In)Equalities by Transitivity
also - first occurrence in chain initializes auxiliary fact calculation to this; further occurrences combine calculation and this via transitivity and update calculation accordingly

Concluding a Chain of Transitive Combinations
finally - combine calculation and this via transitivity and update this accordingly
Also Useful for Calculational Reasoning

- implicit term abbreviation " . . " refers to previous right-hand side of (in)equality
- method "." tries to prove current subgoal by assumption

Example

```
fun sum :: "nat }=>\mathrm{ nat" where
    "sum 0 = 0"
| "sum (Suc n) = Suc n + sum n"
lemma "sum n = n * (n + 1) div 2"
proof (induction n)
    case IH: (Suc n)
    have "sum (Suc n) = (n + 1) + sum n" by auto
    also have "... = (n + 1) + (n * (n + 1)) div 2" using IH by auto
    also have "... = (2 * (n + 1) + (n * (n + 1))) div 2" by auto
    also have "... = ((2 + n) * (n + 1)) div 2" by auto
    also have " ... = (Suc n * (Suc n + 1)) div 2" by auto
    finally show ?case
qed simp
```


## Proofs by Induction Revisited

## Further Remarks

- calculational reasoning works with several relations, e.g., (=), ( $\leq$ ), (<), ( ( ) and (С)
- calculational reasoning does not work with flipped relations such as (>); (>) is just an abbreviation of $\lambda \mathrm{x} y . \mathrm{y}<\mathrm{x}$

```
have "a > b" \langleproof\rangle have "b < a" \langleproof\rangle
also have "... > c" \proof\rangle also have "c < ..." \langleproof\rangle
finally (* fails *) finally (* here you see why *)
```

- calculational reasoning with equality supports contexts

| have "a $=\mathrm{f} \mathrm{b} "\langle$ proof $\rangle$ | have " $\mathrm{a} \leq \mathrm{b}+\mathrm{c} "\langle$ proof $\rangle$ |
| :--- | :--- |
| also have " $=\mathrm{c}$ " $\langle$ proof $\rangle$ | also have " $\mathrm{c} \leq \mathrm{d} "\langle$ proof $\rangle$ |
| also have "f $\ldots=\mathrm{d}$ " $\langle$ proof $\rangle$ | finally have " $\mathrm{a} \leq \mathrm{b}+\mathrm{d} "$ |

also have "f ... = d" 〈proof〉
finally have "a $\leq$ b + d"
finally have "a = d" . (* fails *)

Example Induction Proof of Last Week - Reversing a List Twice

```
lemma rev_rev[simp]: "reverse (reverse xs) = xs"
proof (induction xs)
    case (Cons x xs)
    then show ?case
        by (auto simp: rev_app)
qed auto
```


## Approach

- state variable on which induction should be applied
choose own variable names for each case
- identify and add auxiliary lemmas on demand
- solve trivial cases via qed auto
not everything explained: usage of arbitrary variables and preconditions

Motivation - Fast Implementation of List Reversal

```
fun rev_it :: "'a list }=>\mathrm{ ' 'a list }=>\mathrm{ ' 'a list" where
    "rev_it [] ys = ys"
| "rev_it (x # xs) ys = rev_it xs (x # ys)"
fun fast_rev :: "'a list }=>\mathrm{ ' 'a list" where
    "fast_rev xs = rev_it xs []"
lemma fast_rev: "fast_rev xs = reverse xs"
```


## First Problem

- core property is rev_it xs [] = reverse xs
- induction on xs yields problematic subgoal: 2nd arguments of rev_it differ! rev_it $x s[]=$ reverse $x s \Longrightarrow$ rev_it $x s[x]=$ reverse $x s @[x]$ (minor non-relevant change: in the definition of reverse we replaced append by Isabelle's predefined append function (@))


## Solving Second Problem - Arbitrary Variables

- solution: tell induction method which variables should be arbitrary
perform induction on $x$ for arbitrary $y$ and $z$
- effect
- $y$ and $z$ can be freely instantiated in the IH
- $y$ and $z$ within induction proof have no connection to $y$ and $z$ outside induction proof

Finalizing Proof of Previous Slide

```
have "rev_it xs ys = reverse xs @ ys"
proof (induction xs arbitrary: ys)
    case (Cons x xs ys) (* IH is: rev_it xs ?ys = reverse xs @ ?ys *)
```

    thus ?case by auto
    qed auto

- for each case one chooses names of arguments of constructor and arbitrary variables
- after "arbitrary:" there can be several variable names


## Solving First Problem

- core property is rev_it xs [] = reverse xs
- proving this property by induction leads to an IH which is too weak: 2nd argument of rev_it is no longer [] in subgoal
- solution: generalize property
rev_it xs ys = reverse xs @ ys (creativity required)


## Second Problem

- still the induction proofs fails on (simplified) subgoal
rev_it xs ys = reverse xs @ ys

$$
\Longrightarrow \text { rev_it xs (x \# ys) = reverse xs @ x \# ys }
$$

- the 2nd arguments of rev_it still differ
(in particular the 2nd argument of rev_it in the IH is still the original ys)
- aim: perform induction on $x s$, but permit change of variable ys in IH

Premises in Induction Proofs - Examples

```
have "A (x :: nat) \Longrightarrow B y \Longrightarrow C x y" proof (induction x)
    case (Suc x) (* annoying, "B y" is contained in IH *)
    thm Suc.prems - <A (Suc x), B y>
    thm Suc.IH - <A x C B y C C x y>
assume "B y" (* if y is not changed, move properties of y outside *)
have "A (x :: nat) \Longrightarrow C x y" proof (induction x)
    case (Suc x)
    thm Suc.prems - <A (Suc x)\rangle
    thm Suc.IH - <A x C C x y>
have "A (x :: nat) }\Longrightarrow\textrm{B}y=C x y" proof (induction x arbitrary: y)
    case (Suc x y) (* since y is changed, cannot move "B y" outside *)
    thm Suc.prems - <A (Suc x), B y\rangle
    thm Suc.IH - <A x }\Longrightarrow\textrm{B}\mathrm{ ?y = C x ?y>
```


## The Simplifier

- applies (conditional) equations exhaustively; these equations are also called simp rules
- equations are always oriented left-to-right: given equation $c>l=r$ and goal
- try to find subterm $l \sigma$ in goal and replace it by $r \sigma$ provided that $c \sigma$ simplifies to True
- consequence: equation should satisfy that both $c$ and $r$ are somehow smaller than $l$
- examples

$$
\begin{array}{lr}
\text { - } \mathrm{n}<\mathrm{m} \Longrightarrow(\mathrm{n}<\text { Suc } m)=\text { True } & \text { might be used as simp rule } \\
\text { - Suc } \mathrm{n}<\mathrm{m} \Longrightarrow(\mathrm{n}<m)=\text { True } & \text { will lead to non-termination }
\end{array}
$$

- boolean proposition A is implicitly considered as equation $\mathrm{A}=$ True
- equations taken from implicit simpset
- certain commands (like datatype and fun) implicitly extend simpset


## Controlling the Proof State and Isabelle's Simplifier

## Globally Modifying the Simpset

Controlling the Proof State and Isabelle's Simplifier

- globally add equation to simpset: declare fact [simp] or lemma name [simp] : ..
- globally delete simp rule from simpset: declare fact [simp del]

Locally Modifying the Simpset within a Proof

- note [simp] = facts
- note [simp del] = facts

Predefined Simpsets and Notable Simp Rules

- depending on proof goal, several standard simpsets and simp rules might be useful
- these are not used by default, since they can drastically change or blow-up your proof goal (exponential increase)
- numeral_eq_Suc: convert number literals into Suc-representation: $1000=\operatorname{Suc}(\ldots)$
- Let_def: expand lets
- ac_simps: use commutativity and associativity of operators
- algebra_simps, field_simps: add distributivity laws, etc.

RT (DCS @ UIBK)
RT (DCS @ UIBK)

The simp Method - Using Simp Rules Automatically
Controlling the Proof State and Isabelle's Simplifier

- simp - apply simplifier to first subgoal
- simp_all - apply simplifier to all subgoals
- modifier add: fact* - locally add equation as simp rule or activate predefined simpset
- modifier del : fact ${ }^{*}$ - locally delete simp rules from simpset
- modifier only : fact* - only use specified simp rules
- modifier flip: fact* - locally delete simp rules and add their symmetric versions


## Comparing simp and auto

- auto includes simp and simp_all, but also does classical reasoning
- advantage: more powerful than simp
(modifiers: auto simp add: ...)
- disadvantages occur if auto does not completely solve a goal
- might turn provable goal into unprovable one
- new proof obligation might be unreadable (too many changes)
- starting a structured proof after auto is brittle, since result of auto will easily change
- use simp to have more control over proof state


## Styles of Proofs

- structured proofs (Isar-proofs)
- Isabelle/Isar
- proof-language that was introduced here in this lecture
- Isar: Intelligible semi-automated reasoning
- PhD thesis of Makarius Wenze
- intermediate goals are explicitly stated
- readable without inspecting proof state
- apply-style proofs (of form apply* done)
- traditional style of proofs (used in Coq, HOL-Light, ...)
- sequence of proof methods (apply this method, then that, then ...)
- readable if one inspects intermediate proof goals
- both styles have their own advantages; mixture is possible
- often: proof exploration via apply-style, then rewrite into Isar-style

Controlling Proof State - Unfolding Equations Explicitly

- unfold fact ${ }^{+}$- method that unfolds equations (similar to simp only : fact ${ }^{+}$)
- unfolding fact ${ }^{+}$- exhaustively use equations for simplification

Controlling Proof State - Applying Single Equation

- subst fact - method that applies conditional equation and adds conditions as new goals

A More Complete Grammar of Proofs

```
proof ::= prefix* sorry
    | prefix* by method method?
    | prefix* proof method? statement* qed method?
    | prefix* done final step, if no goals left
prefix ::= apply method
    | unfolding fact+
    | using fact+
```

- apply and unfolding are used for step-wise proof exploration

