\square universität
innsbruck

Interactive Theorem Proving using Isabelle/HOL

Session 5

René Thiemann

Department of Computer Science

Overlapping Equations

- when declaring a new function via $f u n$, the equations may be overlapping
- internally, the equations are preprocessed to become non-overlapping; patterns are instantiated on demand
- effect of preprocessing becomes visible in various places, e.g., the simplification rules

Example

```
fun drop_last :: "'a list => 'a list" where
"drop_last (x \# y \# ys) = x \# drop_last (y \# ys)"
| "drop_last xs = []"
```

is translated into function without overlap, which then determines simp rules
fun drop_last :: "'a list \Rightarrow 'a list" where
"drop_last (x \# y \# ys) = x \# drop_last (y \# ys)"
| "drop_last [] = []"
| "drop_last [v] = []"

Underspecification

- fun accepts function definitions where not all of the cases have been covered fun head1 where "head1 ($\mathrm{x} \# \mathrm{xs}$) = x "
- case expressions do not enforce that all cases are covered

- however, HOL is a logic of total functions; what is the value of head1 [] or head2 []?
- to model underspecification, Isabelle/HOL has a special constant undefined :: 'a
- undefined :: 'a is an ordinary value of type ' a and not some kind of error
- undefined :: nat is a natural number (but we don't know which one)
- undefined :: bool is either True or False (but we don't know the alternative)
- undefined is used to fill in missing cases during preprocessing "head1 [] = undefined"
"head2 xs = (case xs of $\mathrm{x} \# \mathrm{Z}_{\mathrm{Z}} \Rightarrow \mathrm{x} \mid[] \Rightarrow$ undefined)"
- the missing cases are usually not revealed to the user, e.g., head1. simps only consists of original equation

Computation Induction and Underspecification

- computation induction considers all cases of function
- what if function is underspecified?
- example
fun head where "head ($\mathrm{x} \# \mathrm{xs}$) = x"
- potential computation induction rule is incorrect

$$
(\bigwedge x \text { xs. } P(x \# x s)) \Longrightarrow P x s
$$

- obviously, also the missing cases have to covered, these become visible in induction rule thm head.induct: ($\bigwedge x$ xs. $P(x \# x s)) \Longrightarrow P[] \Longrightarrow P x s$

Computation Induction

- consider again
fun drop_last : : "'a list \Rightarrow 'a list" where
"drop_last (x \# y \# ys) = x \# drop_last (y \# ys)"
| "drop_last [] = []"
| "drop_last [v] = []"
- aim: prove lemma "length (drop_last xs) = length xs - 1"
- "natural" induction scheme (computation induction) follows structure of algorithm
- consider all cases of function, i.e., x \# y \# ys, [] and [v] for drop_last
- provide IH for recursive calls, i.e., for y \# ys in first case of drop_last
- computation induction is sound, since termination has been proven by fun
- computation induction rule is automatically generated by fun, e.g., drop_last.induct is:

$$
\xrightarrow{(\bigwedge x \text { y ys. } P(y \# y s) \Longrightarrow P(x \# y \# y s)) \Longrightarrow P[] \Longrightarrow(\bigwedge v . P[v])}
$$

- induction-method can use custom induction rule via rule: induct thm lemma ... by (induction xs rule: drop_last.induct) auto
- case names when using computation induction are just numbers (1, 2, ...)

Manual Termination Proofs

Failing Termination Proofs

－consider Isabelle functions
fun gen＿list ：：＂nat \Rightarrow nat \Rightarrow nat list＂where（＊gen＿list $n m=[n . . m] *$ ） ＂gen＿list $n m=$（if $n \leq m$ then $n \#$ gen＿list（Suc n ）m else［］）＂
fun split ：：＂＿\Rightarrow＿list \Rightarrow＿list \times－list＂where
fun qsort ：：＂＇a ：：linorder list \Rightarrow＇a list＂where
＂qsort［］＝［］＂
｜＂qsort（x \＃xs）＝（case split x xs of
（low，high）\Rightarrow qsort low＠［x］＠qsort high）＂
－problem：fun fails for qsort and gen＿list，since it cannot find termination proof
－there are several reasons why a termination proof cannot be found
1．the internal heuristic is too weak（here：neither n nor m decrease in gen＿list）
2．the heuristic is able to find the right terminating argument，but auxiliary facts are missing （here：splitting a list into low and high does not increase the length）
3．in case of higher－order recursion unprovable termination conditions might be generated
4．the function does not terminate
－solution in cases $1-3$ ：perform termination proofs manually

Manual Termination Proofs

－termination proofs of function f are usually of the following shape
－provide a well－founded relation＜
－show args＿rec＜args＿lhs for each equation $f \operatorname{args} \quad l h s=\ldots \mathrm{f} \operatorname{args} r e c \ldots$ ，
taking into account if－then－else and case－expressions in the context indicated by ．．．．．．
－if f has multiple arguments，then these are automatically converted into tuples
－termination proofs are started in Isabelle via
－the standard proof method（where the relation becomes a schematic variable）
－or via the method relation less＿than where the relation is directly fixed
－important well－founded relations are
－measure（m ：：＿\Rightarrow nat）
－compare elements by mapping them to natural numbers
－examples for m
length，count ：：tree \Rightarrow nat，height ：：tree \Rightarrow nat，id ：：nat \Rightarrow nat
－measures（ms ：：（＿\Rightarrow nat）list）
－lexicographic combination of multiple measures from left to right
－this is what is internally used by method lexicographic＿order
－well－foundedness of both measure m and measures ms is by simp

The function Command
－via function one can separate a function definition from its termination proof
－outer syntax：
function（sequential）？name ：：ty where eqns 〈proof〉
termination 〈proof〉
－explanations
－in the proof after function one has to show that all cases have been covered and that no conflicting results may occur in case of overlapping equations
－for underspecified or overlapping equations，use（sequential）to trigger preprocessing
－then resulting proof is always the same：by pat＿completeness auto
－only after successful termination proof，simp rules and induction scheme become available
－fun is just a wrapper around function：
fun name where eqns
is the same as
function（sequential）name where eqns by pat＿completeness auto termination by lexicographic＿order
RT（DCS＠UIBK） session 5

Example Termination Proof

```
function gen_list : : "nat \(\Rightarrow\) nat \(\Rightarrow\) nat list" where
    "gen_list \(\mathrm{n} m=\) (if \(\mathrm{n} \leq \mathrm{m}\) then \(\mathrm{n} \#\) gen_list (Suc n ) m else [])"
    by pat_completeness auto
```

termination
proof
1. wf ?R
2. $\bigwedge n m \cdot n \leq m \Longrightarrow(($ Suc $n, m),(n, m)) \in ? R$
oops
termination by (relation "measure ($\lambda(\mathrm{n}, \mathrm{m}$). Suc m - n)") auto
(* after relation command and discharging trivial wf-requirement,
the goal is equivalent to: *)
1. $\bigwedge n m$. $n \leq m \Longrightarrow$ Suc $m-$ Suc $n<$ Suc $m-n$

Example Termination Proof

```
function qsort :: "'a :: linorder list }=>\mathrm{ ' 'a list" where
    "qsort [] = []"
| "qsort (x # xs) = (case split x xs of
        (low, high) => qsort low @ [x] @ qsort high)"
    by pat_completeness auto
```

termination
proof (relation "measure length")
(* after simplification, the goals are: *)
1. ^ ... (low, high) = split x xs \Longrightarrow length low < Suc (length xs)
2. $\bigwedge \ldots$ (low, high) $=$ split $\mathrm{x} \times \mathrm{x} \Longrightarrow$ length high < Suc (length xs)
RT (DCS @ UiBK)
sesion 5

Termination versus Termination

Manual Termination Proofs

Example Proof

declare gen_list.simps[simp del]
lemma "length (gen_list $n \mathrm{~m}$) = Suc m - n"
proof (induction n m rule: gen_list.induct)
case (1 n m)
note [simp] = gen_list.simps[of $n \mathrm{~m}$]
from 1 show ?case by auto
qed

- since gen_list takes two arguments, induction is performed simultaneously on both variables (induction $n \mathrm{~m}$ rule: gen_list.induct)
- after activating simp rules locally, proof is automatic thanks to suitable shape of computation induction rule
 (note that IH is only accessible if we are in the correct if-then-else branch)

Attributes

Some Useful Attributes

－of－instantiation of schematic variables（by position from left to right） （？ $\mathrm{x}=$ ？ $\mathrm{y} \Longrightarrow$ ？ $\mathrm{y}=$ ？ $\mathrm{z} \Longrightarrow$ ？ $\mathrm{x}=$ ？ z 〉［of $-5 \mathrm{x}] \mathrm{m}$〈？ $\mathrm{x}=5 \Longrightarrow 5=\mathrm{x} \Longrightarrow$ ？ $\mathrm{x}=\mathrm{x}$ 〉
－where－instantiation of schematic variables（by name） $\langle ? x=? y \Longrightarrow$ ？y $=? z \Longrightarrow$ ？x $=? z$［where $y=5$ and $z=x] m$〈 $? \mathrm{x}=5 \Longrightarrow 5=\mathrm{x} \Longrightarrow ? \mathrm{x}=\mathrm{x}$ 〉
－ OF －discharge assumptions using existing facts（by position）

－symmetric－get symmetric version of equation
$\langle ? \mathrm{P} \Longrightarrow$ ？a＝？ b\rangle［symmetric］$\rightsquigarrow\langle ? \mathrm{P} \Longrightarrow$ ？b＝？a〉
－rule＿format－replace HOL connectives by Pure connectives〈 $\forall \mathrm{x}$ ．？P $\mathrm{x} \longrightarrow$ ？Q〉［rule＿format］m 〈？P ？ $\mathrm{x} \Longrightarrow$ ？Q〉
－simplified－view result after simplification，e．g．， case（Cons x xs）thm Cons．IH［simplified］
－combined example：〈 $\forall \mathrm{x} . \mathrm{A} \mathrm{x} \longrightarrow \mathrm{B}$ x〉［rule＿format，of 5］$m\langle A 5 \Longrightarrow B$ 5〉
－these changes are usually made to help the automation
－instantiate variables
－choice of existential witness or of universal elimination
－non－terminating simp rules
－discharge assumptions
－obtain an equation in the other direction
－syntax：fact $\left[\right.$ attr $_{1}, \ldots$, attr $\left._{n}\right]$
（1）

Attributes

－attributes can be used to change a fact

Demo
soundness of quicksort (covers computation induction, termination proof, attributes)

