

Summer Term 2023

Outline

UNIVERSITAS LEOPOLDINO - FRANCISCEA

Function Definitions Revisited

Interactive Theorem Proving using Isabelle/HOL

Session 5

René Thiemann

Department of Computer Science

- Function Definitions Revisited
- Manual Termination Proofs
- Attributes

RT (DCS @ UIBK)

2/21

Function Definitions Revisited

Overlapping Equations

- when declaring a new function via fun, the equations may be overlapping
- internally, the equations are preprocessed to become non-overlapping; patterns are instantiated on demand
- effect of preprocessing becomes visible in various places, e.g., the simplification rules

session 5

Example

fun drop_last :: "'a list ⇒ 'a list" where
 "drop_last (x # y # ys) = x # drop_last (y # ys)"
 | "drop_last xs = []"
is translated into function without overlap, which then determines simp rules
fun drop_last :: "'a list ⇒ 'a list" where
 "drop_last (x # y # ys) = x # drop_last (y # ys)"
 | "drop_last [] = []"
 | "drop_last [v] = []"

Function Definitions Revisited

Underspecification

- fun accepts function definitions where not all of the cases have been covered fun head1 where "head1 (x # xs) = x"
- case expressions do not enforce that all cases are covered fun head2 where "head2 xs = (case xs of x # \rightarrow x)"
- however, HOL is a logic of total functions; what is the value of head1 [] or head2 []?
- to model underspecification, Isabelle/HOL has a special constant undefined :: 'a
- undefined :: 'a is an ordinary value of type 'a and not some kind of error
 - undefined :: nat is a natural number (but we don't know which one)
 - undefined :: bool is either True or False (but we don't know the alternative)
- undefined is used to fill in missing cases during preprocessing
 - "head1 [] = undefined"
 - "head2 xs = (case xs of x # \rightarrow x | [] \Rightarrow undefined)"
- the missing cases are usually not revealed to the user, e.g., head1.simps only consists of original equation

RT (DCS @ UIBK

session 5

Function Definitions Revisited

Computation Induction

• consider again fun drop_last :: "'a list \Rightarrow 'a list" where "drop_last (x # y # ys) = x # drop_last (y # ys)" | "drop last [] = []" | "drop last [v] = []"

• aim: prove lemma "length (drop_last xs) = length xs - 1"

- "natural" induction scheme (computation induction) follows structure of algorithm
 - consider all cases of function, i.e., x # y # ys, [] and [v] for drop_last
 - provide IH for recursive calls, i.e., for y # ys in first case of drop_last
 - computation induction is sound, since termination has been proven by fun
 - computation induction rule is automatically generated by fun, e.g., drop last, induct is:

 $(\land x y ys. P (y \# ys) \Longrightarrow P (x \# y \# ys)) \Longrightarrow P [] \Longrightarrow (\land v. P [v])$ \implies P xs

- induction-method can use custom induction rule via rule: induct thm lemma ... by (induction xs rule: drop_last.induct) auto
- case names when using computation induction are just numbers (1, 2, ...)

```
RT (DCS @ UIBK)
5/21
```

session 5

6/21

Computation Induction and Underspecification

- computation induction considers all cases of function
- what if function is underspecified?
- example

fun head where "head (x # xs) = x"

• potential computation induction rule is incorrect

$$(\bigwedge x xs. P (x \# xs)) \implies P xs$$

• obviously, also the missing cases have to covered, these become visible in induction rule thm head.induct: $(\land x xs. P (x \# xs)) \implies P [] \implies P xs$

Manual Termination Proofs

Failing Termination Proofs

• consider Isabelle functions fun gen_list :: "nat ⇒ nat ⇒ nat list" where (* gen_list n m = [n .. m] *) "gen_list n m = (if n ≤ m then n # gen_list (Suc n) m else [])" fun split :: "_ ⇒ _ list ⇒ _ list × _ list" where ... fun qsort :: "'a :: linorder list ⇒ 'a list" where "qsort [] = []" | "qsort (x # xs) = (case split x xs of (low, high) ⇒ qsort low @ [x] @ qsort high)"

- problem: fun fails for qsort and gen_list, since it cannot find termination proof
- there are several reasons why a termination proof cannot be found
 - 1. the internal heuristic is too weak (here: neither n nor m decrease in gen_list)
 - 2. the heuristic is able to find the right terminating argument, but auxiliary facts are missing (here: splitting a list into low and high does not increase the length)
 - 3. in case of higher-order recursion unprovable termination conditions might be generated
 - 4. the function does not terminate
- solution in cases 1 3: perform termination proofs manually

```
RT (DCS @ UIBK)
```

```
session 5
```

```
9/21
```

Manual Termination Proofs

Manual Termination Proofs

```
The function Command
```

- via function one can separate a function definition from its termination proof
- outer syntax:

function (sequential)? name :: ty where eqns $\langle proof \rangle$ termination $\langle proof \rangle$

function gen_list :: "nat \Rightarrow nat \Rightarrow nat list" where

2. $\wedge n m$. $n \leq m \implies ((Suc n, m), (n, m)) \in ?R$

1. \land n m. n \leq m \Longrightarrow Suc m - Suc n < Suc m - n

- explanations
 - in the proof after function one has to show that all cases have been covered and that no conflicting results may occur in case of overlapping equations
 - for underspecified or overlapping equations, use (sequential) to trigger preprocessing
 - then resulting proof is always the same: by pat_completeness auto
 - only after successful termination proof, simp rules and induction scheme become available
- fun is just a wrapper around function:

fun name where eqns

Example Termination Proof

termination

1. wf ?R

proof

oops

RT (DCS @ UIBK)

by pat_completeness auto

the goal is equivalent to: *)

is the same as

function (sequential) name where eqns by pat_completeness auto termination by lexicographic_order

9/21 RT (DCS @ UIBK)

```
session 5
```

"gen_list n m = (if $n \le m$ then n # gen_list (Suc n) m else [])"

termination by (relation "measure (λ (n,m). Suc m - n)") auto

(* after relation command and discharging trivial wf-requirement,

10/21

Manual Termination Proof

Manual Termination Proofs

- termination proofs of function **f** are usually of the following shape
 - provide a well-founded relation <
 - show args_rec < args_lhs for each equation f args_lhs = ... f args_rec ..., taking into account if-then-else and case-expressions in the context indicated by
 - if **f** has multiple arguments, then these are automatically converted into tuples
- termination proofs are started in Isabelle via
 - the standard proof method (where the relation becomes a schematic variable)
 - or via the method relation less_than where the relation is directly fixed
- important well-founded relations are

```
• measure (m :: _ \Rightarrow nat)
```

- compare elements by mapping them to natural numbers
- examples for m
- length, count :: tree \Rightarrow nat, height :: tree \Rightarrow nat, id :: nat \Rightarrow nat
- measures (ms :: (_ \Rightarrow nat) list)
 - lexicographic combination of multiple measures from left to right
 - $\ensuremath{\,^\circ}$ this is what is internally used by method <code>lexicographic_order</code>
- well-foundedness of both measure m and measures ms is by simp

Manual Termination Proofs

Manual Termination Proofs

• simp lemmas that are particularly useful for termination proofs can be stored in a **Example Termination Proof** dedicated simpset: termination_simp function gsort :: "'a :: linorder list \Rightarrow 'a list" where method lexicographic_order in particular tries to finish termination proof "qsort [] = []" obligations by auto simp: termination_simp | "qsort (x # xs) = (case split x xs of • having adjusted this simpset accordingly, proofs might become automatic again $(low, high) \Rightarrow qsort low @ [x] @ qsort high)"$ An Automatic Termination Proof for Quicksort by pat_completeness auto (* show that split is just two applications of filter; advantage: many facts about filter are already known *) termination lemma split: "split a xs = (filter (λ x. x \leq a) xs, filter (λ x. \neg x \leq a) xs)" proof (relation "measure length") by (induction xs) auto (* after simplification, the goals are: *) 1. \land ... (low, high) = split x xs \implies length low < Suc (length xs) declare split[termination_simp] 2. \bigwedge ... (low, high) = split x xs \implies length high < Suc (length xs) fun qsort :: "'a :: linorder list \Rightarrow 'a list" where "gsort [] = []" | "gsort (x # xs) = (case split x xs of $(low, high) \Rightarrow qsort low @ [x] @ qsort high)"$ RT (DCS @ UIBK) session 5 13/21 RT (DCS @ UIBK) session 5

Termination versus Termination	nual Termination Proofs
• two notions of termination	
1. function definitions require termination proof	
2. application of simp rules should terminate	
• 1 does not imply 2!	
 reason: evaluation strategy of if-then-else is ignored by simplifier example: lhs of gen_list.simps is always applicable and introduces recursive 	e call
gen_list ?n ?m = (if ?n \leq ?m then ?n # gen_list (Suc ?n) ?m	else [])
• in these cases it is advisable to	
 globally delete simp rules from simpset 	
<pre>declare gen_list.simps[simp del]</pre>	
 locally add simp rules in proof for specific arguments via attribute of 	
case (1 n m)	
<pre>note [simp] = gen_list.simps[of n m]</pre>	
(* instantiated simp rule *) gen_list n m = (if $n \le m$ then n # gen_list (Suc n) m else [])	
	(

Example Proof

declare gen_list.simps[simp del]

A Simpset for Termination Proofs

```
lemma "length (gen_list n m) = Suc m - n"
proof (induction n m rule: gen_list.induct)
    case (1 n m)
    note [simp] = gen_list.simps[of n m]
    from 1 show ?case by auto
```

qed

RT (DCS @ UIBK)

- since gen_list takes two arguments, induction is performed simultaneously on both variables (induction n m rule: gen_list.induct)
- after activating simp rules locally, proof is automatic thanks to suitable shape of computation induction rule

 $(\wedge n m. (n \le m \implies P (Suc n) m) \implies P n m) \implies P x y$

(note that IH is only accessible if we are in the correct if-then-else branch)

14/21

Manual Termination Proof

Attributes

- attributes can be used to change a fact
- these changes are usually made to help the automation
 - instantiate variables
 - · choice of existential witness or of universal elimination
 - non-terminating simp rules
 - discharge assumptions
 - obtain an equation in the other direction

```
• syntax: fact [attr<sub>1</sub>, ..., attr<sub>n</sub>]
```

RT (DCS @ UIBK)

session 5

Attributes

18/21

Some Useful Attributes

- of instantiation of schematic variables (by position from left to right)
 (?x = ?y ⇒ ?y = ?z ⇒ ?x = ?z) [of _ 5 x] →
 (?x = 5 ⇒ 5 = x ⇒ ?x = x)
- where instantiation of schematic variables (by name)
 (?x = ?y ⇒ ?y = ?z ⇒ ?x = ?z) [where y = 5 and z = x] →
 (?x = 5 ⇒ 5 = x ⇒ ?x = x)

Attributes

- OF discharge assumptions using existing facts (by position) $(?P \longrightarrow ?Q \implies ?P \implies ?Q)$ [OF $(A \longrightarrow B x)$] $\rightsquigarrow (A \implies B x)$
- symmetric get symmetric version of equation
 (?P ⇒ ?a = ?b) [symmetric] → (?P ⇒ ?b = ?a)
- rule_format replace HOL connectives by Pure connectives $\langle \forall x. ?P \ x \longrightarrow ?Q \rangle$ [rule_format] $\rightsquigarrow \langle ?P \ ?x \implies ?Q \rangle$
- simplified view result after simplification, e.g., case (Cons x xs) thm Cons.IH[simplified]
- combined example: $\langle \forall x. A \ x \longrightarrow B \ x \rangle$ [rule_format, of 5] $\rightsquigarrow \langle A \ 5 \implies B \ 5 \rangle$

Attributes

Attributes versus Isar-Style

- most of the attributes can easily be simulated by standard Isar proofs
- example

RT (DCS @ UIBK)

- instead of writing from Cons.IH(2)[of 3] other_fact show ?case by auto
- one could also write
 - from Cons.IH
 - have ((* spelled out version of second IH with value 3 inserted *))
 by auto
 - with other_fact show ?case by auto
- advantage of attributes: generate required facts on the fly, without having to type a (large) statement
- advantage of Isar style: proof is more readable without looking at Isabelle output

Demo

soundness of quicksort (covers computation induction, termination proof, attributes)

RT (DCS @ UIBK)

session 5

21/21