

Interactive Theorem Proving using Isabelle/HOL

Session 7

René Thiemann

Department of Computer Science

Outline

- Inductive Definitions
- Rule Inversion and Rule Induction
- Sets in Isabelle
- Example: Binary Search Trees

Inductive Definitions

Definition Principles so Far

- definition
 - non-recursive definitions
 - no pattern matching on left-hand sides, form:
 - no simp-rules, but obtain defining equation:

• fun or function

- recursive functions definitions including pattern matching on lhss
- functions have to be terminating
- obtain simp-rules and induction scheme

 $f x_1 \dots x_n = rhs$ $f_def: f x_1 \dots x_n = rhs$

Purpose of Definition

- definition is the most primitive definition principle
- definition can be used formalize certain concepts
- after having derived interface-lemmas to concept, one might hide internal definition (in particular the defining equation is by default not added to simpset)
- many higher-level definition principles internally are based on definition
 - example: function uses some internal definitions which are hidden to user (demo)

Example: Injectivity

definition injective :: "('a \Rightarrow 'b) \Rightarrow bool" where "injective f = ($\forall x \ y. f \ x = f \ y \longrightarrow x = y$)"

lemma injectiveI: "($\bigwedge x y$. f x = f y \implies x = y) \implies injective f" unfolding injective_def by auto

Limits of definition and function

- restriction of definition and function: no capability to conveniently model potentially non-terminating processes
- consider datatype prog, modelling simple programming language with while-loops
- aim: define eval function, e.g., of type prog ⇒ state ⇒ state option, that returns state after complete evaluation of program or fails
- attempt 1: define eval via function
 - not possible, since termination is not provable (some programs are non-terminating)
- attempt 2: fuel-based approach (introduce some bounded resource to ensure termination)
 - first define eval_b :: nat ⇒ prog ⇒ state ⇒ state option, a bounded version of eval that restricts the number of loop-iterations
 - eval_b can be defined via fun
 - eval p s = (if ∃ n. eval_b n p s ≠ None then eval_b (SOME n. eval_b n p s ≠ None) p s else None)
 - reasoning with this fuel-based-approach is at least tedious

Solution: Inductive Predicates

model eval as inductive predicate of type prog \Rightarrow state \Rightarrow state \Rightarrow bool that correspond to standard inference rules of a big-step semantics

 $\frac{c \text{ is not satisfied in } s}{(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} s} (while \ false)} (while \ c \ P) \ t \stackrel{eval}{\hookrightarrow} s (while \ c \ P) \ t \stackrel{eval}{\hookrightarrow} u (while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} u$ $(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} u$ \vdots

(further rules for assignment, sequential composition, etc.)

Demo

modeling programming language semantics

Inductive Predicates in More Detail

- constant P :: $a_1 \Rightarrow \dots \Rightarrow a_n \Rightarrow$ bool is *n*-ary predicate
- inductive predicate P is inductively defined, that is, by inference rules
- meaning: input satisfies P iff witnessed by arbitrary (finite) application of inference rules
- syntax

inductive P :: " $a_1 \Rightarrow \dots \Rightarrow a_n \Rightarrow bool$ " where ... followed by |-separated list of propositions (inference rules)

generated facts

P.intros	inference rules
P.cases	case analysis (rule inversion)
P.induct	induction (rule induction)
P.simps	equational definition

Odd Numbers, Inductively

- textual description
 - 1 is odd
 - if *n* is odd, then also n + 2 is odd
- inference rules

	n odd
1 odd	n+2 odd

 inductive is_odd :: "nat ⇒ bool" where "is_odd 1"
 | "is odd n ⇒ is odd (n + 2)" Special Case – Inductively Defined Sets

- given set *S*, let χ_S be characteristic function such that $\chi_S(x)$ is true iff $x \in S$
- characteristic function is obviously predicate
- inductive sets are common special case and come with special syntax inductive_set S :: "'a₁ \Rightarrow ... 'a_n \Rightarrow 'a set" for c₁ ... c_n where

Example – Reflexive Transitive Closure

- (binary) relations encoded by type ('a \times 'b) set
- given relation *R*, reflexive transitive closure, often written R^* , given by $(x, y) \in R^*$ iff $x R x_1 R x_2 R \cdots R x_n R y$ for arbitrary x_1, x_2, \ldots, x_n (think: path in graph)
- inductive_set star :: "('a \times 'a) set \Rightarrow ('a \times 'a) set" for R where

refl [simp]: "(x, x) \in star R"

 $| \text{ step: } "(x, y) \in R \implies (y, z) \in \text{ star } R \implies (x, z) \in \text{ star } R"$

• remark: one can label individual inference rules; these names will then be used for case-analyses, inductions, and as names of introduction rules (star.step)

Rule Inversion and Rule Induction

Rule Inversion

- reasoning backwards "which rule could have been used to derive some fact"
- case analysis according to inference rules
- if inductive predicate/set is first of current facts, cases applies rule inversion implicitly
- otherwise, use "cases rule: c.cases" for inductively defined constant c

Demo – Zero is Not Odd

```
lemma is_odd0: "is_odd 0 = False" sorry
```

Rule Induction

- induction according to inference rules
- if inductive predicate/set is first of current facts, induction applies rule induction implicitly
- otherwise, use "induction rule: c.induct" for inductively defined constant c
- case names are taken from names of inference rules (if any, otherwise numbered)

Demo – If Number is Odd it's Odd

- lemma is_odd_odd: assumes "is_odd x" shows "odd x" sorry
- remarks
 - odd \mathbf{x} is just an abbreviation of \mathbf{x} not being divisible by 2
 - in lemma-command one can explicitly assume facts (assumes) which are accessible by implicit label assms, before the goal statement is written after shows
 - further examples on assumes and shows are provided in lemmas is_odd_odd3 and star_trans1 in the demo theory

Demo – Reflexive Transitive Closure is Transitive

```
    lemma star_trans:
assumes "(x, y) ∈ star R" and "(y, z) ∈ star R
shows "(x, z) ∈ star R"
    sorry
```

More Information on Inductive Definitions

```
isabelle doc isar-ref
```

(chapter 11.1)

Sets in Isabelle

Sets in Isabelle

• type ''a set' for sets with elements of type 'a

Set Basics

- $\mathbf{x} \in \mathbf{A}$ membership
- $A \cap B$ intersection
- $A \cup B$ union
- -A complement
- A B difference
- $A \subseteq B$ and $A \subset B$ subset
- {} empty set
- UNIV universal set (all elements of specific type)
- {x} singleton set
- insert x A insertion of single elements (insert x A = $\{x\} \cup A$)
- **f** ` A image of function with respect to set ("map **f** over elements of A")

Demo – Example Proof

```
lemma "A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)"
```

No New Primitives Required

- several of the basic set operations could be defined inductively
- examples

```
inductive set intersection :: "'a set \Rightarrow 'a set \Rightarrow 'a set" for A B where
  "x \in A \implies x \in B \implies x \in intersection A B"
inductive_set disjunction :: "'a set \Rightarrow 'a set "a set" for A B where
  "x \in A \implies x \in disjunction A B"
| "x \in B \implies x \in disjunction A B"
inductive_set empty :: "'a set"
inductive_set Univ :: "'a set" where
  "x \in Univ"
```

Further Operations on Sets

- set convert list to set
- Collect p convert predicate p :: 'a \Rightarrow bool to set of type 'a set
- finite A is set finite?
- card A :: nat cardinality of set
- sum f A $\sum_{x \in A} f(x)$
- prod f A similar to sum, just product
- Ball A p do all elements of A satisfy predicate p?
- Bex A p does some element of A satisfy predicate p?
- $\{x : ... y\}$ all elements between x and y

Syntax for Set Comprehension

- {x . p x} same as Collect p
- {t | x y. p x y} same as {z. \exists x y. t = $z \land p$ x y}
- example: { (x + 5, y) | x y. x < 7 \land odd y }

(note: card A = 0 whenever A is infinite) (note: sum f A = 0 whenever A is infinite) **Example: Binary Search Trees**

Demo: formalize binary search trees