
Summer Term 2023

Interactive Theorem Proving using Isabelle/HOL
Session 7

René Thiemann

Department of Computer Science

Outline

• Inductive Definitions

• Rule Inversion and Rule Induction

• Sets in Isabelle

• Example: Binary Search Trees

RT (DCS @ UIBK) session 7 2/20

Inductive Definitions

Inductive Definitions

Definition Principles so Far
• definition
• non-recursive definitions
• no pattern matching on left-hand sides, form: f x1 . . . xn = rhs
• no simp-rules, but obtain defining equation: f _de f : f x1 . . . xn = rhs

• fun or function
• recursive functions definitions including pattern matching on lhss
• functions have to be terminating
• obtain simp-rules and induction scheme

RT (DCS @ UIBK) session 7 4/20

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Inductive Definitions
Purpose of Definition

• definition is the most primitive definition principle
• definition can be used formalize certain concepts
• after having derived interface-lemmas to concept, one might hide internal definition

(in particular the defining equation is by default not added to simpset)
• many higher-level definition principles internally are based on definition
• example: function uses some internal definitions which are hidden to user (demo)

Example: Injectivity

definition injective :: "('a ⇒ 'b) ⇒ bool" where
"injective f = (∀x y. f x = f y −→ x = y)"

lemma injectiveI: "(
∧

x y. f x = f y =⇒ x = y) =⇒ injective f"
unfolding injective_def by auto

lemma injectiveD: "injective f =⇒ f x = f y =⇒ x = y"
unfolding injective_def by auto (* hide injective_def at this point *)

RT (DCS @ UIBK) session 7 5/20

Inductive Definitions
Limits of definition and function
• restriction of definition and function: no capability to conveniently model

potentially non-terminating processes
• consider datatype prog, modelling simple programming language with while-loops
• aim: define eval function, e.g., of type prog ⇒ state ⇒ state option,

that returns state after complete evaluation of program or fails
• attempt 1: define eval via function
• not possible, since termination is not provable (some programs are non-terminating)

• attempt 2: fuel-based approach
(introduce some bounded resource to ensure termination)
• first define eval_b :: nat ⇒ prog ⇒ state ⇒ state option,

a bounded version of eval that restricts the number of loop-iterations
• eval_b can be defined via fun
• eval p s = (if ∃ n. eval_b n p s ̸= None

then eval_b (SOME n. eval_b n p s ̸= None) p s
else None)

• reasoning with this fuel-based-approach is at least tedious

RT (DCS @ UIBK) session 7 6/20

Inductive Definitions

Solution: Inductive Predicates

model eval as inductive predicate of type prog ⇒ state ⇒ state ⇒ bool that
correspond to standard inference rules of a big-step semantics

c is not satisfied in s

(while c P) s
eval
,→ s

(while-false)

c is satisfied in s P s
eval
,→ t (while c P) t

eval
,→ u

(while c P) s
eval
,→ u

(while-true)

...

(further rules for assignment, sequential composition, etc.)

Demo

modeling programming language semantics

RT (DCS @ UIBK) session 7 7/20

Inductive Definitions

Inductive Predicates in More Detail
• constant P :: 'a 1 ⇒ . . . ⇒ 'a n ⇒ bool is n-ary predicate
• inductive predicate P is inductively defined, that is, by inference rules
• meaning: input satisfies P iff witnessed by arbitrary (finite) application of inference rules
• syntax
inductive P :: "'a 1 ⇒ . . . ⇒ 'a n ⇒ bool" where . . .
followed by |-separated list of propositions (inference rules)
• generated facts

P.intros inference rules
P.cases case analysis (rule inversion)
P.induct induction (rule induction)
P.simps equational definition

RT (DCS @ UIBK) session 7 8/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Inductive Definitions

Odd Numbers, Inductively

• textual description
• 1 is odd
• if n is odd, then also n+ 2 is odd

• inference rules

1 odd

n odd

n+ 2 odd

• inductive is_odd :: "nat ⇒ bool"
where

"is_odd 1"
| "is_odd n =⇒ is_odd (n + 2)"

RT (DCS @ UIBK) session 7 9/20

Inductive Definitions
Special Case – Inductively Defined Sets
• given set S, let χS be characteristic function such that χS(x) is true iff x ∈ S
• characteristic function is obviously predicate
• inductive sets are common special case and come with special syntax
inductive_set S :: "'a 1 ⇒ . . . 'a n ⇒ 'a set" for c1 . . . c n where

Example – Reflexive Transitive Closure

• (binary) relations encoded by type ('a × 'b) set
• given relation R, reflexive transitive closure, often written R∗, given by (x , y) ∈ R∗ iff

x R x1 R x2 R · · · R xn R y for arbitrary x1, x2, . . . , xn (think: path in graph)
• inductive_set star :: "('a × 'a) set ⇒ ('a × 'a) set" for R

where
refl [simp]: "(x, x) ∈ star R"

| step: "(x, y) ∈ R =⇒ (y, z) ∈ star R =⇒ (x, z) ∈ star R"
• remark: one can label individual inference rules; these names will then be used for

case-analyses, inductions, and as names of introduction rules (star.step)
RT (DCS @ UIBK) session 7 10/20

Rule Inversion and Rule Induction

Rule Inversion and Rule Induction

Rule Inversion

• reasoning backwards “which rule could have been used to derive some fact”
• case analysis according to inference rules
• if inductive predicate/set is first of current facts, cases applies rule inversion implicitly
• otherwise, use “cases rule: c.cases” for inductively defined constant c

Demo – Zero is Not Odd

lemma is_odd0: "is_odd 0 = False" sorry

RT (DCS @ UIBK) session 7 12/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Rule Inversion and Rule Induction

Rule Induction

• induction according to inference rules
• if inductive predicate/set is first of current facts, induction applies rule induction

implicitly
• otherwise, use “induction rule: c.induct” for inductively defined constant c
• case names are taken from names of inference rules (if any, otherwise numbered)

Demo – If Number is Odd it’s Odd

• lemma is_odd_odd: assumes "is_odd x" shows "odd x" sorry
• remarks
• odd x is just an abbreviation of x not being divisible by 2
• in lemma-command one can explicitly assume facts (assumes) which are accessible by

implicit label assms, before the goal statement is written after shows
• further examples on assumes and shows are provided in lemmas is_odd_odd3 and
star_trans1 in the demo theory

RT (DCS @ UIBK) session 7 13/20

Rule Inversion and Rule Induction

Demo – Reflexive Transitive Closure is Transitive

• lemma star_trans:
assumes "(x, y) ∈ star R" and "(y, z) ∈ star R
shows "(x, z) ∈ star R"
sorry

More Information on Inductive Definitions

isabelle doc isar-ref (chapter 11.1)

RT (DCS @ UIBK) session 7 14/20

Sets in Isabelle

Sets in Isabelle
Sets in Isabelle
• type ‘'a set’ for sets with elements of type 'a

Set Basics
• x ∈ A – membership
• A ∩ B – intersection
• A ∪ B – union
• -A – complement
• A - B – difference
• A ⊆ B and A ⊂ B – subset
• {} – empty set
• UNIV – universal set (all elements of specific type)
• {x} – singleton set
• insert x A – insertion of single elements (insert x A = {x} ∪ A)
• f ` A – image of function with respect to set (“map f over elements of A”)

RT (DCS @ UIBK) session 7 16/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Sets in Isabelle
Demo – Example Proof

lemma "A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C)"

No New Primitives Required
• several of the basic set operations could be defined inductively
• examples

inductive_set intersection :: "'a set ⇒ 'a set ⇒ 'a set" for A B where
"x ∈ A =⇒ x ∈ B =⇒ x ∈ intersection A B"

inductive_set disjunction :: "'a set ⇒ 'a set ⇒ 'a set" for A B where
"x ∈ A =⇒ x ∈ disjunction A B"

| "x ∈ B =⇒ x ∈ disjunction A B"

inductive_set empty :: "'a set"

inductive_set Univ :: "'a set" where
"x ∈ Univ"

RT (DCS @ UIBK) session 7 17/20

Sets in Isabelle
Further Operations on Sets
• set – convert list to set
• Collect p – convert predicate p :: 'a ⇒ bool to set of type 'a set
• finite A – is set finite?
• card A :: nat – cardinality of set (note: card A = 0 whenever A is infinite)
• sum f A –
∑

x∈A f (x) (note: sum f A = 0 whenever A is infinite)
• prod f A – similar to sum, just product
• Ball A p – do all elements of A satisfy predicate p?
• Bex A p – does some element of A satisfy predicate p?
• {x .. y} – all elements between x and y

Syntax for Set Comprehension
• {x . p x} – same as Collect p
• {t | x y. p x y} – same as {z. ∃ x y. t = z ∧ p x y}
• example: { (x + 5, y) | x y. x < 7 ∧ odd y }

RT (DCS @ UIBK) session 7 18/20

Example: Binary Search Trees

Example: Binary Search Trees

Demo: formalize binary search trees

RT (DCS @ UIBK) session 7 20/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Inductive Definitions
	Rule Inversion and Rule Induction
	Sets in Isabelle
	Example: Binary Search Trees

