

Summer Term 2023

Outline

Inductive Definitions

Interactive Theorem Proving using Isabelle/HOL

Session 7

René Thiemann

Department of Computer Science

- Inductive Definitions
- Rule Inversion and Rule Induction
- Sets in Isabelle
- Example: Binary Search Trees

RT (DCS @ UIBK)

session 7

2/20

Inductive Definitions

 $f x_1 \dots x_n = rhs$ $f_def: f x_1 \dots x_n = rhs$

- Definition Principles so Far
 - definition
 - non-recursive definitions
 - no pattern matching on left-hand sides, form:
 - no simp-rules, but obtain defining equation:
 - fun or function
 - recursive functions definitions including pattern matching on lhss
 - functions have to be terminating
 - obtain simp-rules and induction scheme

Purpose of Definition

- definition is the most primitive definition principle
- definition can be used formalize certain concepts
- after having derived interface-lemmas to concept, one might hide internal definition (in particular the defining equation is by default not added to simpset)
- many higher-level definition principles internally are based on definition
 - example: function uses some internal definitions which are hidden to user (demo)

Example: Injectivity

- definition injective :: "('a \Rightarrow 'b) \Rightarrow bool" where "injective $f = (\forall x \ y. \ f \ x = f \ y \longrightarrow x = y)$ "
- lemma injectiveI: "(\land x y. f x = f y \implies x = y) \implies injective f" unfolding injective_def by auto

lemma injectiveD: "injective $f \implies f x = f y \implies x = y$ " unfolding injective_def by auto (* hide injective_def at this point *)

Limits of definition and function

- restriction of definition and function: no capability to conveniently model potentially non-terminating processes
- consider datatype prog, modelling simple programming language with while-loops
- aim: define eval function, e.g., of type prog \Rightarrow state \Rightarrow state option, that returns state after complete evaluation of program or fails
- attempt 1: define eval via function
 - not possible, since termination is not provable (some programs are non-terminating)
- attempt 2: fuel-based approach

(introduce some bounded resource to ensure termination)

- first define eval_b :: nat \Rightarrow prog \Rightarrow state \Rightarrow state option, a bounded version of eval that restricts the number of loop-iterations • eval_b can be defined via fun
- eval $p = (if \exists n. eval_b n p \le \neq None$ then eval_b (SOME n. eval_b n p s \neq None) p s else None)
- reasoning with this fuel-based-approach is at least tedious

```
RT (DCS @ UIBK)
                                                                        session 7
                                                                                                                                                     5/20
                                                                                                                                                                   RT (DCS @ UIBK)
                                                                                                                                                                                                                                            session 7
                                                                                                                                                                                                                                                                                                                        6/20
```

Solution: Inductive Predicates

Inductive Definition:

Inductive Definitions

model eval as inductive predicate of type prog \Rightarrow state \Rightarrow state \Rightarrow bool that correspond to standard inference rules of a big-step semantics

$$\frac{c \text{ is not satisfied in } s}{(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} s} \text{ (while-false)}$$

$$\frac{c \text{ is satisfied in } s \quad P \ s \stackrel{eval}{\hookrightarrow} t \quad (while \ c \ P) \ t \stackrel{eval}{\hookrightarrow} u}{(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} u} \text{ (while-true)}$$

(further rules for assignment, sequential composition, etc.)

session 7

Demo

RT (DCS @ UIBK)

modeling programming language semantics

Inductive Predicates in More Detail

- constant P :: $a_1 \Rightarrow \dots \Rightarrow a_n \Rightarrow$ bool is *n*-ary predicate
- inductive predicate P is inductively defined, that is, by inference rules
- meaning: input satisfies P iff witnessed by arbitrary (finite) application of inference rules
- syntax

inductive P :: "'a₁ \Rightarrow ... \Rightarrow 'a_n \Rightarrow bool" where ... followed by |-separated list of propositions (inference rules)

generated facts

P.intros	inference rules
P.cases	case analysis (rule inversion)
P.induct	induction (rule induction)
P.simps	equational definition

Inductive Definitions

<pre>Odd Numbers, Inductively • textual description • 1 is odd • if n is odd, then also n + 2 is od • inference rules • inductive is_odd :: "nat where "is_odd 1" "is_odd n ⇒ is_odd</pre>	dd $\frac{n \text{ odd}}{1 \text{ odd}} = \frac{n \text{ odd}}{n+2 \text{ odd}}$ $\Rightarrow \text{ bool"}$ (n + 2)"	Inductive Definitions	<pre>Special Case - In given set S, let characteristic f inductive sets a inductive_s Example - Reflex (binary) relation x R x₁ R x₂ R · inductive_s where refl [s step: " remark: one ca</pre>	ductively Defined Sets χ_S be characteristic function such that $\chi_S(x)$ is true iff $x \in S$ unction is obviously predicate are common special case and come with special syntax set $S :: "'a_1 \Rightarrow \dots 'a_n \Rightarrow 'a \text{ set" for } c_1 \dots c_n \text{ wh}$ ive Transitive Closure ons encoded by type ('a × 'b) set R, reflexive transitive closure, often written R^* , given by $(x, y) \in R^*$ $x \cdot R x_n R y$ for arbitrary x_1, x_2, \dots, x_n (think: path in graph) set star :: "('a × 'a) set \Rightarrow ('a × 'a) set" for F imp]: "(x, x) \in star R" (x, y) $\in R \implies (y, z) \in$ star R \implies (x, z) \in star R' n label individual inference rules: these names will then be used for	.ere iff
RT (DCS @ UIBK) session 7		9/20	 remark: one ca case-analyses, RT (DCS @ UIBK) 	n label individual inference rules; these names will then be used for inductions, and as names of introduction rules (star.step) session 7)r 10/20

Rule Inversion and Rule Induction

Rule Inversion

- reasoning backwards "which rule could have been used to derive some fact"
- case analysis according to inference rules
- if inductive predicate/set is first of current facts, cases applies rule inversion implicitly
- otherwise, use "cases rule: c.cases" for inductively defined constant c

Demo – Zero is Not Odd

lemma is_odd0: "is_odd 0 = False" sorry

Rule Inversion and Rule Induction

Rule Induction

- induction according to inference rules
- if inductive predicate/set is first of current facts, induction applies rule induction implicitly
- otherwise, use "induction rule: c.induct" for inductively defined constant c
- case names are taken from names of inference rules (if any, otherwise numbered)

Demo – If Number is Odd it's Odd

- lemma is_odd_odd: assumes "is_odd x" shows "odd x" sorry
- remarks
 - odd x is just an abbreviation of x not being divisible by 2
 - in lemma-command one can explicitly assume facts (assumes) which are accessible by implicit label assms, before the goal statement is written after shows
 - further examples on assumes and shows are provided in lemmas is_odd_odd3 and star_trans1 in the demo theory

```
RT (DCS @ UIBK)
```

```
session 7
```

```
Demo - Reflexive Transitive Closure is Transitive
```

```
    lemma star_trans:
assumes "(x, y) ∈ star R" and "(y, z) ∈ star R
shows "(x, z) ∈ star R"
sorry
```

More Information on Inductive Definitions

(chapter 11.1)

14/20

Sets in Isabelle

7 13/20 RT (DCS @ UIBK) session 7

Sets in Isabelle

Sets in Isabelle

type 'a set' for sets with elements of type 'a

Set Basics

• $x \in A$ – membership

- $A \cap B$ intersection
- $A \cup B$ union
- - A complement
- A B difference
- $A \subseteq B$ and $A \subset B$ subset
- {} empty set
- UNIV universal set (all elements of specific type)
- {x} singleton set
- insert x A insertion of single elements (insert x A = $\{x\} \cup A$)
- **f** A image of function with respect to set ("map **f** over elements of **A**")

Sets in Isabelle Sets in Isabelle **Demo – Example Proof Further Operations on Sets** • set - convert list to set lemma "A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)" • Collect p - convert predicate p :: 'a \Rightarrow bool to set of type 'a set No New Primitives Required • finite A – is set finite? • several of the basic set operations could be defined inductively • card A :: nat - cardinality of set (note: card A = 0 whenever A is infinite) examples • sum f A – $\sum_{x \in A} f(x)$ (note: sum f A = 0 whenever A is infinite) • prod f A – similar to sum, just product inductive_set intersection :: "'a set \Rightarrow 'a set \Rightarrow 'a set" for A B where " $x \in A \implies x \in B \implies x \in$ intersection A B" • Ball A p – do all elements of A satisfy predicate p? • Bex A p – does some element of A satisfy predicate p? inductive_set disjunction :: "'a set \Rightarrow 'a set" for A B where • $\{x \dots y\}$ – all elements between x and y " $x \in A \implies x \in disjunction A B$ " $| "x \in B \implies x \in disjunction A B"$ Syntax for Set Comprehension inductive_set empty :: "'a set" • {x . p x} - same as Collect p • {t | x y. p x y} - same as {z. \exists x y. t = z \land p x y} inductive set Univ :: "'a set" where $x \in Univ$ • example: { $(x + 5, y) | x y . x < 7 \land odd y$ } RT (DCS @ UIBK) RT (DCS @ UIBK) session 7 17/20session 7 18/20

Example: Binary Search Trees

Example: Binary Search Trees

Demo: formalize binary search trees