
Summer Term 2023

Interactive Theorem Proving using Isabelle/HOL
Session 8

René Thiemann

Department of Computer Science

Outline

• Sets and Lists in Isabelle

• Practical Example: Binary Search Trees

RT (DCS @ UIBK) session 8 2/12

Sets and Lists in Isabelle

Sets and Lists in Isabelle
Sets in Isabelle
• type ‘'a set’ for sets with elements of type 'a

Set Basics
• x ∈ A – membership
• A ∩ B – intersection
• A ∪ B – union
• -A – complement
• A - B – difference
• A ⊆ B and A ⊂ B – subset
• {} – empty set
• UNIV – universal set (all elements of specific type)
• {x} – singleton set
• insert x A – insertion of single elements (insert x A = {x} ∪ A)
• f ` A – image of function with respect to set (“map f over elements of A”)

RT (DCS @ UIBK) session 8 4/12

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss23/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Sets and Lists in Isabelle
Further Operations on Sets
• set – convert list to set
• Collect p – convert predicate p :: 'a ⇒ bool to set of type 'a set
• finite A – is set finite?
• card A :: nat – cardinality of set (note: card A = 0 whenever A is infinite)
• sum f A –
∑

x∈A f (x) (note: sum f A = 0 whenever A is infinite)
• prod f A – similar to sum, just product
• Ball A p / Bex A p – do all / any elements of A satisfy predicate p?
• Max A and Min A – maximum and minimum of finite, non-empty set A
• {x .. y} – all elements between x and y

Syntax for Set Comprehension
• {x . p x} – same as Collect p
• {t | x y. p x y} – same as {z. ∃ x y. t = z ∧ p x y}
• example: { (x + 5, y) | x y. x < 7 ∧ odd y }

RT (DCS @ UIBK) session 8 5/12

Sets and Lists in Isabelle

Remarks on Finiteness and Cardinality

• properties like finiteness and cardinality do not work well in combination with
set-comprehension or Collect
• in these cases it is often required to manually rewrite or estimate such sets

by using images, products, intersections and unions
• since card returns a natural number, card does not work well with infinite sets;

consequence: many lemmas on cardinalities have finiteness as assumption
• therefore, cardinality proofs are often accompanied by finiteness proofs

Demo – Example Proof

lemma "card { (x * 3, y) :: nat × bool | x y. x < 10 ∧ P y } ≤ 20"

RT (DCS @ UIBK) session 8 6/12

Sets and Lists in Isabelle

Remarks on Sums and Products

• sum f S = 0 and prod f S = 1 whenever S is infinite
• infinite sums are available as limits, and will not be covered in this course
• there are several congruence lemmas on sums and products available,

e.g., where the function f can be changed by a pointwise comparison
• there is ample special syntax for sums and products

Demo – Example Proof

lemma "sum (λ i. i) {..< (n :: nat)} ≤ n^2"

question: is lemma true, if nat is replaced by int?

RT (DCS @ UIBK) session 8 7/12

Sets and Lists in Isabelle
Lists in Isabelle
• type ‘'a list’ for lists with elements of type 'a

List Basics – Selection of Functions
• [] or Nil and # or Cons – Nil and Cons
• set – conversion of list to set
• length, take, drop, map, filter, concat, foldl, foldr – as in Haskell
• @ or append – append
• hd and tl – head and tail of list
• xs ! n – n-th element of xs
• xs [ i := a ] – list update, similar to function update f (x := a)

List Basics – Predicates
• x ∈ set xs – membership test via set
• set xs ⊆ set ys – sublist test via set
• distinct, sorted, . . .

RT (DCS @ UIBK) session 8 8/12

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Sets and Lists in Isabelle

Syntax for Lists

• [1, 3, x, 11, a + b] – explicit finite list
• [n ..< m] – range, restricted to nat list
• [n .. m] – range, restricted to int list
• list comprehension is available, internally converted to concat and map; example
• [ (a, 2 * b) . a <- [0 ..< n], even a, b <- [2 .. 5]]
• concat (map

(λ a. if even a then map (λ b. (a, 2 * b)) [2..5] else [])
[0..<n])

RT (DCS @ UIBK) session 8 9/12

Sets and Lists in Isabelle

Reasoning on Lists and Sets

• automation works quite well for lists and sets
• still there are some lemmas which often have to be applied manually
• all kinds of congruence rules or rules that work pointwise

• sum.cong – sum f A = sum g B whenever A = B and f x = g x for all x ∈ B
• sum_mono – sum f A ≤ sum g A whenever f x ≤ g x for all x ∈ A
• sum.neutral – sum f A = 0 whenever f x = 0 for all x ∈ A
• nth_equalityI – two lists are identical if they have the same length and are pointwise

identical
• set_conv_nth – definition of set xs via n-th elements
• split_list – whenever x ∈ set xs then xs = p @ x # s for suitable p and s

• use find-theorems to gather existing results, e.g.,
find_theorems "sum _ (_ ∪ _) = _ + _"

RT (DCS @ UIBK) session 8 10/12

Practical Example: Binary Search Trees

Practical Example: Binary Search Trees

Binary Search Tree

• binary tree: straight-forward datatype definition; tree is a leaf or a node storing an
element with left- and right-subtree
• search tree: the tree is ordered, i.e., for each node with element x , left-subtree ℓ and

right-subtree r, all elements in ℓ are strictly smaller than x and x is strictly smaller than
all elements in r
• selected operations: insert, delete, and membership test
• optimizations are not included, e.g. balancing in splay-trees, AVL-trees, . . .

Demo and Exercise Session: Formalize Binary Search Trees

RT (DCS @ UIBK) session 8 12/12

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Sets and Lists in Isabelle
	Practical Example: Binary Search Trees

