\square universität innsbruck

Interactive Theorem Proving using Isabelle/HOL

Session 8

René Thiemann

Department of Computer Science

Sets in Isabelle

- type ' a set' for sets with elements of type 'a

Set Basics

- $x \in A$ - membership
- $A \cap B$ - intersection
- $A \cup B-$ union
- - A - complement
- A - B-difference
- $A \subseteq B$ and $A \subset B$ - subset
- \{\} - empty set
- UNIV - universal set (all elements of specific type)
- $\{x\}$ - singleton set
- insert x A - insertion of single elements (insert $x A=\{x\} \cup A$)
- f - A - image of function with respect to set ("map f over elements of A")

Further Operations on Sets

- set - convert list to set
- Collect p -convert predicate $\mathrm{p}::$ ' $\mathrm{a} \Rightarrow$ bool to set of type 'a set
- finite A - is set finite?
- card A : : nat - cardinality of set
- $\operatorname{sum} \mathrm{f} A-\sum_{x \in A} f(x)$
(note: card $\mathrm{A}=0$ whenever A is infinite)
(note: sum f $A=0$ whenever A is infinite)
- prod f A-similar to sum, just product

Ball A p / Bex A p-do all / any elements of A satisfy predicate p?

- Max A and Min A - maximum and minimum of finite, non-empty set A
- $\{x$. . $y\}$ - all elements between x and y

Syntax for Set Comprehension

- $\{\mathrm{x}$. p x$\}$ - same as Collect p
- $\{t \mid x y . p x y\}-s a m e ~ a s ~\{z . \exists x y . t=z \wedge p x y\}$
- example: $\{(x+5, y) \mid x y . x<7 \wedge$ odd $y\}$

Remarks on Sums and Products

- sum $f S=0$ and prod $f S=1$ whenever S is infinite
- infinite sums are available as limits, and will not be covered in this course
there are several congruence lemmas on sums and products available, e.g., where the function f can be changed by a pointwise comparison
- there is ample special syntax for sums and products

Demo - Example Proof
lemma $" \operatorname{sum}(\lambda$ i. i) $\{. .<(n::$ nat) $\} \leq n \sim 2 "$ question: is lemma true, if nat is replaced by int?

Remarks on Finiteness and Cardinality

- properties like finiteness and cardinality do not work well in combination with set-comprehension or Collect
- in these cases it is often required to manually rewrite or estimate such sets by using images, products, intersections and unions
- since card returns a natural number, card does not work well with infinite sets; consequence: many lemmas on cardinalities have finiteness as assumption
- therefore, cardinality proofs are often accompanied by finiteness proofs

Demo - Example Proof

```
lemma "card {(x * 3, y) :: nat x bool | x y. x < 10 ^ P y } \leq 20"
```


Lists in Isabelle

- type ''a list' for lists with elements of type 'a

List Basics - Selection of Functions

- [] or Nil and \# or Cons - Nil and Cons
- set - conversion of list to set
- length, take, drop, map, filter, concat, foldl, foldr - as in Haskell
- @ or append - append
hd and tl - head and tail of list
- xs ! n - n-th element of xs
- $x s$ [i $:=\mathrm{a}]$ - list update, similar to function update $f(x:=a)$

List Basics - Predicates

- $x \in$ set $x s$ - membership test via set
- set $\mathrm{xs} \subseteq$ set ys - sublist test via set
distinct, sorted, ...

Syntax for Lists

- [1, 3, x, 11, $\mathrm{a}+\mathrm{b}$] - explicit finite list
- [n .. $<\mathrm{m}$] - range, restricted to nat list
- [n . . m] - range, restricted to int list
- list comprehension is available, internally converted to concat and map; example
- $[(\mathrm{a}, 2 * \mathrm{~b}) . \mathrm{a}<-[0 \ldots<\mathrm{n}]$, even $\mathrm{a}, \mathrm{b}<-[2 \ldots 5]]$
- concat (map

$$
(\lambda \mathrm{a} . \text { if even } \mathrm{a} \text { then } \operatorname{map}(\lambda \mathrm{b} .(\mathrm{a}, 2 * \mathrm{~b}))[2 . .5] \text { else []) }
$$

[0..<n])

Reasoning on Lists and Sets

- automation works quite well for lists and sets
- still there are some lemmas which often have to be applied manually
- all kinds of congruence rules or rules that work pointwise
- sum. cong-sum $f A=$ sum $g B$ whenever $A=B$ and $f x=g x$ for all $x \in B$
- sum_mono-sum f $A \leq \operatorname{sum} g A$ whenever $f x \leq g x$ for all $x \in A$
- sum.neutral - sum $f A=0$ whenever $f x=0$ for all $x \in A$
- nth_equalityI - two lists are identical if they have the same length and are pointwise identical
- set_conv_nth - definition of set xs via n-th elements
- split_list - whenever $x \in$ set $x s$ then $x s=p @ x \# s$ for suitable p and s
- use find-theorems to gather existing results, e.g.,
find_theorems "sum _ (_ U _) = _ + _"

Binary Search Tree

- binary tree: straight-forward datatype definition; tree is a leaf or a node storing an element with left- and right-subtree
- search tree: the tree is ordered, i.e., for each node with element x, left-subtree ℓ and right-subtree r, all elements in ℓ are strictly smaller than x and x is strictly smaller than all elements in r
- selected operations: insert, delete, and membership test
- optimizations are not included, e.g. balancing in splay-trees, AVL-trees, ...

Demo and Exercise Session: Formalize Binary Search Trees

