
VO Program Verification
LVA 703083

Exam 1 June 30, 2023

Last Name:

First Name:

Matriculation Number:

Exercise Points Score

Single Choice 15

Well-Definedness of Functional Programs 27

Verification of Functional Programs 31

Verification of Imperative Programs 27∑
100

• The time limit for the exam is 100 minutes, so 1 point = 1 minute.

• The available points per exercise are written in the margin.

• Write on the printed exam for Exercises 1 and 4 and use blank sheets for the rest.

• Your answers can be written in English or German.

page 1 of 6



VO Program Verification Exam 1 June 30, 2023

Exercise 1: Single Choice 15
For each statement indicate whether it is true (✓) or false (✗). Giving the correct answer is worth 3 points,
giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

1. The property that a functional program P is well-defined is a necessary criterion to ensure that
the semantics of P is well-defined.

2. Whenever termination of a functional program can be proven solely by the subterm criterion,
then termination can also be proven solely by the size-change principle.

3. Given a well-defined and finite functional program, the set of extracted axioms (equality of
constructors, defining equations, induction principle for datatypes) is also finite.

4. Ramsey’s theorem was used to prove the following statement: whenever there are no maximal
multigraphs, then size-change termination is satisfied.

5. The substitution lemma is always satisfied, i.e., in particular it is not restricted to the standard
model M of a well-defined functional program.

Exercise 2: Well-Definedness of Functional Programs 27
Consider the following functional program where shuffle shuffles the order of list elements.

append(Cons(x, xs), ys) = Cons(x, append(xs, ys)) (1)

rev(Nil, ys) = ys (2)

rev(Cons(x, xs), ys) = rev(xs,Cons(x, ys)) (3)

shuffle(Cons(x, xs)) = Cons(x, shuffle(rev(shuffle(xs),Nil))) (4)

(a) (8)Turn the program into a well-defined functional program (without considering termination).

• Add all missing data type definitions via data.
Note: there is no unique solution.

• Provide a suitable type for the functions rev and shuffle, assuming a suitable type for append.

• If the program is not pattern-disjoint or not pattern-complete, then modify the equations and/or
add new equations to obtain a pattern-disjoint and pattern-complete program.

(b) (5)Compute all dependency pairs of rev and shuffle. Indicate which of these pairs can be removed by the
subterm-criterion.

(c) (4)Compute the set of usable equations w.r.t. the dependency pairs of shuffle♯. It suffices to mention the
indices of the equations.

(d) (10)Prove termination of shuffle by completing the following polynomial interpretation p.

pshuffle♯(t) = . . .

prev(xs, ys) = . . .

pCons(x, xs) = . . .

. . . = . . .

Hints:

• You only need numbers 0 and 1 in the polynomial interpretation.

• Use intuition and don’t try to compute the constraints symbolically.

• It makes sense to start filling in suitable interpretations by looking at the constraints of the de-
pendency pairs for shuffle♯ first, and then look at the constraints of the usable equations from the
previous part.

page 2 of 6



VO Program Verification Exam 1 June 30, 2023

Exercise 3: Verification of Functional Programs 31
Consider the following functional program on binary trees and lists of natural numbers, where the well-known
data-type definitions for Nat, List, and Tree have been omitted. We further assume that addition on natural
numbers has been defined and several properties on addition are already known, e.g., addition is associative,
commutative, and has 0 as left- and right-neutral element. We now define functions to flatten a tree to a list
(flatten), to append two lists (append), to compute the sum of elements in a tree (sumtree), and to compute
the sum of elements in a list (sumlist).

flatten(Leaf) = Nil

flatten(Node(ℓ, x, r)) = append(flatten(ℓ),Cons(x, flatten(r)))

sumtree(Leaf) = 0

sumtree(Node(ℓ, x, r)) = +(sumtree(ℓ),+(x, sumtree(r)))

append(Nil, ys) = ys

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

sumlist(Nil) = 0

sumlist(Cons(x, xs)) = +(x, sumlist(xs))

Prove that the formula

∀t. sumlist(flatten(t)) =Nat sumtree(t) (A)

is a theorem in the standard model by using induction and equational reasoning via ⇝.

• Briefly state on which variable(s) you perform induction, and which induction scheme you are using.

• Write down each case explicitly and also write down the IH that you get, including quantifiers.

• Write down each single ⇝-step in your proof.

• You may assume all usual properties on arithmetic on natural numbers, i.e., properties about + and 0.

• You will need one further auxiliary property (B). Write down this property and prove it in the same way
as it is required for formula (A). Only exception: if you need further auxiliary properties for proving
(B), then just state these properties without proving them.

Exercise 4: Verification of Imperative Programs 27
Consider the following program P . As input it takes an array a[0], . . . , a[n − 1] of length n ≥ 0 and some
value x. Either it computes an array index i such that a[i] = x, or it detects that x does not occur in the
array, and then i = −1.

i := -1;

m := n;

while (m != 0 && i = -1) {

m := m - 1;

if a[m] = x then i := m else m := m (* else branch is skip-step *)

}

(a) (4)Formulate pre- and post-conditions that state partial correctness of P . Here, both cases should be
covered, i.e., x occurs in the array or x does not occur in the array.
You do not need to prove the property!

page 3 of 6



VO Program Verification Exam 1 June 30, 2023

(b) (10)Construct a proof tableau for proving termination.

i := -1;

m := n;

while (m != 0 && i = -1) {

m := m - 1;

if a[m] = x then

i := m

else

m := m

}

page 4 of 6



VO Program Verification Exam 1 June 30, 2023

(c) (13)Construct a proof tableau for proving one part of the partial correctness property: whenever the resulting
i differs from −1 then i is a proper index of the array and a[i] = x.

To this end, define a suitable invariant Inv(i,m) and use this abbreviation in the tablau.

i := -1;

m := n;

while (m != 0 && i = -1) {

m := m - 1;

if a[m] = x then

i := m

else

m := m

}

page 5 of 6



VO Program Verification Exam 1 June 30, 2023

Here is another blank template that can be used for a second attempt of either (b) or (c). If you use
this template, please clearly indicate which of your solutions should (not) be graded.

i := -1;

m := n;

while (m != 0 && i = -1) {

m := m - 1;

if a[m] = x then

i := m

else

m := m

}

page 6 of 6


