
PS Program Verification
LVA 703084

Test-Exam June 28, 2023

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Single Choice 30

Well-Definedness of Functional Programs 22

Verification of Functional Programs 30

Verification of Imperative Programs 18∑
100

• The time for the exam is 100 minutes, so 1 point = 1 minute.

• The available points per exercise are written in the margin.

• Write on the printed exam and use extra blank sheets if more space is required.

• Your answers can be written in English or German.

page 1 of 8

PS Program Verification Test-Exam June 28, 2023

Exercise 1: Single Choice 30
For each statement indicate whether it is true (✓) or false (✗). Giving the correct answer is worth 3 points,
giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

1. Both R+, the transitive closure of a binary relation R, and R∗, the reflexive-transitive closure of
R, can be specified as inductively defined sets.

2. Whenever R is an inductively defined set, then membership in R is decidable.

3. Consider some functional program P and its one step relation ↪→. P is pattern disjoint if and
only if ↪→ is locally confluent.

4. Let E be the universally quantified defining equations of a well-defined functional program. When-
ever M |= φ for the standard model M, then E |= φ.

5. The proof of Ramsey’s theorem is performed by induction on the number of colors.

Consider a well-defined functional program P including some datatype definitions and defining equations.
Now assume that all datatype definitions are merged into a single one as follows. One creates a new type τ
and each n-ary constructor c of the functional program now gets type c : τ × . . . × τ → τ . Afterwards, all
previous datatypes are thrown away, but the equations are untouched, only the type of the defined symbols
is changed accordingly. Let us call the result of this process P ′.

Example: Instead of List and Nat one would have one datatype Tau and the constructors would be Zero : Tau,
Succ : Tau → Tau, Nil : Tau and Cons : Tau×Tau → Tau. Furthermore, the type of functions plus and append
would both be changed to Tau× Tau → Tau, and the reverse function would get type Tau → Tau.

Now answer whether the following statements always hold, i.e., whether they are true whenever P is well-
defined.

6. P ′ is a functional program, i.e., in particular all defining equations are well-typed.

7. P ′ is pattern-complete.

8. P ′ is pattern-disjoint.

9. Any termination proof via dependency pairs, usable equations and polynomial interpretations for
P can be used without changes for P ′.

10. The axioms for equality of constructors for P ′ are a subset of the axioms for equality of constructors
in P (when identifying the equality-signs for the new type τ and the various old types).

page 2 of 8

PS Program Verification Test-Exam June 28, 2023

Exercise 2: Well-Definedness of Functional Programs 22
Consider the following functional program for computing the maximal element of a list of natural numbers.

max(Succ(x),Succ(y)) = Succ(max(y, x)) (1)

max(Zero, y) = y (2)

list max(Cons(x,Cons(y, ys))) = list max(Cons(max(x, y), ys)) (3)

list max(Cons(x,Nil)) = x (4)

(a) (4)Determine if the program is pattern-disjoint and pattern-complete. If this is not the case, add equations
or modify the existing equations in a sensible way so that the resulting program P is both pattern-
disjoint and pattern-complete.

(b) (5)Compute all dependency pairs of P and remove as many of these using the subterm criterion or the
size-change criterion. In the former case provide the argument position, in the latter case provide the
set of multigraphs.

page 3 of 8

PS Program Verification Test-Exam June 28, 2023

(c) (5)For all remaining dependency pairs, determine the set of usable equations, and write down the con-
straints that you get when trying to prove termination with the help of some reduction pair (≻,≿).

(d) (8)Solve the constraints. To this end you can choose to either

• provide a concrete polynomial interpretation so that the constraints are satisfied (by guessing a
suitable one), or

• use a symbolic linear polynomial interpretation and show which constraints you get after applying
the absolute positiveness criterion; here, you should use the symbolic interpretation where each
symbol is abbreviated by its first letter, e.g.:

[[max]](x, y) = m0 +m1x+m2y

[[Cons]](x, y) = C0 + C1x+ C2y

page 4 of 8

PS Program Verification Test-Exam June 28, 2023

Exercise 3: Verification of Functional Programs 30
Consider the following functional program for reversing lists.

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(Nil, ys) = ys

rev(Cons(x, xs)) = append(rev(xs),Cons(x,Nil)))

rev(Nil) = Nil

(a) (3)Complete the following property so that it is a theorem in the standard model.

∀xs, ys. rev(append(xs, ys)) =List append()

(b) (13)Prove the specified property of the previous part by using induction and equational reasoning via ⇝.

• Briefly state on which variable(s) you perform induction, and which induction scheme you are using.

• Write down each case explicitly and also write down the IH that you get, including quantifiers.

• Write down each single ⇝-step in your proof.

• You may use the following two well-known properties from the lecture as axioms.

– ∀xs. append(xs,Nil) =List xs

– ∀xs, ys, zs. append(append(xs, ys), zs) =List append(xs, append(ys, zs))

If you require further auxiliary properties, then write them down, but don’t prove them.

page 5 of 8

PS Program Verification Test-Exam June 28, 2023

append(Cons(x, xs), ys) = Cons(x, append(xs, ys))

append(Nil, ys) = ys

rev(Cons(x, xs)) = append(rev(xs),Cons(x,Nil)))

rev(Nil) = Nil

(c) (14)Prove ∀xs. rev(rev(xs)) =List xs by using induction and equational reasoning via ⇝ as in the previous
part. You can use the property of the previous parts as axiom.

page 6 of 8

PS Program Verification Test-Exam June 28, 2023

Exercise 4: Verification of Imperative Programs 18
The Fibonacci-numbers are defined as follows:

fib(0) = 0

fib(1) = 1

fib(n+ 2) = fib(n+ 1) + fib(n) for n ∈ N

The following program P calculates the Fibonacci-numbers.

x = 0;

y = 1;

while (n != 0) {

z := x + y;

x := y;

y := z;

n := n - 1;

}

(a) (2)Write down a specification in form of a Hoare triple that P computes the Fibonacci-numbers.

(b) (3)For which inputs does the program terminate? Provide a suitable variant e that can be used to prove
termination. (It suffices to provide e in this part, a proof tableau is not required.)

page 7 of 8

PS Program Verification Test-Exam June 28, 2023

(c) (13)Construct a proof tableau for proving partial correctness.

x = 0;

y = 1;

while (n != 0) {

z := x + y;

x := y;

y := z;

n := n - 1;

}

page 8 of 8

