- Prepare your solutions on paper.
- Mark the exercises in OLAT before the deadline.
- Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Confluence and Normal Forms

1. Recall the notion of confluence: \hookrightarrow is confluent if and only if for all terms s, t, u : whenever $t \hookrightarrow^{*} s$ and $t \hookrightarrow^{*} u$ then there is some term v such that $s \hookrightarrow^{*} v$ and $u \hookrightarrow^{*} v$.
Prove that normal forms are unique for confluent \hookrightarrow : whenever \hookrightarrow is confluent and $t \hookrightarrow_{!}^{!} s$ and $t \hookrightarrow^{!} u$, then $s=u$.
(2 points)
2. On slide $3 / 56$ it was stated that $\ell \alpha \downarrow=r \alpha \downarrow$ follows from $\ell \alpha \hookrightarrow r \alpha$.

Perform a proof of a more general result: whenever $s \hookrightarrow^{*} t$ for some confluent and terminating relation \hookrightarrow, then $s \downarrow=t \downarrow$.

Exercise 2 Freshness of Variables

4 p.
Consider slides slides $3 / 70-72$. It was shown that freshness of variables is essential for the induction formula. However, in the proof on slide $3 / 72$ freshness is never mentioned.
Identify the step(s) of the proof which break without freshness of the x_{i}, and make the reasoning more explicit, so that one can clearly see the necessity of freshness.

Exercise 3 Axioms about Equality

On slide $3 / 74$ we have seen that there are not enough properties about the equality predicates $=_{\tau}$. Among these missing properties are reflexivity and symmetry of $=_{\tau}$.
One way to get access to these properties is by proving that these formulas are valid in the standard model.

1. Prove that $={ }_{\tau}$ is symmetric, i.e., $\mathcal{M} \models \forall x, y \cdot x={ }_{\tau} y \longleftrightarrow y={ }_{\tau} x$ for the standard model \mathcal{M}.
(2 points)
Instead of proving that properties via the standard model, an alternative approach is to show that the missing properties are already consequences of $A X$ (assuming that $A X$ includes the induction formulas as well as the decomposition- and disjoint-theorems of slide 3/60).
2. Show $A X \models \forall x s . x s=$ List $x s$ via a natural deduction proof in the style of slide $3 / 74$.

Here, you can assume the standard definition of lists of natural numbers via Nil and Cons and you can assume $\forall x . x=_{\text {Nat }} x$ as axiom (which can be proven in a similar way). For the reasoning about Boolean connectives you can be sloppy, but you should be detailed in proof steps that involve using axioms of $A X$, i.e., make precise which axioms you are using.
(4 points)
3. Show that $=_{\text {Nat }}$ is symmetric by deducing $A X \models \forall x, y . x={ }_{N_{\text {at }}} y \longrightarrow y={ }_{\text {Nat }} x$ as in part (2).

Be careful with the correct usage of quantifiers in your proof.
(a) Write down the fully spelled out formula that you get when using ψ_{n} in the induction scheme for natural numbers.
(b) Perform the proof. For this part you can assume an additional axiom scheme for case analysis on natural numbers:

$$
\vec{\forall}(\varphi[x / \text { Zero }] \longrightarrow(\forall z . \varphi[x / \operatorname{Succ}(z)]) \longrightarrow \varphi)
$$

where z must be fresh for φ. This scheme is an easy consequence of the induction scheme for natural numbers.
Hint: in each case of the induction proof, you need to perform one case analysis.

