- Prepare your solutions on paper.
- Mark the exercises in OLAT before the deadline.
- Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Lexicographic Combinations

On slide $4 / 40$, it was argued that termination holds because of a lexicographic measure. In this exercise we want to be a bit more formal about this aspect by showing that taking lexicographic combinations is a valid technique for termination proving
In detail: A binary relation \succ over some set A is strongly normalizing, if and only if there does not exist an infinite sequence of the form

$$
a_{0} \succ a_{1} \succ a_{2} \succ a_{3} \succ \ldots
$$

Given n binary relations $\succ_{1}, \ldots, \succ_{n}$ over sets A_{1}, \ldots, A_{n}, we define their lexicographic combination $\succ_{l e x}$ as a binary relation over $A_{1} \times \ldots \times A_{n}$ as follows: a lexicographic decrease happens, if for some position i, the element at position i decreases w.r.t. \succ_{i}, the elements before position i are unchanged, and there is no restriction on the elements after position i. This can be made formal via the following inference rule:

$$
\frac{1 \leq i \leq n \quad a_{i} \succ_{i} b_{i}}{\left(a_{1}, \ldots, a_{i-1}, a_{i}, \ldots, a_{n}\right) \succ_{\text {lex }}\left(a_{1}, \ldots, a_{i-1}, b_{i}, \ldots, b_{n}\right)}
$$

Prove that whenever all \succ_{i} are strongly normalizing for $1 \leq i \leq n$, then so is $\succ_{l e x}$.

Exercise 2 Pattern Completeness

1. Consider the example execution on slide $4 / 46$. For each of the pattern problems compute the multiset as described on slide $4 / 52$, and observe the decrease.
(3 points)
2. Prove that the multiset decreases for a split step.
3. Consider the example on slide $4 / 45$ and run this example using the improved algorithm of slide $4 / 53$, i.e., via \rightharpoonup^{\prime}. You may abbreviate conj, True and False by c, T and F, respectively.
(4 points)
4. Formulate a refinement relation and specify a formal property that corresponds to " $\boldsymbol{}^{\prime}$ implements \rightharpoonup." Hint: You can write \Rightarrow for performing a single step of a modified matching algorithm for linear terms. It consists of the decomposition step and also has a step $\{(x, t)\} \cup P \Rightarrow P$ to indicate that a variable always matches, cf. slide $3 / 23$.
(4 points)
