universität innsbruck

Program Verification

Sheet 8

- Prepare your solutions on paper.
- Mark the exercises in OLAT before the deadline.
- Marking an exercise means that a significant part of that exercise has been treated.

Exercise 1 Innermost Evaluation and Subterm Relation

- 1. The soundness proof of the subterm criterion uses the fact that $s \triangleright t$ and $s \in NF(\hookrightarrow)$ implies $t \in NF(\hookrightarrow)$. Prove this fact. (2 points)
- 2. In the definition of $\stackrel{i}{\to}$ there occurs the condition $NF(\hookrightarrow)$, and not $NF(\stackrel{i}{\to})$. Show that this makes no difference by proving $NF(\stackrel{\leftarrow}{\hookrightarrow}) = NF(\stackrel{\leftarrow}{\hookrightarrow})$. You can assume the obvious property $\stackrel{\leftarrow}{\hookrightarrow} \subseteq \stackrel{\leftarrow}{\hookrightarrow}$. (3 points)

Exercise 2 Termination Analysis on Paper

Write your favourite sorting algorithm as functional program and try to prove termination via the subterm criterion and size-change termination. If the proof is not completed, indicate which dependency pairs remain. Of course, here you also have to define a function for comparing natural numbers and other auxiliary functions. But you can assume that there are already datatypes Nat, List and Bool.

Exercise 3 Size-Change Termination

In the lecture the set of multigraphs \mathcal{M} of a set of size-change graphs \mathcal{G} has essentially been defined as follows:

$$\frac{G \in \mathcal{G}}{G \in \mathcal{M}} \qquad \qquad \frac{G_1 \in \mathcal{M} \quad G_2 \in \mathcal{M}}{G_1 \cdot G_2 \in \mathcal{M}}$$

Now consider the following set of multigraphs \mathcal{N} , defined as:

$$\frac{G \in \mathcal{G}}{G \in \mathcal{N}} \qquad \qquad \frac{G_1 \in \mathcal{G} \quad G_2 \in \mathcal{N}}{G_1 \cdot G_2 \in \mathcal{N}}$$

In this exercise we will show that both definitions are equivalent and also compare the subterm criterion with size-change termination.

- 1. Think about the relation-ship between the subterm criterion and size-change termination. Does one criterion subsume the other one? For both directions, either give a proof of the subsumption or provide a concrete counter example. (3 points)
- 2. Prove $\mathcal{N} \subseteq \mathcal{M}$. (2 points)
- 3. Prove $\mathcal{M} \subseteq \mathcal{N}$. You can assume that is associative. Most likely, you will need to prove one auxiliary property. (4 points)
- 4. Think about an implementation: would it be faster to compute \mathcal{M} or \mathcal{N} ? Why? (2 points)

Deadline: May 17, 2023, 10am

LVA 703083+703084

11 p.

5 p.

4 p.

SS 2023