

Program Verification

Part 2 – A Logic for Program Specifications

René Thiemann

Department of Computer Science

Recapitulation: Predicate Logic

• one can define sets inductively via inference rules of form

$$\frac{premise_1 \dots premise_n}{conclusion}$$

meaning: if all premises are satisfied, then one can conclude

• example: the set of even numbers

$$\frac{x \in Even}{x + 2 \in Even}$$

- the inference rules describe what is contained in the set
- this can be modeled as formula

$$0 \in Even \land (\forall x. \ x \in Even \longrightarrow x + 2 \in Even)$$

• nothing else is in the set (this is not modeled in the formula!)

RT (DCS @ UIBK)

Part 2 – A Logic for Program Specifications

Recapitulation: Predicate Logic

Inductively Defined Sets, Continued

• the set of even numbers

$$\overline{0 \in Even}$$

 $\frac{x \in Even}{x + 2 \in Even}$

- $\bullet\,$ membership in the set can be proved via inference trees
- example: $4 \in Even$, proved via inference tree

0	\in	Even
2	\in	Even
4	\in	Even

- proving that something is not in the set is more difficult: show that no inference tree exists
- example: $3 \notin Even$, $-2 \notin Even$

3/44

Recapitulation: Predicate Logic

Recapitulation: Predicate Logic

Inductively Defined Sets and Grammars

- inference rules are similar to grammar rules
- example
 - the grammar

$$S \to aSab \mid b \mid TaS$$
 $T \to TT \mid \epsilon$

• is modeled via the inference rules

$$\frac{w \in S}{awab \in S} \qquad \frac{w \in T \quad u \in S}{b \in S} \qquad \frac{w \in T \quad u \in S}{wau \in S}$$
$$\frac{w \in T \quad u \in T}{wu \in T} \qquad \frac{\varepsilon}{\epsilon \in T}$$

• in the same way, inference trees are similar to derivation trees

• example: the set of even numbers

$$\frac{x \in Even}{x + 2 \in Even}$$

- inductively defined sets give rise to a structural induction rule
- induction rule for example, written again as inference rule:

$$\frac{y \in Even \quad P(0) \quad \forall x.P(x) \longrightarrow P(x+2)}{P(y)}$$

where P is an arbitrary property; alternatively as formula

$$\forall y. \, y \in Even \longrightarrow \underbrace{P(0)}_{base} \longrightarrow \underbrace{(\forall x. P(x) \longrightarrow P(x+2))}_{step} \longrightarrow P(y)$$

Inductively Defined Sets: Monotonicity

- inference rules of inductively defined sets must be monotone, it is not permitted to negatively refer to the defined set
- ill-formed example

	$0 \in Bad$
$\overline{0 \in Bad}$	$0 \notin Bad$

• one of the problems: the corresponding formula can be contradictory

$$0 \in Bad \land (0 \in Bad \longrightarrow 0 \notin Bad)$$

Recapitulation: Predicate Logic

Inductively Defined Sets: Structural Induction Continued

- depending on the structure of the inference rules there might be several base- and step-cases
- example: a definition of the set of even integers

$$\frac{x \in EvenZ}{0 \in EvenZ}$$

$$\frac{x \in EvenZ}{x + 2 \in EvenZ}$$

$$\frac{x \in EvenZ}{x - y \in EvenZ}$$

_

-

- structural induction rule in this case contains
 - one base case (without induction hypothesis): P(0)
 - one step case with one induction hypothesis: $\forall x.P(x) \longrightarrow P(x+2)$
 - one step case with two induction hypotheses: $\forall x, y, P(x) \longrightarrow P(y) \longrightarrow P(x-y)$

Example Proof by Structural Induction

- aim: show that every even number y can be written as $2 \cdot n$
- structural induction rule

$$\frac{y \in Even \quad P(0) \quad \forall x.P(x) \longrightarrow P(x+2)}{P(y)}$$

- property P(x): x can be written as $2 \cdot n$ with $n \in \mathbb{N}$; $P(x) := \exists n. n \in \mathbb{N} \land x = 2 \cdot n$
- semi-formal proof: apply structural induction rule to show P(y)
 - the subgoal $y \in Even$ is by assumption
 - the base-case P(0) is trivial, since $0 = 2 \cdot 0$ and $0 \in \mathbb{N}$
 - the step-case demands a proof of $\forall x. P(x) \longrightarrow P(x+2)$, so let x be arbitrary, assume P(x) and show P(x+2)
 - because of P(x) there is some $n \in \mathbb{N}$ such that $x = 2 \cdot n$
 - hence $n+1 \in \mathbb{N}$ and $x+2 = 2 \cdot n + 2 = 2 \cdot (n+1)$
 - thus P(x+2) holds by choosing n+1 as witness in existential quantifier
- hence, $\forall y. y \in Even \longrightarrow \exists n. n \in \mathbb{N} \land y = 2 \cdot n$

RT (DCS @ UIBK)

RT (DCS @ UIBK)

```
Part 2 – A Logic for Program Specifications
```

The Other Direction

- aim: show that $2 \cdot n \in Even$ for every natural number n
- here the structural induction rule for Even is useless, since it has $u \in Even$ as a premise
- this proof is by induction on n and by using the inference rules from the inductively defined set *Even* (and not the induction rule)

$$\frac{x \in Even}{x + 2 \in Even}$$

- base case n = 0: $2 \cdot 0 = 0 \in Even$ by the first inference rule of Even
- step case from n to n+1:
 - the induction hypothesis gives us $2 \cdot n \in Even$
 - hence, $2 \cdot (n+1) = 2 \cdot n + 2 \in Even$ by the second inference rule of Even (instantiate x by $2 \cdot n$)

```
RT (DCS @ UIBK)
9/44
```

Part 2 – A Logic for Program Specifications

Recapitulation: Predicate Logic

Final Remark on Inductively Defined Sets

- so far: premises in inference rules speak about set under construction
- in general: there can be additional arbitrary side conditions
- example definition of odd numbers, assuming that *Even* is already defined:

$$\frac{x \in Even \quad y \in Odd}{x + y \in Odd}$$

structural induction adds these side conditions as additional premises

$$\frac{y \in Odd \quad P(1) \quad \forall x, y. x \in Even \longrightarrow P(y) \longrightarrow P(x+y)}{P(y)}$$

Part 2 - A Logic for Program Specifications

Predicate Logic: Terms

_

- Σ : set of (function) symbols with arity
- \mathcal{V} : set of variables, usually infinite
- example: $\Sigma = \{ \mathsf{plus}/2, \mathsf{succ}/1, \mathsf{zero}/0 \}, \mathcal{V} = \{x, y, z, \ldots \}$
- $\mathcal{T}(\Sigma, \mathcal{V})$: set of terms, inductively defined by two inference rules

$$\frac{x \in \mathcal{V}}{x \in \mathcal{T}(\Sigma, \mathcal{V})} \qquad \qquad \frac{f/n \in \Sigma \quad t_1 \in \mathcal{T}(\Sigma, \mathcal{V}) \quad \dots \quad t_n \in \mathcal{T}(\Sigma, \mathcal{V})}{f(t_1, \dots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})}$$

- for symbols with arity 0 we omit the parenthesis in terms in formulas, i.e., we write zero as term and not zero()
- examples
 - plus(x, plus(plus(zero, x), succ(y)))V • x • plus X • $\mathsf{plus}(x, y, z)$ Y

• remark: we do not use infix-symbols for formal terms

RT (DCS @ UIBK)

11/44

10/44

Recapitulation: Predicate Logic

Recapitulation: Predicate Logic

15/44

Predicate Logic: Formulas

- Σ : set of function symbols, \mathcal{V} : set of variables
- \mathcal{P} : set of (predicate) symbols with arity
- $\mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$: formulas over Σ , \mathcal{P} , and \mathcal{V} , inductively defined via

$$\begin{array}{ll} \displaystyle \frac{x \in \mathcal{V} \quad \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\forall x. \ \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} \\ \displaystyle \frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\neg \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} & \displaystyle \frac{\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}{\varphi \wedge \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})} \end{array} \end{array}$$

$$\frac{p/n \in \mathcal{P} \quad t_1 \in \mathcal{T}(\Sigma, \mathcal{V}) \quad \dots \quad t_n \in \mathcal{T}(\Sigma, \mathcal{V})}{p(t_1, \dots, t_n) \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}$$

Predicate Logic: Syntactic Sugar

• we use all Boolean connectives

• false = \neg true • $(\varphi \lor \psi) = (\neg (\neg \varphi \land \neg \psi))$

•
$$(\varphi \lor \psi) = (\neg \varphi \lor \psi)$$

• $(\varphi \longrightarrow \psi) = (\neg \varphi \lor \psi)$

•
$$(\varphi \longleftrightarrow \psi) = ((\varphi \longrightarrow \psi) \land (\psi \longrightarrow \varphi))$$

• we permit existential quantification

• $(\exists x. \varphi) = \neg(\forall x. \neg \varphi)$

• however, these are just abbreviations, so when defining properties of formulas, we only need to consider the connectives from the previous slide

RT (DCS @ UIBK)	Part 2 – A Logic for Program Specifications	13/44	RT (DCS @ UIBK)	Part 2 – A Logic for Program Specifications	14/44

Predicate Logic: Semantics

- defined via models, environments and structural recursion
- a model \mathcal{M} for formulas over Σ , \mathcal{P} , and \mathcal{V} consists of
 - a non-empty set \mathcal{A} , the universe
 - for each $f/n \in \Sigma$ there is a total function $f^{\mathcal{M}} : \mathcal{A}^n \to \mathcal{A}$
 - for each $p/n \in \mathcal{P}$ there is a relation $p^{\mathcal{M}} \subseteq \mathcal{A}^n$
 - an environment is a mapping $\alpha: \mathcal{V} \to \mathcal{A}$
- the term evaluation $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{A}$ is defined recursively as

•
$$\llbracket x \rrbracket_{\alpha} = \alpha(x)$$
 and $\llbracket f(t_1, \dots, t_n) \rrbracket_{\alpha} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\alpha}, \dots, \llbracket t_n \rrbracket_{\alpha})$

- the satisfaction predicate $\mathcal{M} \models_{\alpha} \cdot$ is defined recursively as
 - $\mathcal{M} \models_{\alpha} \mathsf{true}$
 - $\mathcal{M} \models_{\alpha} p(t_1, \ldots, t_n)$ iff $(\llbracket t_1 \rrbracket_{\alpha}, \ldots, \llbracket t_n \rrbracket_{\alpha}) \in p^{\mathcal{M}}$
 - $\mathcal{M} \models_{\alpha} \varphi \land \psi$ iff $\mathcal{M} \models_{\alpha} \varphi$ and $\mathcal{M} \models_{\alpha} \psi$
 - $\mathcal{M} \models_{\alpha} \neg \varphi$ iff $\mathcal{M} \not\models_{\alpha} \varphi$

•
$$\mathcal{M} \models_{\alpha} \forall x. \varphi \text{ iff } \mathcal{M} \models_{\alpha[x:=a]} \varphi \text{ for all } a \in \mathcal{A}$$

where $\alpha[x:=a]$ is defined as $\alpha[x:=a](y) = \begin{cases} a, & \text{if } y=x \\ \alpha(y), & \text{otherwise} \end{cases}$

• if
$$\varphi$$
 contains no free variables, we omit α and write $\mathcal{M} \models \varphi$
RT (DCS @ UIBK) Part 2 – A Logic for Program Specifications

Examples • signature: $\Sigma = \{ \mathsf{plus}/2, \mathsf{succ}/1, \mathsf{zero}/0 \}, \mathcal{P} = \{ \mathsf{even}/1, =/2 \}$ • model 1: • $\mathcal{A} = \mathbb{N}$ • $\mathsf{plus}^{\mathcal{M}}(x,y) = x + y$, $\mathsf{succ}^{\mathcal{M}}(x) = x + 1$, $\mathsf{zero}^{\mathcal{M}} = 0$ • even^{\mathcal{M}} = {2 · n | n \in \mathbb{N}}, =^{\mathcal{M}} = {(n, n) | n \in \mathbb{N}} • $\mathcal{M} \models \forall x, y$. plus(x, y) =plus(y, x)• model 2: • $A = \mathbb{Z}$ • $\mathsf{plus}^{\mathcal{M}}(x, y) = x - y$, $\mathsf{succ}^{\mathcal{M}}(x) = |x|$, $\mathsf{zero}^{\mathcal{M}} = 42$ • even^{\mathcal{M}} = {2, -7}, =^{\mathcal{M}} = {(1000, 2000)} • $\mathcal{M} \not\models \forall x, y$. plus(x, y) =plus(y, x)• model 3: • $\mathcal{A} = \{\bullet\}$ • plus $\mathcal{M}(x, y) = \bullet$, succ $\mathcal{M}(x) = \bullet$, zero $\mathcal{M} = \bullet$ • even $\mathcal{M} = \{\bullet\}, = \mathcal{M} = \emptyset$ • $\mathcal{M} \not\models \forall x, y$. $\mathsf{plus}(x, y) = \mathsf{plus}(y, x)$ • not a model: • $\mathcal{A} = \mathbb{N}$, $\mathsf{plus}^{\mathcal{M}}(x, y) = x - y$, $\mathsf{even}^{\mathcal{M}} = \{\dots, -4, -2, 0, 2, 4, \dots\}$, \dots Plant 2 – A Logic for Program Specifications RT (DCS @ UIBK) 16/44

Recapitulation: Predicate Logic

Models for Functional Programming

consider program

```
data Nat = Zero | Succ Nat
data List = Nil | Cons Nat List
```

• datatype definitions clearly correspond to inductively defined sets

	$n \in Nat$
$Zero \in Nat$	$Succ(n) \in Nat$
	$n \in Nat$ $xs \in List$
$Nil \in List$	$Cons(n, xs) \in List$

• tentative definition of universe \mathcal{A} of model \mathcal{M} for program

$$\mathcal{A} = \mathsf{Nat} \cup \mathsf{List}$$

• obvious definition of meaning of constructors

$$\operatorname{Zero}^{\mathcal{M}} = \operatorname{Zero}, \quad \operatorname{Succ}^{\mathcal{M}}(n) = \operatorname{Succ}(n), \quad \operatorname{Nil}^{\mathcal{M}} = \operatorname{Nil}, \ldots$$

RT (DCS @ UIBK)

•

Part 2 – A Logic for Program Specifications

Many-Sorted Logic

• inductively defined sets

	$n \in Nat$
$Zero \in Nat$	$Succ(n) \in Nat$
	$n \in Nat$ $xs \in List$
$Nil \in List$	$Cons(n, xs) \in List$

. .

construction of model

• $\mathcal{A} = Nat \cup List$		
• Zero $\mathcal{M} = $ Zero	and	$Succ^{\mathcal{M}}(n) = Succ(n)$
• $Nil^{\mathcal{M}} = Nil$	and	$Cons^{\mathcal{M}}(n, xs) = Cons(n, xs)$

• problem: this is not a model

- Succ^{\mathcal{M}} must be a total function of type $\mathcal{A} \to \mathcal{A}$ • but Succ^{\mathcal{M}}(Nil) = Succ(Nil) $\notin \mathcal{A}$
- similar problem: a formula like
 ∀xs ys zs. append(append(xs, ys), zs) = append(xs, append(ys, zs)) would have to hold even when replacing xs by Zero!

```
17/44 RT (DCS @ UIBK)
```

Recapitulation: Predicate Logic

Part 2 – A Logic for Program Specifications

Many-Sorted Logic

18/44

- Solution to the One-Universe Problem
 - consider many-sorted logic
 - idea: a separate universe for each sort
- naming issue: sort in logic \sim type in functional programming
- this lecture: we mainly speak about types
- types need to be integrated everywhere
 - typed signature
 - typed terms
 - typed formulas
 - typed environments
 - typed quantifiers
 - typed universes
 - typed models
- this lecture: simple type system
 - no polymorphism (no generic List a type)
 - first-order (no λ , no partial application, ...)

Many-Sorted Predicate Logic: Syntax

- $\mathcal{T}_{\mathcal{Y}}$: set of types where each $\tau \in \mathcal{T}_{\mathcal{Y}}$ is just a name example: $\mathcal{T}y = \{ Nat, List, \ldots \}$
- Σ : set of function symbols; each $f \in \Sigma$ has type info $\in \mathcal{T}y^+$ we write $f: \tau_1 \times \ldots \times \tau_n \to \tau_0$ whenever f has type info $\tau_1 \ldots \tau_n \tau_0$ example: $\Sigma = \{ \text{Zero} : \text{Nat}, \text{plus} : \text{Nat} \times \text{Nat} \to \text{Nat}, \text{Cons} : \text{Nat} \times \text{List} \to \text{List}, \ldots \}$
- \mathcal{P} : set of predicate symbols; each $p \in \mathcal{P}$ has type info $\in \mathcal{T}y^*$ we write $p \subseteq \tau_1 \times \ldots \times \tau_n$ whenever p has type info $\tau_1 \ldots \tau_n$ example: $\mathcal{P} = \{ \leq \mathsf{Nat} \times \mathsf{Nat}, =_{\mathsf{Nat}} \subseteq \mathsf{Nat} \times \mathsf{Nat}, \mathsf{even} \subseteq \mathsf{Nat}, \}$ $nonEmpty \subseteq List, =_{List} \subseteq List \times List, elem \subseteq Nat \times List, ... \}$ note: no polymorphism, so there cannot be a generic equality symbol
- \mathcal{V} : set of variables, typed example: $\mathcal{V} = \{n : \mathsf{Nat}, xs : \mathsf{List}, \ldots\}$ we write \mathcal{V}_{τ} as the set of variables of type τ
- notation
 - function and predicate symbols: blue color, variables: black color
- often $\mathcal{T}_{\mathcal{Y}}$ and \mathcal{V} are not explicitly specified Part 2 – A Logic for Program Specifications

RT (DCS @ UIBK)

• $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$: set of terms of type τ , inductively defined

$$\frac{x:\tau \in \mathcal{V}}{x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}}$$

$$\frac{f:\tau_1 \times \ldots \times \tau_n \to \tau \in \Sigma \quad t_1 \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_1} \quad \dots \quad t_n \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_n}}{f(t_1, \dots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}}$$

- example
 - $\mathcal{V} = \{n : \mathbb{N}, \ldots\}$
 - $\Sigma = \{ \text{Zero} : N, \text{Succ} : N \rightarrow N, \text{Nil} : L, \text{Cons} : N \times L \rightarrow L \}$
 - we omit the " $\in \mathcal{V}$ " and " $\in \Sigma$ " when applying the inference rules

• typing terms results in inference trees

	n:N	
	Succ: $\mathbb{N} \to \mathbb{N}$ $n \in \mathcal{T}(\Sigma, \mathcal{V})_{\mathbb{N}}$	Nil : L
$Cons:N\timesL\toL$	$\overline{Succ(n)\in\mathcal{T}(\Sigma,\mathcal{V})_{N}}$	$\overline{Nil\in\mathcal{T}(\Sigma,\mathcal{V})_{L}}$
($Cons(Succ(n),Nil)\in\mathcal{T}(\Sigma,\mathcal{V})_{L}$	

• for ill-typed terms such as Succ(Nil) there is no inference tree RT (DCS @ UIBK) Part 2 – A Logic for Program Specifications

22/44

Many-Sorted Logic

Many-Sorted Logic

21/44

Many-Sorted Logic

Many-Sorted Predicate Logic: Formulas

- recall: \mathcal{V}, Σ and \mathcal{P} are typed sets of variables, function symbols and predicate symbols
- next we define typed formulas $\mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$ inductively
- the definition is similar as in the untyped setting only difference: add types to inference rule for predicates

	$x \in \mathcal{V} \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$
$\overline{true\in \mathcal{F}(\Sigma,\mathcal{P},\mathcal{V})}$	$\forall x. \ \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$
$\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$	$\varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V}) \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$
$\overline{\neg \varphi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}$	$\varphi \land \psi \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})$

$$\frac{(p \subseteq \tau_1 \times \ldots \times \tau_n) \in \mathcal{P} \quad t_1 \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_1} \quad \ldots \quad t_n \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_n}}{p(t_1, \ldots, t_n) \in \mathcal{F}(\Sigma, \mathcal{P}, \mathcal{V})}$$

Many-Sorted Predicate Logic: Semantics

- defined via typed models and environments
- a model \mathcal{M} for formulas over $\mathcal{T}_{\mathcal{Y}}$, Σ , \mathcal{P} , and \mathcal{V} consists of
 - a collection of non-empty universes \mathcal{A}_{τ} , one for each $\tau \in \mathcal{T}_{\mathcal{Y}}$
 - for each $f: \tau_1 \times \ldots \times \tau_n \to \tau \in \Sigma$ there is a function $f^{\mathcal{M}}: \mathcal{A}_{\tau_1} \times \ldots \times \mathcal{A}_{\tau_n} \to \mathcal{A}_{\tau}$
 - for each $(p \subseteq \tau_1 \times \ldots \times \tau_n) \in \mathcal{P}$ there is a relation $p^{\mathcal{M}} \subseteq \mathcal{A}_{\tau_1} \times \ldots \times \mathcal{A}_{\tau_n}$
 - an environment is a type-preserving mapping $\alpha: \mathcal{V} \to \bigcup_{\tau \in \mathcal{T}_{\mathcal{V}}} \mathcal{A}_{\tau}$, i.e., whenever $x : \tau \in \mathcal{V}$ then $\alpha(x) \in \mathcal{A}_{\tau}$
- the term evaluation $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \to \mathcal{A}_{\tau}$ is defined recursively as

•
$$\llbracket x \rrbracket_{\alpha} = \alpha(x)$$

• $\llbracket f(t_1, \dots, t_n) \rrbracket_{\alpha} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\alpha}, \dots, \llbracket t_n \rrbracket_{\alpha})$

note that $\llbracket \cdot \rrbracket_{\alpha}$ is overloaded in the sense that it works for each type τ

- the satisfaction predicate $\mathcal{M} \models_{\alpha} \cdot$ is defined recursively as
 - $\mathcal{M} \models_{\alpha} \forall x. \varphi$ iff $\mathcal{M} \models_{\alpha[x:=a]} \varphi$ for all $a \in \mathcal{A}_{\tau}$, where τ is the type of x
 - $\mathcal{M} \models_{\alpha} p(t_1, \ldots, t_n)$ iff $(\llbracket t_1 \rrbracket_{\alpha}, \ldots, \llbracket t_n \rrbracket_{\alpha}) \in p^{\mathcal{M}}$
 - ... remainder as in untyped setting

Example

Many-Sorted Logic

• $\mathcal{T}y = \{ \mathsf{Nat}, \mathsf{List} \}$ Many-Sorted Predicate Logic: Well-Definedness • $\Sigma = \{ \text{Zero} : \text{Nat}, \text{Succ} : \text{Nat} \rightarrow \text{Nat}, \text{Nil} : \text{List}, \text{app} : \text{List} \times \text{List} \rightarrow \text{List} \}$ $\mathcal{P} = \{ = \subseteq \mathsf{List} \times \mathsf{List} \}$ • consider the term evaluation • $\llbracket x \rrbracket_{\alpha} = \alpha(x)$ • $\mathcal{A}_{Nat} = \mathbb{N}$ • $\llbracket f(t_1,\ldots,t_n) \rrbracket_{\alpha} = f^{\mathcal{M}}(\llbracket t_1 \rrbracket_{\alpha},\ldots,\llbracket t_n \rrbracket_{\alpha})$ • $\mathcal{A}_{\mathsf{list}} = \{ [x_1, \dots, x_n] \mid n \in \mathbb{N}, \forall 1 \le i \le n. x_i \in \mathbb{N} \}$ • it was just stated that this a function of type $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \to \mathcal{A}_{\tau}$ • $\operatorname{\mathsf{Zero}}^{\mathcal{M}} = 0$ • similarly, the definition • $\mathsf{Succ}^{\mathcal{M}}(n) = n+1$ • $\mathcal{M} \models_{\alpha} p(t_1, \ldots, t_n)$ iff $(\llbracket t_1 \rrbracket_{\alpha}, \ldots, \llbracket t_n \rrbracket_{\alpha}) \in p^{\mathcal{M}}$ definition is okay: n can be no list, since $n \in \mathcal{A}_{Nat} = \mathbb{N}$ has to be taken with care: we need to ensure that $(\llbracket t_1 \rrbracket_{\alpha}, \ldots, \llbracket t_n \rrbracket_{\alpha})$ and $p^{\mathcal{M}}$ fit together, • $\operatorname{Nil}^{\mathcal{M}} = []$ such that the membership test is type-correct • $\operatorname{app}^{\mathcal{M}}([x_1, \dots, x_n], [y_1, \dots, y_m]) = [x_1, \dots, x_n, y_1, \dots, y_m]$ • in general, such type-preservation statements need to be proven! again, this is sufficiently defined, since the arguments of $app^{\mathcal{M}}$ are two lists • however, often this is not even mentioned • $=^{\mathcal{M}} = \{(xs, xs) \mid xs \in \mathcal{A}_{\mathsf{l}} \text{ ist}\}$ • $\mathcal{M} \models \forall xs, ys, zs. \operatorname{app}(xs, \operatorname{app}(ys, zs)) = \operatorname{app}(\operatorname{app}(xs, ys), zs)$ • $\mathcal{M} \not\models \forall xs. \operatorname{app}(xs, xs) = xs$ $\mathcal{M} \models \exists xs. \operatorname{app}(xs, xs) = xs$ RT (DCS @ UIBK) Part 2 – A Logic for Program Specifications RT (DCS @ UIBK) Part 2 – A Logic for Program Specifications 25/44

26/44

Type-Checking
 inference trees are proofs that certain terms have a certain type
 inference trees cannot be used to show that a term is not typable
 want: executable algorithm that given Σ, V, and a candidate term, computes the type or detects failure
 in Haskell: function definition with type typeCheck :: Sig -> Vars -> Term -> Maybe Type
 preparation: error handling in Haskell with monads

Explicit Error-Handling with Maybe

```
• recall Haskell's builtin type

    recall Haskell's I/O-monad

      data Maybe a = Just a | Nothing
                                                                                                                  • IO a internally stores a state (the world) and returns result of type a
    • useful to distinguish successful from non-successful computations
                                                                                                                  • with do-blocks, we can sequentially perform IO-actions, and receive intermediate values;
                                                                                                                     core function for sequential composition: (>>=) :: I0 a \rightarrow (a \rightarrow I0 b) \rightarrow I0 b
         • Just x represents successful computation with result value x
                                                                                                                  • example
         • Nothing represents that some error occurred
                                                                                                                     greeting = do
    • example for explicit error handling: evaluating an arithmetic expression
                                                                                                                       x <- getLine -- IO String, action: read user input
      data Expr = Var String | Plus Expr Expr | Div Expr Expr
                                                                                                                       putStr "hello " -- IO (), action: print something
                                                                                                                       putStr x
                                                                                                                                     -- IO (), action: print something
      eval :: (String -> Integer) -> Expr -> Maybe Integer
                                                                                                                       return (x ++ x) -- IO String, no action, return result
      eval alpha (Var x)
                                 = Just (alpha x)

    also Maybe can be viewed as monad

      eval alpha (Plus e1 e2) = case (eval alpha e1, eval alpha e2) of

    Maybe a internally stores a state (successful or error) and returns result of type a

         (Just x1, Just x2) \rightarrow Just (x1 + x2)
                                                                                                                  • core functions for Maybe-monad
         -> Nothing
                                                                                                                        • (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
      eval alpha (Div e1 e2) = case (eval alpha e1, eval alpha e2) of
                                                                                                                         Nothing >>= _ = Nothing -- errors propagate
         (Just x1, Just x2) ->
                                                                                                                          Just x \rightarrow f = f x
             if x2 /= 0 then Just (x1 `div` x2) else Nothing
                                                                                                                       • return :: a -> Maybe a
         -> Nothing
                                                                                                                         return x = Just x
RT (DCS @ UIBK)
                                    Part 2 – A Logic for Program Specifications
                                                                                                         RT (DCS @ UIBK)
                                                                                                                                              Part 2 – A Logic for Program Specifications
                                                                                               29/44
```

Type-Checking

Error-Handling with Monads

Monads in Haskell	Type-Checking	Example: Expression-Evaluation in Monadic Style	Type-Checking
 Haskell's I/O-monad 		data Expr = Var String Plus Expr Expr Div Expr Expr	
 (>>=) :: IO a -> (a -> IO b) -> IO b return :: a -> IO a the error monad of type Maybe a (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b return :: a -> Maybe a 		<pre>eval :: (String -> Integer) -> Expr -> Maybe Integer eval alpha (Var x) = return (alpha x) eval alpha (Plus e1 e2) = do x1 <- eval alpha e1</pre>	
 generalization: arbitrary monads via type-class class Monad m where (>>=) :: m a -> (a -> m b) -> m b return :: a -> m a IO and Maybe are instances of Monad do-notation is available for all monads 		<pre>x2 <- eval alpha e2 return (x1 + x2) eval alpha (Div e1 e2) = do x1 <- eval alpha e1 x2 <- eval alpha e2 if x2 /= 0 then return (x1 `div` x2) else Nothing</pre>	
 monad-instances should satisfy the three monad laws (return x) >>= f = f x m >>= return = m (m >>= f) >>= g = m >>= (\ x -> f x >>= g) RT (DCS @ UIBK) Part 2 - A Logic for Program Specifications 	31/44	 advantages no pattern-matching on Maybe-type required any more, more readable code; hence monadic style simplifies reasoning about these programs easy to switch to other monads, e.g. for errors with messages Prelude already contains several functions for monads Part 2 - A Logic for Program Specifications 	32/44

30/44

Type-Checking

Type-Checking Algorithm

back to type-checking

Example Library Function for Monads

• mapM :: Monad	m => (a -> m b) -> [a] -> m [b]		 the algorithm can now be defined 	ned concisely as
<pre>similar to map :: (a -> b) -> [a] -> [b], just in monadic setting applies a monadic function sequentially to all list elements possible implementation mapM f [] = return [] mapM f (x : xs) = do y <- f x ys <- mapM f xs return (y : ys) consequence for Maybe-monad:</pre>		<pre>type Type = String type Var = String type FSym = String type Vars = Var -> Maybe Type type FSymInfo = ([Type], Type) type Sig = FSym -> Maybe FSymInfo data Term = Var Var Fun FSym [Term]</pre>		
			<pre>typeCheck :: Sig -> Vars typeCheck sigma vars (Va typeCheck sigma vars (Fu (tysIn,tyOut) <- sigma tysTs <- mapM (typeChecheck)</pre>	-> Term -> Maybe Type r x) = vars x n f ts) = do f
5 @ UIBK)	Part 2 – A Logic for Program Specifications	33/44	RT (DCS @ UIBK) P	art 2 – A Logic for Program Specifications

```
Part 2 – A Logic for Program Specifications
```

33/44

Type-Checking

Part 2 – A Logic for Program Specifications

Type-Checking

34/44

- Correctness of Type-Checking
- aim: prove correctness of type-checking algorithm
- (informal) proof is performed in two steps
 - if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then typeCheck sigma vars t = return tau
 - if typeCheck sigma vars t = return tau then $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- before these two steps are done, some alignment of the representation is performed
 - in the theory \mathcal{V} is set of type-annotated variables
 - in the program **vars** is a partial function from variables to types
 - obviously, these two representations can be aligned:

 $x: \tau \in \mathcal{V}$ is the same as vars x = return tau

similarly for function symbols we demand that

 $f: \tau_1 \times \cdots \times \tau_n \to \tau_0 \in \Sigma$

• moreover the term representations can be aligned, e.g.

$$f(t_1,\ldots,t_n)$$
 is the same as Fun f [t_1, ..., t_n]

from now on we mainly use mathematical notation assuming the obvious alignments,

even when executing Haskell programs ⁽⁰ IIIRK) Part 2 - A Logic for Program Specifications RT (DCS @ UIBK)

35/44

RT (DCS @ UIBK)

• hence by the definition of the algorithm: typeCheck $\Sigma \ V \ x = V \ x = return \ \tau_0$ Part 2 – A Logic for Program Specifications

Completeness of Type-Checking Algorithm if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then typeCheck $\Sigma \mathcal{V} t = return \tau$

- proof is by structural induction according to the definition of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- note that in the definition of the inductively defined set $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ the τ changes; therefore, the induction rule uses a binary property:

$$\frac{t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau} \quad \forall x, \tau_0. \ x : \tau_0 \in \mathcal{V} \longrightarrow P(x, \tau_0) \quad (*)}{P(t, \tau)}$$

$$\forall f, \tau_0, \dots, \tau_n, t_1, \dots, t_n. \ f : \tau_1 \times \dots \times \tau_n \to \tau_0 \in \Sigma \longrightarrow$$

$$P(t_1, \tau_1) \longrightarrow \dots \longrightarrow P(t_n, \tau_n) \longrightarrow P(f(t_1, \dots, t_n), \tau_0)$$

(*

- in our case $P(t,\tau)$ is typeCheck $\Sigma \mathcal{V} t = return \tau$
- base case:
 - let $x : \tau_0 \in \mathcal{V}$, aim is to prove $P(x, \tau_0)$
 - via the alignment we know $\mathcal{V} x = return \tau_0$ (where \mathcal{V} refers to the partial function within the algorithm)

Completeness of Type-Checking Algorithm

recall: $P(t,\tau)$ is typeCheck $\Sigma \mathcal{V} t = return \tau$

- it remains to prove (*), so let $f: \tau_1 \times \ldots \times \tau_n \to \tau_0 \in \Sigma$
- we have to prove $P(f(t_1,\ldots,t_n),\tau_0)$ using the induction hypothesis $P(t_i,\tau_i)$ for all $1\leq i\leq n$
- via the alignment we know $\Sigma f = return ([\tau_1, \ldots, \tau_n], \tau_0)$
- from the induction hypothesis we know that map (typeCheck Σ V) [t₁,...,t_n] = [return τ₁,..., return τ_n]
- hence, by the definition of mapM, mapM (typeCheck Σ V) [t₁,...,t_n] = return [τ₁,...,τ_n]
- hence by evaluating the Haskell-code we obtain $typeCheck \Sigma \mathcal{V} f(t_1, \ldots, t_n)$ $= if [\tau_1, \ldots, \tau_n] = [\tau_1, \ldots, \tau_n] then return \tau_0 else Nothing$ $= return \tau_0$ so $P(f(t_1, \ldots, t_n), \tau_0)$ is satisfied
- RT (DCS @ UIBK)

```
Part 2 – A Logic for Program Specifications
```

Soundness of Type-Checking Algorithm

if typeCheck $\Sigma \mathcal{V} t = return \tau$ then $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$

- we perform structural induction on t (w.r.t. untyped terms as defined by the Haskell datatype definition)
- the induction rule only mentions a unary property

$$\frac{\forall x. P(Var \ x) \quad (*)}{P(t: Term)}$$
$$\forall f, t_1, \dots, t_n. \ P(t_1) \longrightarrow \dots \longrightarrow P(t_n) \longrightarrow P(f(t_1, \dots, t_n)) \qquad (*)$$

• first attempt: define P(t) as

typeCheck
$$\Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$$

• then the induction hypothesis in the case $f(t_1, \ldots, t_n)$ for each t_i is

$$P(t_i) = (typeCheck \ \Sigma \ \mathcal{V} \ t_i = return \ \tau \longrightarrow t_i \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau})$$

- the IH is unusable as t_i will have type τ_i which in general differs from τ
- 37/44

Type-Checking

RT (DCS @ UIBK)

Part 2 – A Logic for Program Specifications

Induction Proofs with Arbitrary Variables

• previous slide: using

$$P(t) = (typeCheck \ \Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$$

as property in induction rule is too restrictive, leads to IH

 $P(t_i) = (typeCheck \ \Sigma \ \mathcal{V} \ t_i = return \ \tau \longrightarrow t_i \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau})$

- aim: ability to use arbitrary τ_i in IH instead of τ
- formal solution via universal quantification: define P and Q as follows and use P in induction

$$\begin{aligned} Q(t,\tau) &= (typeCheck \ \Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma,\mathcal{V})_{\tau}) \\ P(t) &= (\forall \tau. \ Q(t,\tau)) \end{aligned}$$

• effect: induction hypothesis for t_i will be $P(t_i) = (\forall \tau. Q(t_i, \tau))$ which in particular implies the desired $Q(t_i, \tau_i)$

Induction Proofs with Arbitrary Variables

• previous slide:

$$Q(t,\tau) = (typeCheck \ \Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau})$$
$$P(t) = (\forall \tau. \ Q(t,\tau))$$

- we now prove P(t) by induction on t, this time being quite formal
- base case: t = Var x

(

- we have to show $P(t) = P(Var \ x) = (\forall \tau. \ Q(Var \ x, \tau))$
- \forall -intro: pick an arbitrary τ and show $Q(Var \ x, \tau)$, i.e., typeCheck $\Sigma \ V \ (Var \ x) = return \ \tau \longrightarrow x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- \longrightarrow -intro: assume typeCheck $\Sigma \mathcal{V}$ (Var x) = return τ , and then show $x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- simplify assumption typeCheck $\Sigma \mathcal{V} (Var \ x) = return \ \tau$ to $\mathcal{V} \ x = return \ \tau$
- by alignment this is identical to $x:\tau\in\mathcal{V}$
- use introduction rule of $\mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ to finally show $x \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$

note that step \circ is the only additional (but obvious) step that was required to deal with the auxiliary universal quantifier

38/44

Type-Checking

Induction Proofs with Arbitrary Variables: Step Case

$$\begin{aligned} Q(t,\tau) &= (typeCheck \ \Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma,\mathcal{V})_{\tau} \\ P(t) &= (\forall \tau. \ Q(t,\tau)) \end{aligned}$$

• step case: $t = f(t_1, \ldots, t_n)$

- we have to show $P(f(t_1, \ldots, t_n)) = (\forall \tau. Q(f(t_1, \ldots, t_n), \tau))$ $\circ \forall$ -intro: pick an arbitrary τ and show $Q(f(t_1, \ldots, t_n), \tau)$, i.e.,
- typeCheck $\Sigma \mathcal{V} f(t_1, \ldots, t_n) = return \tau \longrightarrow f(t_1, \ldots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ • \longrightarrow -intro: assume typeCheck $\Sigma \mathcal{V} f(t_1, \ldots, t_n) = return \tau$, and show
- \longrightarrow intro: assume typeCheck $\Sigma \neq f(t_1, \dots, t_n) = return \tau$, and s $f(t_1, \dots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- by the assumption $typeCheck \Sigma \mathcal{V} f(t_1, \ldots, t_n) = return \tau$ and by definition of typeCheck, we know that there must be types τ_1, \ldots, τ_n such that mapM ($typeCheck \Sigma \mathcal{V}$) $[t_1, \ldots, t_n] = return [\tau_1, \ldots, \tau_n]$, and hence $typeCheck \Sigma \mathcal{V} t_i = return \tau_i$ for all $1 \leq i \leq n$
- again using the assumption and the algorithm definition we conclude that $\Sigma f = return ([\tau_1, \dots, \tau_n], \tau)$ and thus, $f : \tau_1 \times \dots \times \tau_n \to \tau \in \Sigma$
- $\circ~$ by the IH we conclude $P(t_i)$ and hence $Q(t_i,\tau_i)$ using $\forall\text{-elimination}$
- in combination with $typeCheck \Sigma \mathcal{V} t_i = return \tau_i$ we arrive at $t_i \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_i}$ and can finally apply the introduction rules for typed terms to conclude $f(t_1, \ldots, t_n) \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau_i}$

RT (DCS @ UIBK)

Type-Checking

$$Q(t,\tau) = (typeCheck \ \Sigma \ \mathcal{V} \ t = return \ \tau \longrightarrow t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau})$$
$$P(t) = (\forall \tau. \ Q(t,\tau))$$

- the method to make a variable arbitrary within an induction proof is always the same, via universal quantification
- $\bullet\,$ the required steps within the formal reasoning (marked with $\circ\,$ in the previous proof) are also automatic
- therefore, in the following we will just write statements like
 - "we perform induction on x for arbitrary y and z"

or

"we prove P(x, y, z) by induction on x for arbitrary y and z"

without doing the universal quantification explicitly

• the effect of introducing arbitrary variables is a generalization: instead of proving P(x, y, z) for a fixed y and z, we show it for all y and z

RT (DCS @ UIBK)

Part 2 – A Logic for Program Specifications

42/44

Type-Checking

41/44

Type-Checking

Summary of Type-Checking

- definition of typed terms via inference rules
- equivalent definition via type-checking algorithm
- both representations have their advantages
 - inference rules come with convenient induction principle
 - type-checking can also detect typing errors, i.e., it can show that something is not member of an inductively defined set
- note: we have verified a first non-trivial program!
 - given the precise semantics of typed terms
 - via an intuitive meaning of what inductively defined sets are
 - with an intuitive meaning of how Haskell evaluates
 - with intuitively created alignments

Summary of Chapter

- inductively defined sets give rise to structural induction rule
- inductively defined sets can be used to model datatypes of (first-order non-polymorphic) functional programs
- many sorted/typed terms and predicate logic allows adequate modeling of datatypes
- verified type-checking algorithm
- induction proofs with "arbitrary" variables