

Program Verification

Part 4 - Checking Well-Definedness of Functional Programs

René Thiemann

Department of Computer Science

Overview

- recall: a functional program is well-defined if
 - it is pattern disjoint,
 - it is pattern complete, and
- well-definedness is prerequisite for standard model, for derived theorems, . . .
- task: given a functional program as input, ensure well-definedness
 - known: type-checking algorithm
 - known: algorithm for checking pattern disjointness
 - missing: algorithm for type-inference
 - missing: algorithm for deciding pattern completeness
 - missing: methods to ensure termination
- all of these missing parts will be covered in this chapter

Type-Checking with Implicit Variables

Type-Inference

- structure of functional programs data-type definitions
 - function definitions: type of new function + defining equations
- not mentioned: type of variables
- in proseminar: work-around via fixed scheme which does not scale
 - singleton characters get type Nat
 - words ending in "s" get type List
- aim: infer suitable type of variables automatically
- example: given FP

```
append: List \times List \rightarrow List
append(Cons(x, y), z) = Cons(x, append(y, z))
```

append(Nil, x) = x

whereas x: List in the second equation

we should be able to infer that x : Nat, y : List and z : List in the first equation,

Interlude: Maybe-Type for Errors • recall type-checking algorithm (variable case omitted)

tysTs <- mapM (typeCheck sigma vars) ts if tysTs == tysIn then return tyOut else Nothing

typeCheck sigma vars (Var x) = vars x typeCheck sigma vars (Fun f ts) = do

(tvsIn,tvOut) <- sigma f

typeCheck :: Sig -> Vars -> Term -> Maybe Type

- Maybe-type is only one possibility to represent computational results with failure
- let us abstract from concrete Maybe-type: • introduce new type Check to represent a result or failure
 - type Check a = Maybe a
 - function return :: a -> Check a to produce successful results function to raise a failure
 - failure :: Check a failure = Nothing

 - convenience function: asserting a property assert :: Bool -> Check ()

assert p = if p then return () else failure Part 4 – Checking Well-Definedness of Functional Programs RT (DCS @ UIBK)

Type-Checking with Implicit Variables

Making Type-Checking More Abstract

original type-checking algorithm

with new abstract types and functions

return tyOut

```
typeCheck :: Sig -> Vars -> Term -> Maybe Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do
  (tysIn,tyOut) <- sigma f
  tysTs <- mapM (typeCheck sigma vars) ts
  if tysTs == tysIn then return tyOut else Nothing</pre>
```

typeCheck :: Sig -> Vars -> Term -> Check Type
typeCheck sigma vars (Var x) = vars x
typeCheck sigma vars (Fun f ts) = do

(tysIn,tyOut) <- sigma f
tysTs <- mapM (typeCheck sigma vars) ts
assert (tysTs == tysIn)</pre>

advantage: readability, change Check-type easily

Back to Type-Checking and Type-Inference

 known: type-checking algorithm typeCheck :: Sig -> Vars -> Term -> Check Type

- type Sig = FSym -> Check ([Type], Type) Σ type Vars = Var → Check Type → V
- typeCheck takes Σ and \mathcal{V} and delivers type of term
- we want a function that works in the other direction: it gets an intended type as input, and delivers a suitable type for the variables

```
inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
```

• then type-checking an equation without explicit Vars is possible typeCheckEqn :: Sig -> (Term, Term) -> Check () typeCheckEqn sigma (Var x, r) = failure

typeCheckEqn sigma (1 @ (Fun f _), r) = do (.tv) <- sigma f

```
vars <- inferType sigma ty 1</pre>
tyR <- typeCheck sigma (\ x -> lookup x vars) r
assert (ty == tyR)
```

Type-Inference Algorithm

 note: upcoming algorithm only infers types of variables (in polymorphic setting often also type of function symbols is inferred)

```
inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
inferType sigma ty (Var x) = return [(x,ty)]
inferType sigma ty (Fun f ts) = do
  (tvsIn.tvOut) <- sigma f
  assert (length tysIn == length ts)
  assert (tyOut == ty)
 varsL <- mapM (\ (ty, t) -> inferType sigma ty t) (zip tysIn ts)
 let vars = nub (concat varsL) -- nub removes duplicates
  assert (distinct (map fst vars))
 return vars
```

distinct :: Eq a => [a] -> Bool
distinct xs = length (nub xs) == length xs

Soundness of Type-Inference Algorithm

- properties
 - if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $infer_type \Sigma \tau t = return (\mathcal{V} \cap \mathcal{V}ars(t))$
 - if $infer_type \Sigma \tau t = return V$ then
 - \bullet \mathcal{V} is well-defined (no conflicting variable assignments) and
 - $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$
- properties can be shown in similar way to type-checking algorithm, cf. slides 2/35-42
- note that 'if $t \in \mathcal{T}(\Sigma, \mathcal{V})_{\tau}$ then $infer_type \Sigma \tau t \neq failure$ ' is a property which is not strong enough when performing induction

Changing the Error Monad

Weakness of Maybe-Type for Errors

- situation: several functions for checking properties of terms, equations, which can be assembled to check functional programs w.r.t. slides 3/4 (data-type definitions), 3/15 (function definitions) and partly 3/45 (well-definedness)
 - inferType :: Sig -> Type -> Term -> Check [(Var, Type)]
 - typeCheck :: Sig -> Vars -> Term -> Check Type
 - typeCheckEqn :: Sig -> (Term, Term) -> Check ()
- problem: if checks are not successful, we just get result Nothing
- desired: informative error message why a functional program is refused
- possible solution: use more verbose error type than Maybe
 type Check a = Either String a

Changing Implementation of Interface

- current interface for error type
 - type Check a = Maybe a
 - function return :: a -> Check a
 - function assert :: Bool -> Check ()
 - function failure :: Check a
 - do-blocks, monadic-functions such as mapM, etc.
- it is actually easy to change to Either-type for errors
 - type Check a = Either String a
 - return, do-blocks and mapM are unchanged, since these are part of generic monad interface
 - functions assert and failure need to be changed, since they now require error messages

```
failure :: String -> Check a
failure = Left
assert :: Bool -> String -> Check ()
assert p err = if p then return () else failure err
```

Changing Algorithms for Checking Properties • adapting algorithms often only requires additional error messages

- adapting algorithms often only requires additional error messages
- typeCheck :: Sig -> Vars -> Term -> Check Type typeCheck sigma vars (Var x) = vars x typeCheck sigma vars (Fun f ts) = do (tysIn,tyOut) <- sigma f tysTs <- mapM (typeCheck sigma vars) ts assert (tysTs == tysIn) return tyOut • after change (type Check a = Either String a) typeCheck :: Sig -> Vars -> Term -> Check Type
 - typeCheck sigma vars (Var x) = ...
 typeCheck sigma vars t@(Fun f ts) = do
 ...

• before change (type Check a = Maybe a)

```
assert (tysTs == tysIn) (show t ++ " ill-typed")
```

. . .

Changing Algorithms for Checking Properties, Continued

- example requiring more changes; with type Check a = Maybe a
 typeCheckEqn sigma (Var x, r) = failure
 typeCheckEqn sigma (l @ (Fun f _), r) = do
 (_,ty) <- sigma f
 vars <- inferType sigma ty l
 tyR <- typeCheck sigma (\ x -> lookup x vars) r
 assert (tv == tvR)
 - typeCheckEqn sigma (Var x, r) = failure "var as lhs"
 typeCheckEqn sigma (1 @ (Fun f _), r) = do
 ...
 - tyR <- typeCheck sigma (\ x -> lookup x vars) r
 assert (ty == tyR) "types of lhs and rhs don't match"
- problem: lookup produces Maybe, not Either String

• new version with type Check a = Either String a

• solution: use maybeToEither :: e -> Maybe a -> Either e a

Fixed Type-Checking Algorithm with Error Messages import Data.Either.Utils -- for maybeToEither

-- import requires MissingH lib; if not installed, define it yourself:

-- maybeToEither e Nothing = Left e -- maybeToEither (Just x) = return x

```
typeCheckEqn sigma (Var x, r) = failure "var as lhs"
typeCheckEqn sigma (1 @ (Fun f _), r) = do
```

 $(_,ty) \leftarrow sigma f$ vars <- inferType sigma ty 1</pre> tvR <- typeCheck

sigma

r

assert (ty == tyR) "types of lhs and rhs don't match"

Processing Functional Programs

Processing Functional Programs

- aim: write program which takes
 - functional program as input (data type definitions + function definitions)
 - checks the syntactic requirements
 - stores the relevant information in some internal representation
 - later: also checks well-definedness
- such a program is essential part of a compiler
- program should be easy to verify

Recall: Data Type Definitions

- given: set of types $\mathcal{T}y$, signature $\Sigma = \mathcal{C} \uplus \mathcal{D}$
- each data type definition has the following form

data
$$au=c_1: au_{1,1} imes\ldots imes au_{1,m_1} o au$$

$$\mid \ \ \ \ \ \ \ \ \ \ \ \mid \ c_n: au_{n,1} imes\ldots imes au_{n,m_n} o au$$

- $\tau \notin \mathcal{T}y$
- $c_1, \ldots, c_n \notin \Sigma$ and $c_i \neq c_j$ for $i \neq j$
- each $\tau_{i,j} \in \{\tau\} \cup \mathcal{T}y$
- exists c_i such that $\tau_{i,j} \in \mathcal{T}y$ for all j
- effect: add new type and new constructors
 - $\mathcal{T}y := \mathcal{T}y \cup \{\tau\}$
 - $\mathcal{C} := \mathcal{C} \cup \{c_1 : \tau_{1,1} \times \ldots \times \tau_{1,m_1} \to \tau, \ldots, c_n : \tau_{n,1} \times \ldots \times \tau_{n,m_n} \to \tau\}$

where

fresh type name

non-recursive constructor

fresh and distinct constructor names only known types

Existing Encoding of Part 2: Signatures and Terms

```
type Check a = ... -- Maybe a or Either String a
```

```
type Var = String
type FSym = String
type Vars = Var -> Check Type
type FSymInfo = ([Type], Type)
type Sig = FSym -> Check FSymInfo
```

type Type = String

data Term = Var Var | Fun FSym [Term]

20/101

Encoding Functional Programs in Haskell

data FunctionDefinition = ... -- later

([DataDefinition], [FunctionDefinition])

type FunctionalProg =

type Cons = SigList

-- internal representation
type SigList = [(FSym, FSymInfo)] -- signatures as list
type Defs = SigList -- list of defined symbols

type Equations = [(Term, Term)] -- all function equations
-- all combined in Haskell-type; it also stores known types

data DataDefinition = Data Type [(FSym, FSymInfo)]

-- input: unchecked data-type definitions and function definitions

-- list of constructors

-- checking single data type definition
processDataDefinition ::
 ProgInfo -> DataDefinition -> Check ProgInfo

data ProgInfo = ProgInfo [Type] Cons Defs Equations

Checking a Single Data Definitions

```
processDataDefinition
    (ProgInfo tys cons defs eqs)
    (Data ty newCs)
= do
    assert (not (elem ty tys))
    let newTys = ty : tys
    assert (distinct (map fst newCs))
    assert (all (\ (c,_) -> all (/= c) (map fst (cons ++ defs))) newCs)
    assert (all (\ (_,(tysIn,tyOut)) ->
      tvOut == tv &&
      all (\ ty -> elem ty newTys) tysIn) newCs)
    assert (any
      (\ (\_,(tysIn,\_)) \rightarrow all (/= ty) tysIn) newCs)
    return (ProgInfo newTys (newCs ++ cons) defs eqs)
```

Checking Several Data Definitions

• processing many data definitions can be easily done by using foldM: predefined monadic version of foldl

```
foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b
foldM f e [] = return e
foldM f e (x : xs) = do
    d <- f e x
    foldM f d xs</pre>
```

```
processDataDefinition ::
   ProgInfo -> DataDefinition -> Check ProgInfo
processDataDefinition = ... -- previous slide
```

```
processDataDefinitions ::
   ProgInfo -> [DataDefinition] -> Check ProgInfo
```

processDataDefinitions = foldM processDataDefinition

Checking Function Definitions w.r.t. Slide 3/15

```
data FunctionDefinition = Function
 FSym
        -- name of function
 FSymInfo -- type of function
  [(Term, Term)] -- equations
processFunctionDefinition
  :: ProgInfo -> FunctionDefinition -> Check ProgInfo
processFunctionDefinition = ... -- exercise
processFunctionDefinitions ::
 ProgInfo -> [FunctionDefinition] -> Check ProgInfo
processFunctionDefinitions =
 foldM processFunctionDefinition
```

Checking Functional Programs

```
initialProgInfo = ProgInfo [] [] []
```

```
processProgram :: FunctionalProg -> Check ProgInfo
processProgram (dataDefs, funDefs) = do
  pi <- processDataDefinitions initialProgInfo dataDefs
  processFunctionDefinitions pi funDefs</pre>
```

Current State

- processProgram :: FunctionalProg -> Check ProgInfo is Haskell program to check user provided functional programs, whether they adhere to the specification of functional programs w.r.t. slides 3/4 and 3/15
- its functional style using error monads permits to easily verify its correctness
 - no induction required
 - based on assumption that builtin functions behave correctly, e.g., all, any, nub, ...
- missing: checks for well-defined functional programs w.r.t. slide 3/45

Checking Pattern Disjointness

Deciding Pattern Disjointness

- program is pattern disjoint if for all $f: \tau_1 \times \cdots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_1 \in \mathcal{T}(\mathcal{C})_{\tau_1}, \ldots, t_n \in \mathcal{T}(\mathcal{C})_{\tau_n}$ there is at most one equation $\ell = r$ in the program, such that ℓ matches $f(t_1, \ldots, t_n)$
- in proseminar it was proven that pattern disjointness is equivalent to the following condition: for each pair of distinct equations $\ell_1=r_1$ and $\ell_2=r_2$, ℓ_1 and a variable renamed variant of ℓ_2 do not unify
- key missing part for checking pattern disjointness is an algorithm for unification: given two terms s and t, decide $\exists \sigma. s\sigma = t\sigma$

Unification Algorithm of Martelli and Montanari

- input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$
- question: is U solvable, i.e., does there exist a solution σ , a substitution satisfying $\forall i \in \{1, \dots, n\}. \ s_i \sigma = t_i \sigma$
- two different kinds of output:
 - unification problem in solved form:

$$\{x_1\stackrel{?}{=} v_1,\ldots,x_m\stackrel{?}{=} v_m\}$$
 with distinct x_j 's

solved forms can be interpreted as substitution

$$\sigma(x) = \begin{cases} v_i, & \text{if } x = x_i \\ x, & \text{otherwise} \end{cases}$$

and this σ will be solution of U

- ullet \bot , indicating that U is not solvable
- algorithm itself is build via one-step relation → which is applied as long as possible

• input: unification problem $U = \{s_1 \stackrel{?}{=} t_1, \dots, s_n \stackrel{?}{=} t_n\}$ • output: solution of U via solved form or \bot , indicating unsolvability

algorithm applies → as long as possible; → is defined as

Unification Algorithm of Martelli and Montanari, continued

$$U \cup \{t \stackrel{?}{=} t\} \leadsto U$$

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} f(v_1, \dots, v_k)\} \leadsto U \cup \{u_1 \stackrel{?}{=} v_1, \dots, v_k \stackrel{?}{=} v_k\}$$

$$U \cup \{f(u_1, \dots, u_k) \stackrel{?}{=} g(v_1, \dots, v_\ell)\} \rightsquigarrow \bot, \text{ if } f \neq g \lor k \neq \ell$$

$$U \cup \{f(u_1, \dots, u_k) = g(v_1, \dots, v_\ell)\}$$

$$U \cup \{f(\dots) \stackrel{?}{=} x\} \leadsto U \cup \{x \stackrel{?}{=} f(\dots)\}$$

$$U \cup \{f(\ldots) \stackrel{f}{=} x\} \leadsto U \cup \{x \stackrel{f}{=} f(\ldots)\}$$

$$U \cup \{x \stackrel{?}{=} f(...)\} \leadsto \bot, \text{ if } x \in \mathcal{V}ars(f(...))$$

$$f(...)\} \rightsquigarrow \bot$$
, if $x \in \mathcal{V}ars$

if $x \notin \mathcal{V}ars(t)$ and x occurs in U

$$U \cup \{x \stackrel{?}{=} f(...)\} \leadsto \bot, \text{ if } x \in \mathcal{V}ars(f(U \cup \{x \stackrel{?}{=} t\} \leadsto U\{x/t\} \cup \{x \stackrel{?}{=} t\}\})$$

notation $U\{x/t\}$: apply substitution $\{x/t\}$ on all terms in U (lhs + rhs)

$$\stackrel{?}{=}t\},$$

Part 4 - Checking Well-Definedness of Functional Programs

(eliminate)

29/101

(decompose)

(delete)

(clash)

Checking Pattern Disjointness

Correctness of Unification Algorithm

- we only state properties (proofs: see term rewriting lecture)
 - → terminates
 - normal form of \leadsto is \bot or a solved form
 - whenever $U \rightsquigarrow V$, then U and V have same solutions
 - in total: to solve unification problem U
 - ullet determine some normal form V of U
 - if $V = \bot$ then U is unsolvable
 - ullet otherwise. V represents a substitution that is a solution to U
- note that → is not confluent
 - $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{x/y}{\leadsto} \{x \stackrel{?}{=} y, y \stackrel{?}{=} y\} \leadsto \{x \stackrel{?}{=} y\}$
 - $\{x \stackrel{?}{=} y, y \stackrel{?}{=} x\} \stackrel{y/x}{\leadsto} \{x \stackrel{?}{=} x, y \stackrel{?}{=} x\} \leadsto \{y \stackrel{?}{=} x\}$

Correctness of an Implementation of a (Unification) Algorithm

- any concrete implementation will make choices
 - preference of rules
 - ullet selection of pairs from U
 - ullet representation of sets U
 - (pivot-selection in quicksort)
 - (order of edges in graph-/tree-traversals)
 - ..
- task: how to ensure that implementation is sound
- solution: refinement proof
 - aim: reuse correctness of abstract algorithm (→)
 - define relation between representations in concrete and abstract algorithm (this was called
 - alignment before and done informally)
 show that concrete algorithm has less behaviour, i.e., every result of concrete (deterministic) algorithm can be related to some result of (non-deterministic) abstract algorithm
 - benefit: clear separation between
 - Terre. Clear separation between
 - soundness of abstract algorithmsoundness of implementation

(solves unification problems) (implements abstract algorithm)

A Concrete Implementing of the Unification Algorithm

subst x t = applySubst (v -> if v == x then t else Var v)

subst :: Var -> Term -> Term -> Term

Checking Pattern Disjointness

unify :: [(Term, Term)] -> Check [(Var, Term)] unifv u = unifvMain u []

unifyMain :: [(Term, Term)] -> [(Var, Term)] -> Check [(Var, Term)] unifyMain [] v = return v -- return solved form unifvMain ((Fun f ts, Fun g ss) : u) v = doassert (f == g && length ts == length ss) -- clash unifyMain (zip ts ss ++ u) v -- decompose unifyMain ((Fun f ts, x) : u) v = unifyMain ((x, Fun f ts) : u) v -- swap unifyMain ((Var x, t) : u) v = if Var x == t then unifyMain u v -- delete else do assert (not (x `elem` varsTerm t)) -- occurs check

-- eliminate

unifvMain

 $(map (\setminus (1,r) \rightarrow (subst x t 1, subst x t r)) u)$ $((x,t) : map (\setminus (y, s) \rightarrow (y, subst x t s)) v)$

Notes on Implementation

- it is non-trivial to prove soundness of implementation, since there are several differences w.r.t. →
 - $unify_main$ takes two parameters u and v
 - ullet these represent one unification problem $u \cup v$
 - rule-application is not tried on v, only on u
 - we need to know that v is in normal form w.r.t. \rightsquigarrow
 - in (occurs check)-rule, the algorithm has no test that rhs is function application
 - we need to show that this will follow from other conditions
 - ullet in (elimination)-rule, the algorithm substitutes only in rhss of v
 - we need to know that substituting in lhss of v has no effect
 - in (elimination)-rule, the algorithm does not check that x occurs in remaining problem
 - we need to check that consequences don't harm

Soundness via Refinement: Setting up the Relation

- relation \sim formally aligns parameters of concrete algorithm (u and v) with parameters of abstract algorithm (U); \sim also includes invariants of implementation
 - set converts list to set, we identify $s \stackrel{?}{=} t$ with (s,t)
 - $(u,v) \sim U$ iff
 - $U = set \ u \sqcup set \ v$
 - $set \ v$ is in normal form w.r.t. \rightsquigarrow (notation: $set \ v \in NF(\rightsquigarrow)$), and
 - for all $(x,t) \in set \ v$: x does not occur in u
- since alignment between concrete and abstract parameters is specified formally, alignment properties of auxiliary functions can also be made formal
 - $set(x:xs) = \{x\} \cup set(xs)$
 - $set (xs ++ ys) = set xs \cup set us$
 - $set\ (zip\ [x_1,\ldots,x_n]\ [y_1,\ldots,y_n]) = \{(x_1,y_1),\ldots,(x_n,y_n)\}$
 - $set\ (map\ f\ [x_1,\ldots,x_n]) = \{f\ x_1,\ldots,f\ x_n\}$
 - $subst x t s = s\{x/t\}$

 - these properties can be proven formally and also be applied formally

(although we don't do it in the upcoming proof)

Soundness via Refinement: Main Statement

- define $set_maybe\ Nothing = \bot$, $set_maybe\ (Just\ w) = set\ w$
- property: whenever $(u,v) \sim U$ and $unify_main\ u\ v = res$ then $U \leadsto^! set_maybe\ res$
- once property is established, we can prove that implementation solves unification problems
 - assume input u, i.e., invocation of $unify \ u$ which yields result res
 - hence, $unify_main\ u\ [] = res$
 - moreover, $(u, []) \sim set \ u$ by definition of \sim
 - via property conclude $set u \rightsquigarrow ! set_maybe res$

Proving the Refinement Property

- property P(u, v, U): $(u, v) \sim U \wedge unify_main\ u\ v = res \longrightarrow U \leadsto^! set_maybe\ res$
- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$
- we prove the property P(u, v, U) by induction on u and v w.r.t. the algorithm for arbitrary U, i.e., we consider all left-hand sides and can assume that the property holds for all recursive calls; induction w.r.t. algorithm gives partial correctness result (assumes termination)
- in the lecture, we will cover a simple, a medium, and the hardest case
- case 1 (arguments [] and v):
 - ullet we have to prove P([],v,U), so assume
 - (*) ([], v) $\sim U$ and (**) $unify_main$ [] v = res
 - from (*) conclude $U = set \ v$ and $set \ v \in NF(\leadsto)$
 - from (**) conclude $res = Just \ v$ and hence, $set_maybe \ res = set \ v$
 - we have to show $U \rightsquigarrow^! set_maybe \ res$, i.e., $set \ v \rightsquigarrow^! set \ v$ which is satisfied since $set \ v \in NF(\leadsto)$

- P(u, v, U): $(u, v) \sim U \wedge unify_main\ u\ v = res \longrightarrow U \leadsto^! set_maybe\ res$
- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \wedge set \ v \in NF(\leadsto) \wedge \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 2 (arguments (f(ts), g(ss)) : u and v)

- we have to prove P((f(ts), g(ss)) : u, v, U), so assume
 - (*) $((f(ts), g(ss)) : u, v) \sim U$ and
- (**) $unify_main ((f(ts), g(ss)) : u) v = res$
- consider sub-cases
 - $\neg (f = g \land length \ ts = length \ ss)$:
 - from (**) conclude set_maybe $res = \bot$
 - from (*) conclude $f(ts) \stackrel{?}{=} g(ss) \in U$ and hence $U \rightsquigarrow \bot$ by (clash)
 - consequently, $U \rightsquigarrow^! set_maybe \ res$
 - $f = g \land length \ ts = length \ ss$:
 - from (**) conclude $res = unify_main ((f(ts), g(ss)) : u) \ v = unify_main (zip \ ts \ ss \ ++ \ u) \ v$
 - from (*) conclude $res = unijy_main$ ((f(ts), g(ss)) : u) $v = unijy_main$ $(zip\ is\ ss\ ++\ u)$ • from (*) and alignment for $zip\ and\ ++$ conclude $U = \{f(ts) \stackrel{?}{=} g(ss)\} \cup set\ u \cup set\ v$ and
 - hence $U \leadsto set\ (zip\ ts\ ss\ ++\ u) \cup set\ v =: V\$ by (decompose)
 we get $P(zip\ ts\ ss\ ++\ u,v,V)$ as IH; $(zip\ ts\ ss\ ++\ u,v) \sim V$ follows from (*), so
 - $U \leadsto V \leadsto^! set_maybe\ res$

- P(u, v, U): $(u, v) \sim U \wedge unify_main \ u \ v = res \longrightarrow U \rightsquigarrow^! set_maybe \ res$
- $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \land set \ v \in NF(\leadsto) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 4 (arguments (x, t) : u and v)

- we have to prove P((x,t):u,v,U), so assume
 - (*) $((x,t):u,v) \sim U$ and
 - (**) $unify_main((x,t):u) v = res$
- consider sub-cases (where the red part is not triggered by structure of algorithm)
 - $x \neq t \land x \notin \mathcal{V}ars(t) \land x$ occurs in $set \ u \cup set \ v$:
 - define $u' = map(\lambda(l, r), (subst \ x \ t \ l, subst \ x \ t \ r)) \ u$
 - define $v' = map(\lambda(y, s), (y, subst \ x \ t \ s)) \ v$
 - define $V = (set \ u \cup set \ v)\{x/t\} \cup \{x \stackrel{?}{=} t\}$
 - from (**) conclude $res = unify_main\ ((x,t):u)\ v = unify_main\ u'\ ((x,t):v')$
 - from IH conclude P(u',(x,t):v',V) and hence, $(u',(x,t):v')\sim V\longrightarrow V \longrightarrow !$ set_maybe res
 - for proving $U \rightsquigarrow^! set_maybe \ res$ it hence suffices to show $(u',(x,t):v') \sim V$ and $U \rightsquigarrow V$
 - $U \stackrel{(*)}{=} \{x \stackrel{?}{=} t\} \cup set \ u \cup set \ v \leadsto (set \ u \cup set \ v) \{x/t\} \cup \{x/t\} = V$ by (eliminate) because of preconditions

• $(u,v) \sim U \longleftrightarrow U = set \ u \cup set \ v \land set \ v \in NF(\leadsto) \land \forall (x,t) \in set \ v. \ x \notin \mathcal{V}ars(u)$

case 4 (arguments (x, t) : u and v)

• we have to prove P((x,t):u,v,U), so assume (*) $((x,t):u,v)\sim U$ and ...

and consider sub-case $x \neq t \land x \notin \mathcal{V}ars(t) \land x$ occurs in $set \ u \cup set \ v$:

- define $u' = map (\lambda(l, r), (subst x t l, subst x t r)) u$ • define $v' = map(\lambda(y, s), (y, subst x t s)) v$
- define $V = (set \ u \cup set \ v) \{x/t\} \cup \{x \stackrel{?}{=} t\}$
- we still need to show $(u', (x, t) : v') \sim V$
- since (*) holds, we know $\forall (y,s) \in set \ v. \ x \neq u$
- hence, $v' = map(\lambda(y, s), (subst \ x \ t \ y, subst \ x \ t \ s)) \ v$
- so, $V = (set \ u)\{x/t\} \cup \{x \stackrel{?}{=} t\} \cup (set \ v)\{x/t\} = set \ u' \cup set \ ((x,t) : v')$

- we show $\forall (y,s) \in set\ ((x,t):v').\ y \notin \mathcal{V}ars(u')$ as follows:
- $x \notin \mathcal{V}ars(u')$ since $x \notin \mathcal{V}ars(t)$; and if $(y,s) \in set\ v'$, then $(y,s') \in set\ v$ for some s' and by (*) we conclude $y \notin \mathcal{V}ars((x,t):u)$; thus, $y \notin \mathcal{V}ars((set\ u)\{x/t\}) = \mathcal{V}ars(u')$
- we finally show $set((x,t):v') \in NF(\leadsto)$: so, assume to the contrary that some step is applicable; by the shape of set((x,t):v') we know that the step can only be (eliminate), (delete) or (occurs check); all of these cases result in a contradiction by using the available

facts

Proving the Refinement Property

- · remaining cases: similar, cf. exercises
- summary
 - non-trivial implementation of abstract unification algorithm →
 - optimizations required additional invariants, encoded in refinement relation
 - proof of correctness can be done formally
 - induction + case analysis proof uses mostly the structure of the Haskell code;
 exception: case analysis on "x occurs in set u ∪ set v"
 - most cases can easily be solved, after having identified suitable invariants
 - fully reuse correctness of
 - we only proved partial correctness
 - termination of implementation: consider lexicographic measure

$$(\underbrace{|\mathcal{V}ars(set\ u)|}_{(eliminate)},\underbrace{|u|}_{(decomp),(delete)},\underbrace{length\ [x\mid (t,\mathit{Var}\ x)\leftarrow u]}_{(swap)})$$

Checking Pattern Completeness

Checking Pattern Completeness

- reminder: program is pattern complete, if for all $f: \tau_1 \times \ldots \times \tau_n \to \tau \in \mathcal{D}$ and all $t_i \in \mathcal{T}(\mathcal{C})_{\tau_i}$ there is some lhs that matches $f(t_1, \ldots, t_n)$
- idea of abstract algorithm
 - a pattern problem is a set P of pairs (t, L) where
 - \bullet t is a term, representing the set of all its constructor ground instances
 - ullet L is a set of left-hand sides that potentially match instances of t
 - initially, $P = \{(f(x_1, \dots, x_n), \text{set of all lhss of } f\text{-equations}) \mid f \in \mathcal{D}\}$
 - \bullet whenever some left-hand side $\ell \in L$ cannot match any instance of t anymore, it can be removed
 - whenever L becomes empty, then no instance of t can be matched
 - whenever all constructor ground instances of t are matched by L, then (t,L) can be removed from P
 - when P becomes empty, pattern completeness should be guaranteed
 - \bullet if none of the above is applicable, we instantiate t
- initial task: think about exact statement, what kind of property of pattern problem we are investigating (similar to definition of solution of unification problem)

Semantics of Pattern Problems

- in the following algorithm and proofs, we always consider type-correct terms and substitutions w.r.t. $\Sigma = \mathcal{C} \cup \mathcal{D}$, but do not mention this explicitly
- ullet a pattern problem is a set P of pairs (t,L) consisting of a term t and a set of terms L
- P is complete if for all $(t,L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- obviously, $P = \emptyset$ is complete
- we define \perp as additional pattern problem, which is not complete
- define $L_{init,f}$ as the set of all lhss of f-equations of the program
- define $P_{init} = \{(f(x_1, \dots, x_n), L_{init,f}) \mid f \in \mathcal{D}\}$
- ullet consequence: program is pattern complete iff P_{init} is complete

Deciding Completeness of Pattern Problems

- we develop abstract algorithm that is similar to abstract unification algorithm, it is defined via a one step relation → that transforms pattern problems into equivalent simpler problems
- ullet it uses the matching algorithm of slides 3/23-29 (with detailed error results) as auxiliary algorithm

•
$$P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P$$
, if ℓ matches t (match)

•
$$P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$$
, if $match \ \ell \ t$ clashes (clash)

•
$$P \cup \{(t,\varnothing)\} \rightharpoonup \bot$$
 (fail)

•
$$P \cup \{(t,L)\} \rightharpoonup P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$$
, if (split)

- $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x
- the type of x is τ
- τ has n constructors c_1, \ldots, c_n
- $\sigma_i = \{x/c_i(x_1, \dots, x_k)\}$ where k is the arity of c_i and the x_i 's are distinct fresh variables

Checking Pattern Completeness

Example consider

then we have

data Bool = True : Bool | False : Bool

```
\begin{split} P_{init} &= \{(\mathsf{conj}(x_1, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ &\stackrel{(s)}{\longrightarrow} \{(\mathsf{conj}(\mathsf{True}, x_2), \{\ell_1, \ell_2, \ell_3\}), (\mathsf{conj}(\mathsf{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ &\stackrel{(c)}{\longrightarrow} \{(\mathsf{conj}(\mathsf{True}, x_2), \{\ell_1, \ell_3\}), (\mathsf{conj}(\mathsf{False}, x_2), \{\ell_1, \ell_2, \ell_3\})\} \\ &\stackrel{(c)}{\longrightarrow} \{(\mathsf{conj}(\mathsf{True}, x_2), \{\ell_1, \ell_3\}), (\mathsf{conj}(\mathsf{False}, x_2), \{\ell_2, \ell_3\})\} \end{split}
                           \frac{(s)}{(s)} {(conj(True, True), {\ell_1, \ell_3}), (conj(True, False), {\ell_1, \ell_3})}
```

 $\stackrel{(m)}{\rightharpoonup} \{(\text{coni}(\mathsf{True},\mathsf{False}),\{\ell_1,\ell_3\})\}$ $\stackrel{(m)}{\rightharpoonup} \varnothing$

 $\ell_1 := \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots$ $\ell_2 := \operatorname{conj}(\mathsf{False}, y) = \dots$ $\ell_3 := \operatorname{coni}(x, \operatorname{\mathsf{False}}) = \dots$

Example consider

then we have

 $\stackrel{(m)}{\rightharpoonup} \{(\operatorname{conj}(\mathsf{True}, x_2), \{\ell_1\})\}$ $\stackrel{(s)}{\longrightarrow} \{(\mathsf{conj}(\mathsf{True},\mathsf{True}),\{\ell_1\}),(\mathsf{conj}(\mathsf{True},\mathsf{False}),\{\ell_1\})\}$

 $\ell_1 := \operatorname{conj}(\operatorname{True}, \operatorname{True}) = \dots$ $\ell_2 := \operatorname{\mathsf{conj}}(\mathsf{False}, y) = \dots$

data Bool = True : Bool | False : Bool

$$\begin{split} P_{init} &= \{(\mathsf{conj}(x_1, x_2), \{\ell_1, \ell_2\})\} \\ &\stackrel{(s)}{=} \{(\mathsf{conj}(\mathsf{True}, x_2), \{\ell_1, \ell_2\}), (\mathsf{conj}(\mathsf{False}, x_2), \{\ell_1, \ell_2\})\} \end{split}$$

 $\stackrel{(c)}{\leftarrow} \{(\mathsf{conj}(\mathsf{True}, x_2), \{\ell_1\}), (\mathsf{conj}(\mathsf{False}, x_2), \{\ell_1, \ell_2\})\}$

Partial Correctness of →

- definition: P is complete if for all $(t,L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- theorem: whenever $P \rightharpoonup Q$, then P is complete iff Q is complete
- corollary: if $P \rightharpoonup^* \varnothing$ then P is complete, and if $P \rightharpoonup^* \bot$ then P is not complete
- proof of theorem
 - (match): $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P$, if ℓ matches t
 - we only have to show that $\{(t,\{\ell\}\cup L)\}$ is complete, i.e., for all constructor ground substitutions σ there must be some $\ell'\in\{\ell\}\cup L$ that matches $t\sigma$
 - since ℓ matches t, we know that $t = \ell \gamma$ for some substitution γ
 - consequently $t\sigma = (\ell \gamma)\sigma = \ell(\gamma \sigma)$, i.e., ℓ matches $t\sigma$ and obviously $\ell \in {\{\ell\}} \cup L$
 - (fail): $P \cup \{(t,\varnothing)\} \rightarrow \bot$
 - both matching problems are not complete: \bot by definition, and for (t,\varnothing) there obviously isn't any $\ell\in\varnothing$ which matches $t\sigma$

Partial Correctness of \rightarrow , continued

- definition: P is complete if for all $(t,L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued
 - (clash): $P \cup \{(t, \{\ell\} \cup L)\} \rightarrow P \cup \{(t, L)\}$, if $match \ \ell \ t$ clashes
 - ullet if suffices to show that ℓ cannot match any instance of t, i.e., $match \ \ell \ (t\sigma)$ will always fail
 - to this end we require an auxiliary property of the matching algorithm
 - for a matching problem M, define $M\sigma=\{(\ell,r\sigma)\mid (\ell,r)\in M\}$, i.e., where σ is applied on rhss, and $\bot\sigma=\bot$
 - lemma: whenever M is transformed into M' by rule (decompose) or (clash), then $M\sigma$ is transformed into $M'\sigma$ by the same rule
 - hence, since $match \ \ell \ t$ clashes, we conclude that $match \ \ell \ (t\sigma)$ clashes

Partial Correctness of →, final part

- definition: P is complete if for all $(t, L) \in P$ and all constructor ground substitutions σ there is some $\ell \in L$ that matches $t\sigma$
- proof continued
 - (split): $P \cup \{(t,L)\} \rightharpoonup P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, where $x:\tau$, τ has constructors c_1,\ldots,c_n and $\sigma_i = \{x/c_i(x_1,\ldots,x_k)\}$ for fresh x_i
 - ullet we only consider one direction of the proof: we assume that the rhs of ightharpoonup is complete and prove that the lhs is complete
 - ullet to this end, consider an arbitrary constructor ground substitution σ and we have to show that $t\sigma$ is matched by some element of L
 - since σ is constructor ground, we know $\sigma(x)=c_i(t_1,\ldots,t_k)$ for some constructor c_i and constructor ground terms t_1,\ldots,t_k
 - define $\gamma(y) = \begin{cases} t_j, & \text{if } y = x_j \\ \sigma(y), & \text{otherwise} \end{cases}$
 - γ is well-defined since the x_i 's are distinct
 - γ is a constructor ground substitution
 - $t\sigma = t\sigma_i \gamma$ since the x_i 's are fresh
 - since $(t\sigma_i, L)$ is an element of the rhs of \rightharpoonup and the assumed completeness, we conclude that there is some element of L that matches $(t\sigma_i)\gamma$ and consequently, also $t\sigma$

Correctness of →, **Missing Parts**

- already proven
 - if $P \rightharpoonup^* \varnothing$ then P is complete
 - if $P \rightharpoonup^* \bot$ then P is not complete
- open: termination of →
- open: can → get stuck?

→ Cannot Get Stuck

- $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P$, if ℓ matches t (match)
- $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P \cup \{(t, L)\}$, if $match \ \ell \ t$ results in clash (clash)
- $P \cup \{(t, \emptyset)\} \rightharpoonup \bot$ (fail) • $P \cup \{(t, L)\} \rightharpoonup P \cup \{(t\sigma_1, L), \dots, (t\sigma_n, L)\}$, if (split)
- $P \cup \{(t,L)\} \rightharpoonup P \cup \{(t\sigma_1,L),\ldots,(t\sigma_n,L)\}$, if • $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x and \ldots
- lemma: whenever P is in normal form w.r.t. \rightharpoonup and for all $(t,L) \in P$ and all $\ell \in L$, the lhs ℓ is linear, then $P \in \{\varnothing, \bot\}$
- proof by contradiction
 - assume P is such a normal form, $P \notin \{\emptyset, \bot\}$
 - hence, $(t, L) \in P$ for some t and L
 - since (fail) is not applicable, $L \neq \emptyset$, i.e., $\ell \in L$ for some ℓ
 - as (match) is not applicable, $match \ \ell \ t$ must fail
 - as (clash) and (split) are not applicable the failure can only be a var-clash
 - however, a var-clash cannot occur since ℓ is linear

Termination of →

- $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P$, if ℓ matches t (match)
- $P \cup \{(t, \{\ell\} \cup L)\} \rightharpoonup P \cup \{(t, L)\}$, if $match \ \ell \ t$ clashes (clash)
- $P \cup \{(t, \varnothing)\} \rightharpoonup \bot$ (fail) • $P \cup \{(t, L)\} \rightharpoonup P \cup \{(t\sigma_1, L), \dots, (t\sigma_n, L)\}$, if (split)
- $\ell \in L$ and $match \ \ell \ t$ results in fun-var-conflict with variable x and ...
- ullet define $|\ell-t|$ as a measure of difference of ℓ and t
 - $|\ell x| =$ number of function symbols in ℓ
 - $|f(\ell_1, \ldots, \ell_n) f(t_1, \ldots, t_n)| = \sum_i |\ell_i t_i|$
 - $|\ell t| = 0$, in all other cases
- map each pattern problem P to multiset $\left\{\sum_{\ell \in L} |\ell t| \mid (t, L) \in P\right\}$
- this multiset decreases in (match) and (split) and is not increased in (clash) (multiset decrease: $M \cup N >^{mul} M \cup N'$ if $N \neq \emptyset$ and $\forall y \in N'$. $\exists x \in N. \ x > y$)

Implementing →

- implementing → naively has the disadvantage that the matching algorithm is executed from scratch every time
- an improved algorithm might therefore interleave both algorithms
- a pair $(t, \{\ell_1, \dots, \ell_n\})$ in the abstract algorithm corresponds to an entry $\{\{(t,\ell_1)\},\ldots,\{(t,\ell_n)\}\}\$ in the improved algorithm, where each $\{(t, \ell_i)\}$ corresponds to an initial matching problem: does ℓ_i match t?
- the improved algorithm is described by the following inference rules

- $P \cup \{\{\{(t,x)\} \cup mp\} \cup p\} \rightharpoonup' P \cup \{\{mp\} \cup p\}$ (match-var) • $P \cup \{\{\{(f(\ldots), q(\ldots))\} \cup mp\} \cup p\} \rightharpoonup' P \cup \{p\}, \text{ if } f \neq q\}$ (clash)
- $P \cup \{\{\{(f(t_1,\ldots),f(\ell_1,\ldots))\} \cup mp\} \cup p\} \rightharpoonup' P \cup \{\{\{(t_1,\ell_1),\ldots\} \cup mp\} \cup p\}\}$ (decompose) • $P \cup \{\{\{(x,\ell)\} \cup mp\} \cup p\} \rightarrow' P \cup \{(\{\{\{(x,\ell)\} \cup mp\} \cup p\}) \sigma_i \mid \sigma_i = \{x/c_i(x_1,\ldots,x_{n_i})\}\}$
- where the substitutions are only applied on the left components of pairs of terms and $\ell \notin \mathcal{V}$

• theorem: \rightharpoonup' is an implementation of \rightharpoonup , and \rightharpoonup' is terminating

(split)

Summary on Pattern Completeness

- pattern completeness of functional programs is decidable: program is pattern complete iff $P_{init} \rightharpoonup^! \varnothing$
- ullet partial correctness was proven via invariant of o
- proof required additional properties of matching algorithm
- termination of → was shown via multisets and a dedicated measure
- termination proof was tricky, definitely required human interaction
- in contrast: upcoming part is on automated termination proving

Termination – Dependency Pairs

Termination of Programs

- the question of termination is a famous problem
 - Turing showed that "halting problem" is undecidable
 - halting problem
 - question: does program (Turing machine) terminate on given input
 - problem is semi-decidable: positive instances can always be identified
 - algorithm: just simulate the program and then say "yes, terminates"
- we here consider universal termination, i.e., termination on all inputs
- universal termination is not even semi-decidable
- despite theoretical limits: often termination can be proven automatically

Termination of Functional Programs

- for termination, we mainly consider functional programs which are pattern-disjoint; hence,

 is confluent
- consequence: it suffices to prove innermost termination, i.e., the restriction of \hookrightarrow such that arguments t_i will be fully evaluated before evaluating a function invocation $f(t_1,\ldots,t_n)$

coin = True

 $f(\ldots, x) = x$ (all other cases)

f(True, False, x) = f(x, x, x)

example without confluence

RT (DCS @ UIBK)

- both f and coin terminate if seen as separate programs
- program is innermost terminating, but not terminating in general

$$f(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \mathsf{f}(\mathsf{coin},\mathsf{coin},\mathsf{coin}) \hookrightarrow^2 \mathsf{f}(\mathsf{True},\mathsf{False},\mathsf{coin}) \hookrightarrow \dots$$

Subterm Relation and Innermost Evaluation

• define ▷ as the strict subterm relation and ▷ as its reflexive closure

$$\frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright t_i} \qquad \frac{t_i \triangleright s}{F(t_1, \dots, t_n) \triangleright s}$$

innermost evaluation

→ is defined similar to one-step evaluation
→

$$\frac{s_i \overset{\cdot}{\hookrightarrow} t_i}{F(s_1, \dots, s_i, \dots, s_n) \overset{\cdot}{\hookrightarrow} F(s_1, \dots, t_i, \dots, s_n)} \text{ rewrite in context } \\ \frac{\ell = r \text{ is equation in program} \quad \forall s \lhd \ell\sigma. \ s \in NF(\hookrightarrow)}{\ell\sigma \overset{\cdot}{\hookrightarrow} r\sigma} \text{ root step}$$

example

$$f(True, False, coin) \not\hookrightarrow f(coin, coin, coin)$$

since coin \triangleleft f(True, False, coin) and coin $\notin NF(\hookrightarrow)$

Strong Normalization

• relation \succ is strongly normalizing, written $SN(\succ)$, if there is no infinite sequence

$$a_1 \succ a_2 \succ a_3 \succ \dots$$

- strong normalization is other notion for termination
- strong normalization of a relation is equivalent to soundness of induction principle w.r.t. that relation:

the following two conditions are equivalent

- $SN(\succ)$
- $\forall P. (\forall x. (\forall y. x \succ y \longrightarrow P y) \longrightarrow P x) \longrightarrow (\forall x. P x)$
- equivalence shows why it is possible to perform induction w.r.t. algorithm for terminating programs

Termination - Dependency Pairs

60/101

• only reason for potential non-termination: recursive calls

• aim: prove $SN(\hookrightarrow)$

- for each recursive call of equation $f(t_1,\ldots,t_n)=\ell=r\trianglerighteq f(s_1,\ldots,s_n)$ build one dependency pair with fresh (constructor) symbol f^{\sharp} :

 $f^{\sharp}(t_1,\ldots,t_n) \to f^{\sharp}(s_1,\ldots,s_n)$

Part 4 - Checking Well-Definedness of Functional Programs

dependency pair with fresh (constructor) symbol
$$f^*$$
:

define *DP* as the set of all dependency pairs

Termination Analysis with Dependency Pairs

ack(Zero, y) = Succ(y)

$$ack(Succ(x), Zero) = ack(x, Succ(Zero))$$
$$ack(Succ(x), Succ(y)) = ack(x, ack(Succ(x), Succ(y)))$$

$$\begin{aligned} \mathsf{ack}(\mathsf{Succ}(x),\mathsf{Succ}(y)) &= \mathsf{ack}(x,\mathsf{ack}(\mathsf{Succ}(x),y)) \\ &\mathsf{ack}^\sharp(\mathsf{Succ}(x),\mathsf{Zero}) \to \mathsf{ack}^\sharp(x,\mathsf{Succ}(\mathsf{Zero})) \end{aligned}$$

 $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(x,\operatorname{ack}(\operatorname{Succ}(x),y))$ $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y))\to\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),y)$

Termination Analysis with Dependency Pairs, continued

- dependency pairs provide characterization of termination
- definition: let $P \subseteq DP$; a *P*-chain is a possible infinite sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\iota}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\iota}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\iota}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- $s_i\sigma_i \to t_i\sigma_i$ represent the "main" recursive calls that may lead to non-termination
- $t_i\sigma_i \stackrel{\cdot}{\hookrightarrow}^* s_{i+1}\sigma_{i+1}$ corresponds to evaluation of arguments of recursive calls
- theorem: $SN(\stackrel{\cdot}{\hookrightarrow})$ iff there is no infinite DP-chain
- advantage of dependency pairs
 - in infinite chain, non-terminating recursive calls are always applied at the root
 - simplifies termination analysis

minus(Succ(x), Succ(y)) = minus(x, y)div(Zero, Succ(u)) = Zero

$$\mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x,y),\mathsf{Succ}(y)))$$

 $\operatorname{minus}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y))\to\operatorname{minus}^{\sharp}(x,y)$

$$\mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y))\to\mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y))$$

example innermost evaluation

 \hookrightarrow Succ(div(Zero, Succ(Zero))) \hookrightarrow Succ(Zero)

and its (partial) representation as
$$DP$$
-chain

 $div^{\sharp}(Succ(Zero), Succ(Zero))$

$$\rightarrow \text{div}^{\sharp}(\text{minus}(\text{Zero}, \text{Zero}), \text{Succ}(\text{Zero}))$$

 $\stackrel{i}{\hookrightarrow}$ * div[‡](Zero, Succ(Zero))

Termination - Dependency Pairs

62/101

Proving Termination

- global approaches
 - try to find one termination argument that no infinite chain exists
- iterative approaches
 - identify dependency pairs that are harmless, i.e., cannot be used infinitely often in a chain
 - remove harmless dependency pairs from set of dependency pairs
 - until no dependency pairs are left
- we focus on iterative approaches, in particular those that are incremental
 - incremental: a termination proof of some function stays valid if later on other functions are added to the program
 - incremental termination proving is not possible in general case (for non-confluent programs), consider coin-example on slide 57

Termination – Subterm Criterion

A First Termination Technique – The Subterm Criterion

- the subterm criterion works as follows
 - let $P \subseteq DP$
 - choose f^{\sharp} , a symbol of arity n
 - ullet choose some argument position $i\in\{1,\ldots,n\}$
 - demand $s_i \trianglerighteq t_i$ for all $f^{\sharp}(s_1, \ldots, s_n) \to f^{\sharp}(t_1, \ldots, t_n) \in P$
 - define $P_{\triangleright} = \{f^{\sharp}(s_1, \dots, s_n) \to f^{\sharp}(t_1, \dots, t_n) \in P \mid s_i \triangleright t_i\}$
 - then for proving absence of infinite P-chains it suffices to prove absence of infinite $P \setminus P_{\triangleright}$ -chains, i.e., one can remove all pairs in P_{\triangleright}
- observations
 - easy to test: just find argument position i such that each i-th argument of all
 f[‡]-dependency pairs decreases w.r.t. ≥ and then remove all strictly decreasing pairs
 - incremental method: adding other dependency pairs for g^{\sharp} later on will have no impact
 - can be applied iteratively
 - fast, but limited power

Subterm Criterion – Example

$$\mathsf{div}^{\sharp}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^{\sharp}(\mathsf{minus}(x,y),\mathsf{Succ}(y))$$

$$\mathsf{plus}^{\sharp}(\mathsf{Succ}(x),y) \to \mathsf{plus}^{\sharp}(y,x)$$

• it is easy to remove (4) by choosing any argument of minus[‡]

we can remove (1) and (2) by choosing argument 1 of ack[‡]

afterwards we can remove (3) by choosing argument 2 of ack[‡]

it is not possible to remove any of the remaining dependency pairs (5) and (6) by the subterm criterion

 $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{ack}^{\sharp}(x,\operatorname{ack}(\operatorname{Succ}(x),y))$

 $\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y))\to\operatorname{ack}^{\sharp}(\operatorname{Succ}(x),y)$

 $\operatorname{minus}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{minus}^{\sharp}(x,y)$

Termination - Subterm Criterion

(1)

(2)

(3)

(4)

(5)

(6)

67/101

Subterm Criterion – Soundness Proof

- assume the chosen parameters in the subterm criterion are f^{\sharp} and i
- it suffices to prove that there is no infinite chain

$$s_1\sigma_1 \rightarrow t_1\sigma_1 \stackrel{i}{\hookrightarrow}^* s_2\sigma_2 \rightarrow t_2\sigma_2 \stackrel{i}{\hookrightarrow}^* s_2\sigma_3 \rightarrow t_2\sigma_2 \stackrel{i}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$, all s_i and t_i have f^{\sharp} as root and there are infinitely many $s_i \to t_i \in P_{\triangleright}$; perform proof by contradiction

- hence all $s_i \to t_i$ are of the form $f^{\sharp}(s_{i,1},\ldots,s_{i,n}) \to f^{\sharp}(t_{i,1},\ldots,t_{i,n})$ • from condition $s_{i,i} \trianglerighteq t_{i,i}$ of criterion conclude $s_{i,i}\sigma_i \trianglerighteq t_{i,i}\sigma_i$
- and if $s_i \to t_i \in P_{\triangleright}$ then $s_{i,i} \rhd t_{i,i}$ and thus $s_{i,i}\sigma_i \rhd t_{i,i}\sigma_i$
- we further know $t_{i,i}\sigma_i \stackrel{\cdot}{\hookrightarrow}^* s_{i+1,i}\sigma_{i+1}$ since f^{\sharp} is a constructor
- this implies $t_{i,i}\sigma_i = s_{i+1,i}\sigma_{i+1}$ since $t_{i,i}\sigma_i \in NF(\hookrightarrow)$ as
- $t_{i,i}\sigma_i \triangleleft s_{i,i}\sigma_i \triangleleft f^{\sharp}(s_{i,1}\sigma_i,\ldots,s_{i,n}\sigma_i) = s_i\sigma_i \in NF(\hookrightarrow)$
- obtain an infinite sequence with infinitely many \triangleright ; this is a contradiction to $SN(\triangleright)$

$$s_{1,i}\sigma_1 \triangleright t_{1,i}\sigma_1 = s_{2,i}\sigma_2 \triangleright t_{2,i}\sigma_2 = s_{3,i}\sigma_3 \triangleright t_{3,i}\sigma_3 = \dots$$

Termination – Size-Change Principle

The Size-Change Principle

- the size-change principle abstracts decreases of arguments into size-change graphs
- size-change graph
 - let f^{\sharp} be a symbol of arity n
 - a size-change graph for f^{\sharp} is a bipartite graph G = (V, W, E)
 - the nodes are $V = \{1_{in}, \dots, n_{in}\}$ and $W = \{1_{out}, \dots, n_{out}\}$
 - E is a set of directed edges between in- and out-nodes labelled with \succ or \succeq
 - the size-change graph G of a dependency pair $f^{\sharp}(s_1,\ldots,s_n)\to f^{\sharp}(t_1,\ldots,t_n)$ defines E as follows
 - $i_{in} \stackrel{\succ}{\to} i_{out} \in E$ whenever $s_i \triangleright t_i$ (strict decrease) • $i_{in} \stackrel{\sim}{\to} i_{out} \in E$ whenever $s_i = t_i$ (weak decrease)
 - in representation, in-nodes are on the left, out-nodes are on the right, and subscripts are
- omitted

Example – Size-Change Graphs

 consider the following dependency pairs; they include permutations that cannot be solved by the subterm criterion

$$f^{\sharp}(\operatorname{Succ}(x), y) \to f^{\sharp}(x, \operatorname{Succ}(x))$$
 (7)

$$f^{\sharp}(x,\operatorname{Succ}(y)) \to f^{\sharp}(y,x)$$
 (8)

• obtain size-change graphs that contain more information than just the size-decrease in one argument, as we had in subterm criterion

Multigraphs and Concatenation

- graphs can be glued together, tracing size-changes in chains, i.e., subsequent dependency pairs
- definition: let \mathcal{G} be a set of size-change graphs for the same symbol f^{\sharp} ; then the set of multigraphs for f^{\sharp} is defined as follows
 - every $G \in \mathcal{G}$ is a multigraph
 - whenever there are multigraphs G_1 and G_2 with edges E_1 and E_2 then also the concatenated graph $G = G_1 \cdot G_2$ is a multigraph; here, the edges of E of G are defined as
 - if $i \to j \in E_1$ and $j \to k \in E_2$, then $i \to k \in E$
 - if at least one of the edges $i \to j$ and $j \to k$ is labeled with \succ then $i \to k$ is labeled with \succ , otherwise with \succeq
 - if the previous rules would produce two edges $i \stackrel{\succ}{\to} k$ and $i \stackrel{\succsim}{\to} k$, then only the former is added to E
- a multigraph G is maximal if $G = G \cdot G$
- since there are only finitely many possible sets of edges, the set of multigraphs is finite and can easily be computed

Example – Multigraphs

consider size-change graphs

this leads to three maximal multigraphs

$$G_{(7)} \cdot G_{(8)} : 1 \stackrel{\succ}{\Rightarrow} 1$$
 $G_{(8)} \cdot G_{(7)} : 1 \quad G_{(8)} \cdot G_{(8)} : 1 \stackrel{\succ}{\Rightarrow} 1$ $2 \stackrel{\succ}{\Rightarrow} 2$ $2 \stackrel{\succ}{\Rightarrow} 2$

• and a non-maximal multigraph

$$G_{(8)}ullet G_{(8)}ullet G_{(8)}: 1$$

Size-Change Termination

- instead of multigraphs, one can also glue two graphs G_1 and G_2 by just identifying the out-nodes of G_1 with the in-nodes of G_2 , defined as $G_1 \circ G_2$; in this way it is also possible to consider an infinite sequence of graphs $G_1 \circ G_2 \circ G_3 \circ \ldots$
- example:

$$G_{(7)}\circ G_{(8)}\circ G_{(8)}\circ G_{(7)}: \qquad 1 \stackrel{\succ}{\Rightarrow} 1 \stackrel{}{\swarrow} 1 \stackrel{\succ}{\Rightarrow} 1 \stackrel{}{\swarrow} 1 \stackrel{}{\searrow} 1 \stackrel{}{\Longrightarrow} 1 \stackrel{}{$$

- definition: a set $\mathcal G$ of size-change graph is size-change terminating iff for every infinite concatenation of graphs of $\mathcal G$ there is a path with infinitely many $\stackrel{\succ}{\to}$ -edges
- theorem: let P be a set of dependency pairs for symbol f^{\sharp} and $\mathcal G$ be the corresponding size-change graphs; if $\mathcal G$ is size-change terminating, then there is no infinite P-chain
- the proof is mostly identical to the one of the subterm criterion

Deciding Size-Change Termination

- definition: a set \mathcal{G} of size-change graph is size-change terminating iff for every infinite concatenation of graphs of \mathcal{G} there is a path with infinitely many $\stackrel{\succ}{\rightarrow}$ -edges
- checking size-change termination directly is not possible
- still, size-change termination is decidable
- theorem: let \mathcal{G} be a set of size-change graphs; the following two properties are equivalent
 - 1. \mathcal{G} is size-change terminating
 - 2. every maximal multigraph of \mathcal{G} contains an edge $i \stackrel{\succ}{\rightarrow} i$
- although the above theorem only gives rise to an EXPSPACE-algorithm, size-change termination is in PSPACE;
 - in fact, size-change termination is PSPACE-complete
- despite the high theoretical complexity class, for sets of size-change graphs arising from usual algorithms, the number of multigraphs is rather low

Proof of Theorem

- the direction that size-change termination implies the property on maximal multigraphs can be done in a straight-forward way
- the other direction is much more advanced and relies upon Ramsey's theorem in its infinite version

Proof of Theorem: Easy Direction (1. implies 2.)

- ullet assume that ${\cal G}$ is size-change terminating, and consider any maximal graph G
- since G is a multigraph, it can be written as $G = G_1 \cdot \ldots \cdot G_n$ with each $G_i \in \mathcal{G}$
- consider infinite graph $G_1 \circ \ldots \circ G_n \circ G_1 \circ \ldots \circ G_n \circ \ldots$
- hence $G \circ G \circ \ldots$ also has a path with infinitely many $\stackrel{\succ}{\rightarrow}$ -edges
- ullet on this path some index i must be visited infinitely often
- hence there is a path of length k such that $G \circ G \circ \ldots \circ G$ (k-times) contains a path from the leftmost argument i to the rightmost argument i with at least one $\stackrel{\succ}{\to}$ -edge
- consequently $G \cdot G \cdot \ldots \cdot G$ (k-times) contains an edge $i \stackrel{\succ}{\to} i$
- by maximality, $G = G \cdot G \cdot \ldots \cdot G$, and thus G contains an edge $i \stackrel{\succ}{\to} i$

Ramsey's Theorem

• definition: given set X and $n \in \mathbb{N}$, we define $X^{(n)}$ as the set of all subsets of X of size n; formally:

$$X^{(n)} = \{ Z \mid Z \subseteq X \land |Z| = n \}$$

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \to C$
 - ullet theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color

Termination - Size-Change Principle

• for n < m define $G_{n,m} = G_n \cdot \ldots \cdot G_{m-1}$

Proof of Theorem: Hard Direction (2. implies 1.) • consider some arbitrary infinite graph $G_0 \circ G_1 \circ G_2 \circ \dots$

• by Ramsey's theorem there is an infinite set $I \subseteq \mathbb{N}$ such that $G_{n,m}$ is always the same graph G for all $n, m \in I$ with n < m

$$(n=2, C= \text{multigraphs}, X=\mathbb{N}, c(\{n,m\})=G_{\min\{n,m\},\max\{n,m\}})$$

• G is maximal: for $n_1 < n_2 < n_3$ with $\{n_1, n_2, n_3\} \subseteq I$, we have

 $G_{n_1,n_3}=G_{n_1}\boldsymbol{\cdot}\ldots\boldsymbol{\cdot}G_{n_2-1}\boldsymbol{\cdot}G_{n_2}\boldsymbol{\cdot}\ldots\boldsymbol{\cdot}G_{n_3-1}=G_{n_1,n_2}\boldsymbol{\cdot}G_{n_2,n_3}$, and thus $G=G\boldsymbol{\cdot}G$ • by assumption, G contains edge $i \stackrel{\succ}{\rightarrow} i$

let
$$I = \{n_1, n_2, \ldots\}$$
 with $n_1 < n_2 < \ldots$ and obtain

• let $I = \{n_1, n_2, ...\}$ with $n_1 < n_2 < ...$ and obtain

$$G_0 \circ G_1 \circ \dots$$

$$= G_0 \circ \dots \circ G_{n_1 - 1} \circ G_{n_1} \circ \dots \circ G_{n_2 - 1} \circ G_{n_2} \circ \dots \circ G_{n_3 - 1} \circ \dots$$

$$= G_0 \circ \ldots \circ G_{n_1-1} \circ G_{n_1} \circ \ldots \circ G_{n_2-1} \circ G_{n_2} \circ \ldots \circ G_{n_3-1} \circ \ldots$$

$$\sim G_0 \circ \ldots \circ G_{n_3-1} \circ G \qquad \qquad \circ G \qquad \qquad \circ \ldots$$

so that edge $i \stackrel{\succ}{\to} i$ of G delivers path with infinitely many $\stackrel{\succ}{\to}$ -edges

Proof of Ramsey's Theorem

- Ramsey's Theorem Infinite Version
 - let $n \in \mathbb{N}$
 - let C be a finite set of colors
 - let X be an infinite set
 - let c be a coloring of the size n sets of X, i.e., $c: X^{(n)} \to C$
 - ullet theorem: there exists an infinite subset $Y\subseteq X$ such that all size n sets of Y have the same color
- proof of Ramsey's theorem is interesting
 - ullet it is simple, in that it only uses standard induction on n with arbitrary c and X
 - it is complex, in that it uses a non-trivial construction in the step-case, in particular applying the IH infinitely often
- base case n=0 is trivial, since there is only one size-0 set: the empty set

• pick an arbitrary element a_0 of X_0

• define $X_0 = X$

- - define $Y_0 = X_0 \setminus \{a_0\}$; define coloring $c': Y_0^{(m)} \to C$ as $c'(Z) = c(Z \cup \{a_0\})$ • IH yields infinite subset $X_1 \subseteq Y_0$ such that all size m sets of X_1 have the same color c_0
 - w.r.t. c'• hence, $c(\lbrace a_0 \rbrace \cup Z) = c_0$ for all $Z \in X_1^{(m)}$

Proof of Ramsey's Theorem – Step Case n = m + 1

- next pick an arbitrary element a_1 of X_1 to obtain infinite set $X_2 \subseteq X_1 \setminus \{a_1\}$ such that
- $c(\{a_1\} \cup Z) = c_1 \text{ for all } Z \in X_2^{(m)}$
- by iterating this obtain elements a_0, a_1, a_2, \ldots , colors $c_0, c_1, c_2 \ldots$ and sets X_0, X_1, X_2, \ldots satisfying the above properties
- since C is finite there must be some color d in the infinite list c_0, c_1, \ldots that occurs infinitely often; define $Y = \{a_i \mid c_i = d\}$
- ullet Y has desired properties since all size n sets of Y have color d: if $Z\in Y^{(n)}$ then Z can be written as $\{a_{i_1}, ..., a_{i_n}\}$ with $i_1 < ... < i_n$; hence, $Z = \{a_{i_1}\} \cup Z'$ with $Z' \in X_{i_1, i_1}^{(m)}$,

Summary of Size-Change Principle

- size-change principle abstracts dependency pairs into set of size-change graphs
- if no critical graph exists (multigraph without edge $i \stackrel{\succ}{\to} i$), termination is proven
- soundness relies upon Ramsey's theorem
- subsumes subterm criterion
- still no handling of defined symbols in dependency pairs as in

$$\operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))$$

Termination – Reduction Pairs

Reduction Pairs

• recall definition: *P*-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\cdot}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\cdot}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\cdot}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma_i \in NF(\hookrightarrow)$

- previously we used \triangleright on $s_i \rightarrow t_i$ to ensure decrease $s_i \sigma_i \triangleright t_i \sigma_i$
- previously we used $s_i \sigma \in NF(\hookrightarrow)$ and \triangleright to turn $\stackrel{\cdot}{\hookrightarrow}^*$ into =
- now demand $\ell \succsim r$ for equations to ensure decrease $t_i \sigma_i \succsim s_{i+1} \sigma_{i+1}$
- definition: reduction pair (\succ, \succeq) is pair of relations such that
 - $SN(\succ)$
 - \succeq is transitive
 - \succ and \succeq are compatible: $\succ \circ \succeq \subseteq \succ$
 - both \succ and \succsim are closed under substitutions: $s \succsim t \longrightarrow s\sigma \succsim t\sigma$
 - \succeq is closed under contexts: $s \succeq t \longrightarrow F(\ldots,s,\ldots) \succeq F(\ldots,t,\ldots)$
 - note: \succ does not have to be closed under contexts

Applying Reduction Pairs

• recall definition: P-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\mathsf{i}}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\mathsf{i}}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\mathsf{i}}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- demand $s \succeq t$ for all $s \to t \in P$ to ensure $s_i \sigma_i \succeq t_i \sigma_i$
- demand $\ell \succeq r$ for all equations to ensure $t_i \sigma_i \succeq s_{i+1} \sigma_{i+1}$
- define $P_{\succ} = \{s \rightarrow t \in P \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

minus(x, Zero) = x

```
minus(Succ(x), Succ(y)) = minus(x, y)
                                div(Zero, Succ(u)) = Zero
                           div(Succ(x), Succ(y)) = Succ(div(minus(x, y), Succ(y)))
                         \operatorname{div}^{\sharp}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \to \operatorname{div}^{\sharp}(\operatorname{minus}(x,y),\operatorname{Succ}(y))
constraints
                                     minus(x, Zero) \succeq x
```

 $\operatorname{div}(\operatorname{Succ}(x),\operatorname{Succ}(y)) \succeq \operatorname{Succ}(\operatorname{div}(\operatorname{minus}(x,y),\operatorname{Succ}(y)))$

Example

 $minus(Succ(x), Succ(y)) \succeq minus(x, y)$ $div(Zero, Succ(y)) \succeq Zero$

Termination - Reduction Pairs

Usable Equations

$$\operatorname{\mathsf{div}}^{\sharp}(\operatorname{\mathsf{Succ}}(x),\operatorname{\mathsf{Succ}}(y)) \to \operatorname{\mathsf{div}}^{\sharp}(\operatorname{\mathsf{minus}}(x,y),\operatorname{\mathsf{Succ}}(y))$$

- ullet requiring $\ell \succsim r$ for all program equations $\ell = r$ is quite demanding
 - not incremental, i.e., adding other functions later will invalidate proof
 - not necessary, i.e., argument evaluation in example only requires minus
- definition: the usable equations $\mathcal U$ w.r.t. a set P are program equations of those symbols that occur in P or that are invoked by (other) usable equations; formally, let $\mathcal E$ be set of equations of program, let root (f(...)) = f; then $\mathcal U$ is defined as

$$s \to t \in P \quad t \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell$$

$$\ell = r \in \mathcal{U}$$

$$\ell' = r' \in \mathcal{U} \quad r' \trianglerighteq u \quad \ell = r \in \mathcal{E} \quad root \ u = root \ \ell$$

$$\ell = r \in \mathcal{U}$$

• observation whenever $t_i\sigma_i \stackrel{\cdot}{\hookrightarrow} s_{i+1}\sigma_{i+1}$ in chain, then only usable equations of $\{s_i \to t_i\}$ can be used

Applying Reduction Pairs with Usable Equations

• recall definition: P-chain is sequence

$$s_1\sigma_1 \to t_1\sigma_1 \stackrel{\mathsf{i}}{\hookrightarrow}^* s_2\sigma_2 \to t_2\sigma_2 \stackrel{\mathsf{i}}{\hookrightarrow}^* s_3\sigma_3 \to t_3\sigma_3 \stackrel{\mathsf{i}}{\hookrightarrow}^* \dots$$

such that all $s_i \to t_i \in P$ and all $s_i \sigma \in NF(\hookrightarrow)$

- choose a symbol f^{\sharp} and define $P_{f^{\sharp}} = \{s \to t \in P \mid root \ s = f^{\sharp}\}$
- demand $s \succsim t$ for all $s \to t \in P_{f^{\sharp}}$
- demand $\ell \succeq r$ for all $l = r \in \mathcal{U}$ where \mathcal{U} are usable equations w.r.t. $P_{f^{\sharp}}$
- define $P_{\succ} = \{s \to t \in P_{f^{\sharp}} \mid s \succ t\}$
- effect: pairs in P_{\succ} cannot be applied infinitely often and can therefore be removed
- theorem: if there is an infinite P-chain, then there also is an infinite $P \setminus P_{\succ}$ -chain

Termination - Reduction Pairs

remaining termination problem

constraints

$$\begin{aligned} & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{minus}(x,y) \\ & \mathsf{div}(\mathsf{Zero},\mathsf{Succ}(y)) = \mathsf{Zero} \\ & \mathsf{div}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{Succ}(\mathsf{div}(\mathsf{minus}(x,y),\mathsf{Succ}(y))) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \to \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

 $\begin{aligned} & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$

 $minus(x, Zero) \succeq x$

minus(x, Zero) = x

because of usable equations, applying reduction pairs becomes incremental: new function
 definitions won't increase usable equations of DPs of previously defined equations
 RT (DCS @ UIBK)

Part 4 - Checking Well-Definedness of Functional Programs
88/101

Remaining Problem

given constraints

```
\begin{split} & \mathsf{minus}(x, \mathsf{Zero}) \succsim x \\ & \mathsf{minus}(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succsim \mathsf{minus}(x, y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x), \mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x, y), \mathsf{Succ}(y)) \end{split}
```

find a suitable reduction pair such that these constraints are satisfied

- many such reduction pairs are available (cf. term rewriting lecture)
 - Knuth–Bendix order (constraint solving is in P)
 - recursive path order (NP-complete)
 - polynomial interpretations (undecidable)
 - powerful
 - intuitive
 - automatable
 - matrix interpretations (undecidable)
 - weighted path order (undecidable)

Termination - Reduction Pairs

Polynomial Interpretation

- interpret each n-ary symbol F as polynomial $p_F(x_1, \ldots, x_n)$
- variables in polynomials range over N and polynomials have to be weakly monotone

$$x_i \ge y_i \longrightarrow p_F(x_1, \dots, x_i, \dots, x_n) \ge p_F(x_1, \dots, y_i, \dots, x_n)$$

sufficient criterion: forbid subtraction and negative numbers in p_F

interpretation is lifted to terms by composing polynomials

$$[\![x]\!] = x$$

 $[\![F(t_1, \dots, t_n)]\!] = p_F([\![t_1]\!], \dots, [\![t_n]\!])$

• 🚬 is defined as

$$s \underset{(\succsim)}{\succsim} t \text{ iff } \forall \vec{x} \in \mathbb{N}^*. \, \llbracket s \rrbracket_{(\succeq)} \llbracket t \rrbracket$$

- (\succ, \succeq) is a reduction pair, e.g.,
 - $SN(\succ)$ follows from strong-normalization of > on $\mathbb N$
 - \succeq is closed under contexts since each p_F is weakly monotone

Termination - Reduction Pairs

Example – Polynomial Interpretation

given constraints

$$\begin{aligned} & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

and polynomial interpretation

$$p_{\mathsf{Zero}} = 2$$
 $p_{\mathsf{Succ}}(x_1) = 1 + x_1$ $p_{\mathsf{div}^\sharp}(x_1, x_2) = x_1 + 3x_2$

we obtain polynomial constraints

$$\llbracket \mathsf{minus}(x,\mathsf{Zero}) \rrbracket = x \geq x = \llbracket x \rrbracket$$

 $\llbracket \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \rrbracket = 1 + x \ge x = \llbracket \mathsf{minus}(x,y) \rrbracket$ $\llbracket \operatorname{\mathsf{div}}^{\sharp}(\operatorname{\mathsf{Succ}}\ldots) \rrbracket = 4 + x + 3y > 3 + x + 3y = \llbracket \operatorname{\mathsf{div}}^{\sharp}(\operatorname{\mathsf{minus}}\ldots) \rrbracket$

 $minus(x, Zero) \succeq x$

 $p_{\text{minus}}(x_1, x_2) = x_1$

Solving Polynomial Constraints

- each polynomial constraint over $\mathbb N$ can be brought into simple form " $p\geq 0$ " for some polynomial p
 - replace $p_1 > p_2$ by $p_1 \ge p_2 + 1$
 - replace $p_1 \ge p_2$ by $p_1 p_2 \ge 0$
- the question of " $p \ge 0$ " over $\mathbb N$ is undecidable (Hilbert's 10th problem)
- approximation via absolute positiveness: if all coefficients of p are non-negative, then $p \geq 0$ for all instances over $\mathbb N$
- division example has trivial constraints

original	simplified
$x \ge x$	$0 \ge 0$
$1 + x \ge x$	$1 \ge 0$
4 + x + 3y > 3 + x + 3y	$0 \ge 0$

Finding Polynomial Interpretations

- in division example, interpretation was given on slides
- aim: search for suitable interpretation
- approach: perform everything symbolically

94/101

Termination - Reduction Pairs

Symbolic Polynomial Interpretations • fix shape of polynomial, e.g., linear

$$p_F(x_1, \dots, x_n) = F_0 + F_1 x_1 + \dots + F_n x_n$$

 $p_{Succ}(x_1) = 1 + x_1$

where the F_i are symbolic coefficients

$$p_{\mathsf{minus}}(x_1, x_2) = x_1$$
 $p_{\mathsf{Zero}} = 2$

 $p_{\text{div}\sharp}(x_1, x_2) = x_1 + 3x_2$

$$p_{\mathsf{div}^\sharp}(x_1,x_2)$$
 -

concrete interpretation above becomes symbolic

$$p_{\mathsf{minus}}(x_1, x_2) = \mathsf{m}_0 + \mathsf{m}_1 x_1 + \mathsf{m}_2 x_2 \ p_{\mathsf{Zero}} = \mathsf{Z}_0$$

$$egin{aligned} p_{\mathsf{Succ}}(x_1) &= \mathsf{S}_0 + \mathsf{S}_1 x_1 \ p_{\mathsf{div}^\sharp}(x_1,x_2) &= \mathsf{d}_0 + \mathsf{d}_1 x_1 + \mathsf{d}_2 x_2 \end{aligned}$$

95/101

Symbolic Polynomial Constraints

obtain symbolic polynomial constraints

given constraints

$$\begin{aligned} & \mathsf{minus}(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succsim \mathsf{minus}(x,y) \\ & \mathsf{div}^\sharp(\mathsf{Succ}(x),\mathsf{Succ}(y)) \succ \mathsf{div}^\sharp(\mathsf{minus}(x,y),\mathsf{Succ}(y)) \end{aligned}$$

 $minus(x, Zero) \succeq x$

$$\begin{split} \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 \mathsf{Z}_0 &\geq x \\ \mathsf{m}_0 + \mathsf{m}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{m}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) &\geq \mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y \\ \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{S}_0 + \mathsf{S}_1 x) + \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) &> \mathsf{d}_0 + \mathsf{d}_1 (\mathsf{m}_0 + \mathsf{m}_1 x + \mathsf{m}_2 y) \\ &\quad + \mathsf{d}_2 (\mathsf{S}_0 + \mathsf{S}_1 y) \end{split}$$

and simplify to

$$(\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0) + (\mathsf{m}_1 - 1) x \ge 0$$

$$(\mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0) + (\mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1) x + (\mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2) y \ge 0$$

 $(d_1S_0 - d_1m_0 - 1) + (d_1S_1 - d_1m_1)x + (-d_1m_2)y > 0$

Termination - Reduction Pairs

Absolute Positiveness – Symbolic Example

on symbolic polynomial constraints

absolute positiveness works as before; obtain constraints

$$\begin{aligned} & \mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ & \mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 & \mathsf{m}_2 \mathsf{S}_1 - \mathsf{m}_2 \geq 0 \\ & \mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{aligned}$$

 $(d_1S_0 - d_1m_0 - 1) + (d_1S_1 - d_1m_1)x + (-d_1m_2)y > 0$

- at this point, use solver for integer arithmetic to find suitable coefficients (in N)
- popular choice: SMT solver for integer arithmetic where one has to add constraints $m_0 > 0, m_1 > 0, m_2 > 0, S_0 > 0, S_1 > 0, Z_0 > 0, \dots$

 $d_1S_0 - d_1m_0 - 1 > 0$ $d_1S_1 - d_1m_1 > 0$ delete trivial constraints

Constraint Solving by Hand – Example

 $m_1S_0 + m_2S_0 > 0$

$$\mathsf{d}_1\mathsf{S}_0-\mathsf{d}_1\mathsf{m}_0-1\geq 0$$

$$\mathsf{d}_1\mathsf{S}_1-\mathsf{d}_1\mathsf{m}_1\geq 0$$

 $m_1 > 1$

 $S_0 > 1$

 $\mathbf{m}_2 = 0$

 $S_1 > 1$ $S_1 > m_1$

Part 4 - Checking Well-Definedness of Functional Programs

$$d_1 > 1$$

$$11 \leq 0$$

$$\mathsf{m}_2\mathsf{S}_1-\mathsf{m}_2\geq 0$$

 $m_0 = 0$

$$-\mathsf{d}_1\mathsf{m}_2 \geq 0$$

 $-d_1m_2 > 0$

 $m_2S_1 - m_2 > 0$

Termination - Reduction Pairs

97/101

RT (DCS @ UIBK)

conclusions

 $m_1 - 1 > 0$

 $m_1S_1 - m_1 > 0$

Termination - Reduction Pairs

original constraints

$$\begin{aligned} &\mathsf{m}_0 + \mathsf{m}_2 \mathsf{Z}_0 \geq 0 & \mathsf{m}_1 - 1 \geq 0 \\ &\mathsf{m}_1 \mathsf{S}_0 + \mathsf{m}_2 \mathsf{S}_0 \geq 0 & \mathsf{m}_1 \mathsf{S}_1 - \mathsf{m}_1 \geq 0 \\ &\mathsf{d}_1 \mathsf{S}_0 - \mathsf{d}_1 \mathsf{m}_0 - 1 \geq 0 & \mathsf{d}_1 \mathsf{S}_1 - \mathsf{d}_1 \mathsf{m}_1 \geq 0 & -\mathsf{d}_1 \mathsf{m}_2 \geq 0 \end{aligned}$$

(set-logic QF_NIA)
(declare-fun m0 () Int) ... (declare-fun d2 () Int)
(assert (>= m0 0)) ... (assert (>= d2 0))

(assert (>= (+ m0 (* m2 Z0)) 0)) ... (assert (>= (* (- 1) d1 m2) 0))

(check-sat)
(get-model)
(exit)

Constraint Solving by SMT-Solver – Example

encode as SMT problem in file division.smt2

Constraint Solving by SMT-Solver – Example Continued

• invoke SMT solver, e.g., Microsoft's open source solver Z3

```
cmd> z3 division.smt2
sat
(model
  (define-fun d1 () Int 8)
  (define-fun S1 () Int 15)
  (define-fun SO () Int 8)
  (define-fun ZO () Int O)
  (define-fun m2 () Int 0)
  (define-fun m1 () Int 12)
  (define-fun m0 () Int 4)
  (define-fun d2 () Int 0)
  (define-fun d0 () Int 0)
```

parse result to obtain polynomial interpretation

Constraint Solving by SMT-Solver – Scepticism

- polynomial interpretation found by SMT solving approach is generated by complex (potentially buggy) tool
- however, termination is essential for well-defined programs, i.e., in particular to derive correct theorems
- solution: certification
 - search for interpretation can be done in arbitrary untrusted way
 - write simple trusted checker that certifies whether concrete interpretation indeed satisfies all constraints
 - like solving NP-complete problem: positive answer can easily be verified
- in fact, this approach is heavily used in termination proving
 - untrusted tools: AProVE, T_TT₂, Terminator, . . .
 - trusted checker: CeTA; soundness formally proven in Isabelle/HOL

Summary

- pattern-completeness and pattern-disjointness are decidable
- termination proving can be done via
 - dependency pairs
 - subterm criterion
 - size-change termination
 - polynomial interpretation
- termination proving often performed with help of SMT solvers
- increase reliability via certification: checking of generated proofs