

Program Verification

Part 5 - Reasoning about Functional Programs

René Thiemann

Department of Computer Science

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms $A X$ that are satisfied in standard model \mathcal{M}
- equations of defined symbols
- equivalences regarding equality of constructors
- structural induction formulas
- for proving property $\mathcal{M} \models \varphi$ it suffices to show $A X \models \varphi$
- problems: reasoning via natural deduction quite cumbersome
- explicit introduction and elimination of quantifiers
- no direct support for equational reasoning
- aim: equational reasoning
- implicit transitivity reasoning: from $a={ }_{\tau} b={ }_{\tau} c={ }_{\tau} d$ conclude $a={ }_{\tau} d$
- equational reasoning in contexts: from $a={ }_{\tau} b$ conclude $f(a)={ }_{\tau^{\prime}} f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$
- for now let us restrict to universally quantified formulas
- we can formulate properties like
- $\forall x s$. reverse $($ reverse $(x s))=$ List $x s$
- $\forall x s, y s$. reverse $(\operatorname{append}(x s, y s))=$ List append $(\operatorname{reverse}(y s)$, reverse $(x s))$
- $\forall x, y \cdot \operatorname{plus}(x, y)={ }_{\text {Nat }} \operatorname{plus}(y, x)$
but not
- $\forall x . \exists y . \operatorname{greater}(y, x)=$ Bool True
- universally quantified axioms
- equations of defined symbols
- $\forall y$. plus $($ Zero, $y)=_{\text {Nat }} y$
- $\forall x, y \cdot \operatorname{plus}(\operatorname{Succ}(x), y)=_{N_{\text {at }}} \operatorname{Succ}(\operatorname{plus}(x, y))$
-
- axioms about equality of constructors
- $\forall x, y \operatorname{Succ}(x)={ }_{\text {Nat }} \operatorname{Succ}(y) \longleftrightarrow x=$ Nat y
- $\forall x . \operatorname{Succ}(x)=$ Nat Zero \longleftrightarrow false
- but not: structural induction formulas
- $\varphi[y /$ Zero $] \longrightarrow(\forall x . \varphi[y / x] \longrightarrow \varphi[y / \operatorname{Succ}(x)]) \longrightarrow \forall y . \varphi$
- so far: $\hookrightarrow_{\mathcal{E}}$ replaces terms by terms using equations \mathcal{E} of program
- upcoming: \rightsquigarrow to simplify formulas using universally quantified axioms
- formal definition: let $A X$ be a set of axioms; then $\rightsquigarrow_{A X}$ is defined as

$$
\begin{aligned}
& \overline{\text { true } \wedge \varphi \rightsquigarrow A X \varphi} \quad \overline{\varphi \wedge \text { true } \leadsto A X \varphi} \quad \overline{\text { false } \wedge \varphi \rightsquigarrow A X} \text { false } \\
& \overline{\neg \text { false } \rightsquigarrow_{A X} \text { true } \quad \overline{\text { atrue }} \rightsquigarrow A X \text { false }} \\
& \frac{\vec{\forall} \ell={ }_{\tau} r \in A X \quad s \hookrightarrow_{\{\ell=r\}} s^{\prime}}{s={ }_{\tau} t \rightsquigarrow A X s^{\prime}={ }_{\tau} t} \quad \frac{\vec{\forall} \ell={ }_{\tau} r \in A X \quad t \hookrightarrow_{\{\ell=r\}} t^{\prime}}{s={ }_{\tau} t \rightsquigarrow A X s={ }_{\tau} t^{\prime}} \\
& \frac{\vec{\forall}\left(\ell={ }_{\tau} r \longleftrightarrow \varphi\right) \in A X}{\ell \sigma={ }_{\tau} r \sigma \rightsquigarrow A X \varphi \sigma} \quad \overline{t={ }_{\tau} t \rightsquigarrow A X \text { true }} \\
& \frac{\varphi \rightsquigarrow A X \varphi^{\prime}}{\varphi \wedge \psi \rightsquigarrow A X \varphi^{\prime} \wedge \psi} \quad \frac{\psi \rightsquigarrow A X \psi^{\prime}}{\varphi \wedge \psi \rightsquigarrow A X \varphi \wedge \psi^{\prime}} \quad \frac{\varphi \rightsquigarrow A X \varphi^{\prime}}{\neg \varphi \rightsquigarrow A X \neg \varphi^{\prime}}
\end{aligned}
$$

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript $A X$ is dropped in $\rightsquigarrow_{A X}$ when clear from context

Soundness of Equational Reasoning

- we show that whenever $A X$ is valid in the standard model \mathcal{M}, then
- $\varphi \rightsquigarrow_{A X} \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
- so in particular $\mathcal{M} \models \vec{\forall} \varphi \longleftrightarrow \psi$
- immediate consequence: $\varphi \rightsquigarrow_{A X}^{*}$ true implies $\mathcal{M} \models \vec{\forall} \varphi$
- define calculus: $\vdash \vec{\forall} \varphi$ if $\varphi \rightsquigarrow_{A X}^{*}$ true
- example

$$
\begin{aligned}
& \text { plus }(\text { Zero, Zero })=N_{\text {Nat }} \text { times }(\text { Zero, } x) \\
\rightsquigarrow & \text { Zero }=\text { Nat }^{\text {times }(\text { Zero, } x)} \\
\rightsquigarrow & \text { Zero }=\text { Nat } \text { Zero } \\
\rightsquigarrow & \text { true }
\end{aligned}
$$

and therefore $\mathcal{M} \vDash \forall x$. plus(Zero, Zero) $=_{\text {Nat }}$ times $($ Zero, $x)$

Proving Soundness of $\rightsquigarrow: \varphi \rightsquigarrow \psi$ implies $\mathcal{M} \models{ }_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

- case $\frac{\varphi \rightsquigarrow \varphi^{\prime}}{\varphi \wedge \psi \rightsquigarrow \varphi^{\prime} \wedge \psi}$
- $\mathrm{IH}: \mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi^{\prime}$ for arbitrary α
- conclude $\mathcal{M} \models_{\alpha} \varphi \wedge \psi$

$$
\text { iff } \mathcal{M} \models_{\alpha} \varphi \text { and } \mathcal{M} \models_{\alpha} \psi
$$

$$
\text { iff } \mathcal{M}={ }_{\alpha} \varphi^{\prime} \text { and } \mathcal{M}=_{\alpha} \psi(\text { by IH })
$$

$$
\text { iff } \mathcal{M}=_{\alpha} \varphi^{\prime} \wedge \psi
$$

- in total: $\mathcal{M} \models_{\alpha} \varphi \wedge \psi \longleftrightarrow \varphi^{\prime} \wedge \psi$
- all other cases for Boolean simplifications and congruences are similar

Proving Soundness of $\rightsquigarrow: \varphi \rightsquigarrow \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

case $\frac{\vec{\forall}(\ell=\tau r \longleftrightarrow \varphi) \in A X}{\ell \sigma=\tau r \sigma \rightsquigarrow \varphi \sigma}$

- premise $\mathcal{M} \vDash \vec{\forall}\left(\ell={ }_{\tau} r \longleftrightarrow \varphi\right)$,
so in particular $\mathcal{M} \models_{\beta} \ell={ }_{\tau} r \longleftrightarrow \varphi$ for $\beta(x)=\llbracket \sigma(x) \rrbracket_{\alpha}$
- conclude $\mathcal{M} \neq_{\alpha} \ell \sigma={ }_{\tau} r \sigma$
iff $\llbracket \ell \rrbracket_{\beta}=\llbracket r \rrbracket_{\beta}$ (by SL)
iff $\mathcal{M}=_{\beta} \varphi$ (by premise)
iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by SL)
- in total: $\mathcal{M} \neq_{\alpha} \ell \sigma={ }_{\tau} r \sigma \longleftrightarrow \varphi \sigma$
- case $s={ }_{\tau} t \leadsto s^{\prime}={ }_{\tau} t$
- premise $\mathcal{M} \vDash \overrightarrow{\forall \ell}={ }_{\tau} r$, and $s=C[\ell \sigma]$ and $s^{\prime}=C[r \sigma]$ where C is some context, i.e., term with one hole which can be filled via [:]
- conclude $\llbracket s \rrbracket_{\alpha}$
$=\llbracket C[\ell \sigma] \rrbracket_{\alpha}$
$=C[\ell \sigma] \alpha \downarrow$ (by reverse SL)
$=C \alpha[\ell \sigma \alpha] \downarrow=C \alpha[\ell \sigma \alpha \downarrow] \downarrow$
$\stackrel{(*)}{=} C \alpha[r \sigma \alpha \downarrow] \downarrow=C \alpha[r \sigma \alpha] \downarrow$
$=C[r \sigma] \alpha \downarrow$
$=\llbracket C[r \sigma] \rrbracket_{\alpha}$ (by reverse SL)
$=\llbracket s^{\prime} \rrbracket_{\alpha}$
- reason for (*): premise implies
$\llbracket \ell \rrbracket_{\beta}=\llbracket r \rrbracket_{\beta}$ for $\beta(x)=\llbracket \sigma(x) \rrbracket_{\alpha}$,
hence $\llbracket \ell \sigma \rrbracket_{\alpha}=\llbracket r \sigma \rrbracket_{\alpha}$ (by SL),
and thus, $\ell \sigma \alpha \downarrow=r \sigma \alpha \downarrow$ (by reverse SL)
- in total: $\mathcal{M} \models_{\alpha} s={ }_{\tau} t \longleftrightarrow s^{\prime}={ }_{\tau} t$

Comparing \rightsquigarrow with \hookrightarrow

- \hookrightarrow rewrites on terms whereas \rightsquigarrow also simplifies Boolean connectives and uses axioms about equality $=_{\tau}$
- \hookrightarrow uses defining equations of program whereas $\rightsquigarrow_{A X}$ is parametrized by set of axioms
- in particular proven properties like $\forall x s$. reverse(reverse $(x s))=$ List $x s$ can be added to set of axioms and then be used for \rightsquigarrow
- this addition of new knowledge greatly improves power, but can destroy both termination and confluence
example: adding $\forall x s$. $x s=$ List reverse(reverse $(x s))$ to $A X$ is bad idea
- heuristics or user input required to select subset of theorems that are used with \rightsquigarrow
- new equations should be added in suitable direction
- obvious: $\forall x s$. reverse(reverse $(x s))=$ List $x s$ is intended direction
- direction sometimes not obvious for distributive laws

$$
\forall x, y, z \cdot \operatorname{times}(\operatorname{plus}(x, y), z)=_{\text {Nat }} \operatorname{plus}(\operatorname{times}(x, z), \operatorname{times}(y, z))
$$

reason for left-to-right: more often applicable reason for right-to-left: term gets smaller

- \rightsquigarrow only works with universally quantified properties
- defining equations
- equivalences to simplify equalities $=_{\tau}$
- newly derived properties such as $\forall x s$. reverse $($ reverse $(x s))=$ List $x s$
- \rightsquigarrow can not deal with induction axioms such as the one for associativity of append (app)

$$
\begin{aligned}
&(\forall y s, z s . \operatorname{app}(\operatorname{app}(\operatorname{Nil}, y s), z s)=\mathrm{List} \operatorname{app}(\operatorname{Nil}, \operatorname{app}(y s, z s))) \\
& \longrightarrow(\forall x, x s .(\forall y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s))) \longrightarrow \\
&\quad(\forall y s, z s . \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=\operatorname{List} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s)))) \\
& \longrightarrow(\forall x s, y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s)))
\end{aligned}
$$

- in particular, \rightsquigarrow often cannot perform any simplification without induction proving

$$
\operatorname{app}(\operatorname{app}(x s, y s), z s)=\text { List } \operatorname{app}(x s, \operatorname{app}(y s, z s)))
$$

cannot be simplified by \rightsquigarrow using the existing axioms

Induction in Combination with Equational Reasoning

- aim: prove equality $\vec{\forall} \ell={ }_{\tau} r$
- approach:
- select induction variable x
- reorder quantifiers such that $\overrightarrow{\forall \ell}=_{\tau} r$ is written as $\forall x . \varphi$
- build induction formula w.r.t. slide $3 / 71$

$$
\varphi_{1} \longrightarrow \ldots \longrightarrow \varphi_{n} \longrightarrow \forall x . \varphi
$$

(no outer universal quantifier, since by construction above formula has no free variables)

- try to prove each φ_{i} via \rightsquigarrow

Example: Associativity of Append

- aim: prove equality $\forall x s, y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List}^{\operatorname{app}}(x s, \operatorname{app}(y s, z s))$
- approach:
- select induction variable $x s$
- reordering of quantifiers not required
- the induction formula is presented on slide 11
- φ_{1} is

$$
\forall y s, z s . \operatorname{app}(\operatorname{app}(\operatorname{Nil}, y s), z s)=\text { List } \operatorname{app}(\operatorname{Nil}, \operatorname{app}(y s, z s))
$$

so we simply evaluate

$$
\begin{aligned}
& \left.\operatorname{app}(\operatorname{app}(\operatorname{Nil}, y s), z s)=\text { List }^{\operatorname{app}(N i l}, \operatorname{app}(y s, z s)\right) \\
\rightsquigarrow & \operatorname{app}(y s, z s)=\operatorname{List}^{\operatorname{app}(\operatorname{Nil}, \operatorname{app}(y s, z s))} \\
\rightsquigarrow & \operatorname{app}(y s, z s)=\operatorname{List}^{\operatorname{app}(y s, z s)} \\
\rightsquigarrow & \operatorname{true}
\end{aligned}
$$

- proving $\forall x s, y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=$ List $^{\operatorname{app}}(x s, \operatorname{app}(y s, z s))$
- approach:
- φ_{2} is

$$
\begin{aligned}
& \forall x, x s .\left(\forall y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=L_{\text {List }} \operatorname{app}(x s, \operatorname{app}(y s, z s))\right) \longrightarrow \\
& \quad\left(\forall y s, z s . \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=L_{\text {List }} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s))\right)
\end{aligned}
$$

so we try to prove the rhs of $\longrightarrow \mathrm{via} \rightsquigarrow$

$$
\begin{aligned}
& \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=\operatorname{List} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{app}(\operatorname{Cons}(x, \operatorname{app}(x s, y s)), z s)=\operatorname{List}^{\operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s))} \\
\rightsquigarrow & \operatorname{Cons}(x, \operatorname{app}(\operatorname{app}(x s, y s), z s))=\operatorname{List} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{Cons}(x, \operatorname{app}(\operatorname{app}(x s, y s), z s))=\operatorname{List} \operatorname{Cons}(x, \operatorname{app}(x s, \operatorname{app}(y s, z s))) \\
\rightsquigarrow & x=\operatorname{Nat} x \wedge \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{true} \wedge \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s)) \\
\neq & \operatorname{true}
\end{aligned}
$$

- problem: we get stuck, since currently IH is unused

Integrating IHs into Equational Reasoning

- recall structure of induction formula for formula φ and constructor c_{i} :

$$
\varphi_{i}:=\forall x_{1}, \ldots, x_{m_{i}} \cdot \underbrace{\left(\bigwedge_{j, \tau_{i, j}=\tau} \varphi\left[x / x_{j}\right]\right)}_{\text {IHs for recursive arguments }} \longrightarrow \varphi\left[x / c_{i}\left(x_{1}, \ldots, x_{m_{i}}\right)\right]
$$

- idea: for proving φ_{i} try to show $\varphi\left[x / c_{i}\left(x_{1}, \ldots, x_{m_{i}}\right)\right]$ by evaluating it to true via \rightsquigarrow, where each IH $\varphi\left[x / x_{j}\right]$ is added as equality
- append-example
- aim:

$$
\operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=\operatorname{List} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s)) \rightsquigarrow^{*} \text { true }
$$

- add IH $\forall y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=\operatorname{List} \operatorname{app}(x s, \operatorname{app}(y s, z s))$ to axioms
- problem IH $\varphi\left[x / x_{j}\right]$ is not universally quantified equation, since variable x_{j} is free (in append example, this would be $x s$)

Integrating IHs into Equational Reasoning, Continued

- to solve problem, extend \rightsquigarrow to allow evaluation with equations that contain free variables
- add two new inference rules

$$
\frac{\forall \vec{x} \cdot \ell={ }_{\tau} r \in A X \quad s \hookrightarrow_{\{\ell=r\}} s^{\prime}}{s={ }_{\tau} t \rightsquigarrow A X s^{\prime}={ }_{\tau} t} \quad \forall \vec{x} \cdot \ell={ }_{\tau} r \in A X \quad t \hookrightarrow_{\{r=\ell\}} t^{\prime}
$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell=r$ when simplifying with \hookrightarrow; so the chosen substitution σ must satisfy $\sigma(y)=y$ for all $y \notin \vec{x}$

- the swap of direction, i.e., the $r=\ell$ in the second rule is intended and a heuristic
- either apply the IH on some lhs of an equality from left-to-right
- or apply the IH on some rhs of an equality from right-to-left
in both cases, an application will make both sides on the equality more equal
- another heuristic is to apply each IH only once
- proving $\forall x s, y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=L_{\text {List }} \operatorname{app}(x s, \operatorname{app}(y s, z s))$
- approach:
- φ_{2} is $\quad \forall x, x s .\left(\forall y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=L_{\text {List }} \operatorname{app}(x s, \operatorname{app}(y s, z s))\right) \longrightarrow$

$$
\left(\forall y s, z s . \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=L_{\text {ist }} \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s))\right)
$$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow and add

$$
\forall y s, z s . \operatorname{app}(\operatorname{app}(x s, y s), z s)=\text { List } \operatorname{app}(x s, \operatorname{app}(y s, z s))
$$

to the set of axioms (only for the proof of φ_{2}); then

$$
\begin{aligned}
& \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, x s), y s), z s)=\text { List } \operatorname{app}(\operatorname{Cons}(x, x s), \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{app}(\operatorname{app}(x s, y s), z s)=\text { List } \operatorname{app}(x s, \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{app}(x s, \operatorname{app}(y s, z s))=\text { List } \operatorname{app}(x s, \operatorname{app}(y s, z s)) \\
\rightsquigarrow & \operatorname{true}
\end{aligned}
$$

here it is important to apply the IH only once, otherwise one would get

$$
\operatorname{app}(x s, \operatorname{app}(y s, z s))=\operatorname{List}^{\operatorname{app}}(\operatorname{app}(x s, y s), z s)
$$

Integrating IHs into Equational Reasoning, Soundness

- aim: prove $\mathcal{M} \vDash \varphi_{i}$ for

$$
\varphi_{i}:=\vec{\forall} \underbrace{\bigwedge_{j} \psi_{j}}_{\mathrm{IHs}} \longrightarrow \psi
$$

where we assume that $\psi \rightsquigarrow{ }^{*}$ true with the additional local axioms of the $\mathrm{IHs} \psi_{j}$

- hence show $\mathcal{M} \models_{\alpha} \psi$ under the assumptions $\mathcal{M}=_{\alpha} \psi_{j}$ for all IHs ψ_{j}
- by existing soundness proof of \rightsquigarrow we can nearly conclude $\mathcal{M} \vDash{ }_{\alpha} \psi$ from $\psi \rightsquigarrow$ * true
- only gap: proof needs to cover new inference rules on slide 16
$\forall \vec{x} . \ell={ }_{\tau} r \in A X \quad s \hookrightarrow_{\{\ell=r\}} s^{\prime}$
- case

$$
s={ }_{\tau} t \rightsquigarrow s^{\prime}={ }_{\tau} t \quad \text { with } \sigma(y)=y \text { for all } y \notin \vec{x}
$$

- premise is $\mathcal{M} \vDash{ }_{\alpha} \forall \vec{x} . \ell={ }_{\tau} r$ (and not $\mathcal{M} \models \vec{\forall} \ell={ }_{\tau} r$) and $s=C[\ell \sigma]$ and $s^{\prime}=C[r \sigma]$ as before
- conclude $\llbracket s \rrbracket_{\alpha}=\llbracket s^{\prime} \rrbracket_{\alpha}$ as on slide 9 as main step to derive $\mathcal{M} \models{ }_{\alpha} s={ }_{\tau} t \longleftrightarrow s^{\prime}={ }_{\tau} t$
- only change is how to obtain $\llbracket \ell \rrbracket_{\beta}=\llbracket r \rrbracket_{\beta}$ for $\beta(x)=\llbracket \sigma(x) \rrbracket_{\alpha}$
- new proof
- let $\vec{x}=x_{1}, \ldots, x_{k}$
- premise implies $\llbracket \ell \rrbracket_{\alpha\left[x_{1}:=a_{1}, \ldots, x_{k}:=a_{k}\right]}=\llbracket r \rrbracket_{\alpha\left[x_{1}:=a_{1}, \ldots, x_{k}:=a_{k}\right]}$ for arbitrary a_{i}, so in particular for $a_{i}=\llbracket \sigma\left(x_{i}\right) \rrbracket_{\alpha}$
- it now suffices to prove that $\alpha\left[x_{1}:=a_{1}, \ldots, x_{k}:=a_{k}\right]=\beta$
- consider two cases
- for variables x_{i} we have

$$
\alpha\left[x_{1}:=a_{1}, \ldots, x_{k}:=a_{k}\right]\left(x_{i}\right)=a_{i}=\llbracket \sigma\left(x_{i}\right) \rrbracket_{\alpha}=\beta\left(x_{i}\right)
$$

- for all other variables $y \notin \vec{x}$ we have

$$
\alpha\left[x_{1}:=a_{1}, \ldots, x_{k}:=a_{k}\right](y)=\alpha(y)=\llbracket y \rrbracket_{\alpha}=\llbracket \sigma(y) \rrbracket_{\alpha}=\beta(y)
$$

Summary

- framework for inductive proofs combined with equational reasoning
- apply induction first
- then prove each case $\vec{\forall} \bigwedge \psi_{j} \longrightarrow \psi$ via evaluation $\psi \rightsquigarrow^{*}$ true where IHs ψ_{j} become local axioms
- free variables in IHs (induction variables) may not be instantiated by \rightsquigarrow, all the other variables may be instantiated ("arbitrary" variables)
- heuristic: apply IHs only once
- upcoming: positive and negative examples, guidelines, extensions

Examples, Guidelines, and Extensions

- program

$$
\begin{aligned}
& \operatorname{app}(\operatorname{Cons}(x, x s), y s)=\operatorname{Cons}(x, \operatorname{app}(x s, y s)) \\
& \operatorname{app}(\operatorname{Nil}, y s)=y s
\end{aligned}
$$

- formula

$$
\vec{\forall} \operatorname{app}(\operatorname{app}(x s, y s), z s)=\text { List } \operatorname{app}(x s, \operatorname{app}(y s, z s))
$$

- induction on $x s$ works successfully
- what about induction on $y s$ (or $z s$)?
- base case already gets stuck

$$
\begin{aligned}
\operatorname{app}(\operatorname{app}(x s, \mathrm{Nil}), z s) & =\text { List }^{\operatorname{app}(x s, \operatorname{app}(\mathrm{Nil}, z s))} \\
\rightsquigarrow \operatorname{app}(\operatorname{app}(x s, \mathrm{Nil}), z s) & =\text { List }^{\operatorname{app}(x s, z s)}
\end{aligned}
$$

- problem: ys is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation
- program

$$
\begin{aligned}
& \operatorname{plus}(\operatorname{Succ}(x), y)=\operatorname{Succ}(\operatorname{plus}(x, y)) \\
& \operatorname{plus}(\operatorname{Zero}, y)=y
\end{aligned}
$$

- formula

$$
\vec{\forall} \operatorname{plus}(x, y)=_{\text {Nat }} \operatorname{plus}(y, x)
$$

- let us try induction on x
- base case already gets stuck

$$
\begin{aligned}
& \operatorname{plus}(\text { Zero, } y)=\text { Nat } \operatorname{plus}(y, \text { Zero }) \\
\rightsquigarrow & y=\text { Nat } \operatorname{plus}(y, \text { Zero })
\end{aligned}
$$

- final result suggests required lemma: Zero is also right neutral
- $\forall x$. plus $(x$, Zero $)={ }_{\text {Nat }} x$ can be proven with our approach
- then this lemma can be added to $A X$ and base case of commutativity-proof can be completed
- program

$$
\begin{aligned}
& \operatorname{plus}(\operatorname{Succ}(x), y)=\operatorname{Succ}(\operatorname{plus}(x, y)) \\
& \operatorname{plus}(\operatorname{Zero}, y)=y
\end{aligned}
$$

- formula

$$
\vec{\forall} \operatorname{plus}(x, \text { Zero })={ }_{\text {Nat }} x
$$

- only one possible induction variable: x
- base case:

$$
\operatorname{plus}(\text { Zero, Zero })={ }_{\text {Nat }} \text { Zero } \rightsquigarrow \text { Zero }={ }_{\text {Nat }} \text { Zero } \rightsquigarrow \text { true }
$$

- step case adds IH plus(x, Zero) $=_{\text {Nat }} x$ as axiom and we get

$$
\begin{aligned}
& \operatorname{plus}(\operatorname{Succ}(x), \text { Zero })=\text { Nat } \operatorname{Succ}(x) \\
\rightsquigarrow & \operatorname{Succ}(\text { plus }(x, \text { Zero }))=\text { Nat }^{\operatorname{Succ}(x)} \\
\rightsquigarrow & \operatorname{Succ}(x)=\text { Nat }^{\operatorname{Succ}(x)} \\
\rightsquigarrow & \operatorname{true}
\end{aligned}
$$

Commutativity of Addition

- formula

$$
\vec{\forall} \operatorname{plus}(x, y)={ }_{\text {Nat }} \operatorname{plus}(y, x)
$$

- step case adds IH $\forall y$. plus $(x, y)=_{N a t}$ plus (y, x) to axioms and we get

$$
\begin{aligned}
\operatorname{plus}(\operatorname{Succ}(x), y) & =\text { Nat }^{\operatorname{plus}(}(y, \operatorname{Succ}(x)) \\
\rightsquigarrow \operatorname{Succ}(\operatorname{plus}(x, y)) & =\text { Nat }^{\operatorname{plus}(y, \operatorname{Succ}(x))} \\
\rightsquigarrow \operatorname{Succ}(\operatorname{plus}(y, x)) & =\text { Nat }^{\operatorname{plus}}(y, \operatorname{Succ}(x))
\end{aligned}
$$

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y \cdot \operatorname{plus}(x, \operatorname{Succ}(y))=N_{\text {at }} \operatorname{Succ}(\operatorname{plus}(x, y))$ can be proven with our approach (induction on x)
- then this lemma can be added to $A X$ and commutativity-proof can be completed
- program

$$
\begin{aligned}
& \operatorname{app}(\operatorname{Cons}(x, x s), y s)=\operatorname{Cons}(x, \operatorname{app}(x s, y s)) \\
& \operatorname{app}(\operatorname{Nil}, y s)=y s \\
& \operatorname{rev}(\operatorname{Cons}(x, x s))=\operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, \operatorname{Nil})) \\
& \operatorname{rev}(\operatorname{Nil})=\operatorname{Nil} \\
& \mathrm{r}(\operatorname{Cons}(x, x s), y s)=\mathrm{r}(x s, \operatorname{Cons}(x, y s)) \\
& \mathrm{r}(\operatorname{Nil}, y s)=y s \\
& \text { rev_fast }(x s)=\mathrm{r}(x s, \operatorname{Nil})
\end{aligned}
$$

- aim: show that both implementations of reverse are equivalent, so that the naive implementation can be replaced by the faster one

$$
\forall x s . \text { rev_fast }(x s)=\text { List } \operatorname{rev}(x s)
$$

- applying \rightsquigarrow first yields desired lemma

$$
\forall x s . r(x s, \text { Nil })=\text { List } \operatorname{rev}(x s)
$$

- for induction for the following formula there is only one choice: $x s$

$$
\forall x s . \mathrm{r}(x s, \text { Nil })=\text { List } \operatorname{rev}(x s)
$$

- step-case gets stuck

$$
\begin{aligned}
\mathrm{r}(\operatorname{Cons}(x, x s), \mathrm{NiI}) & =\text { List } \operatorname{rev}(\operatorname{Cons}(x, x s)) \\
\rightsquigarrow * \mathrm{r}(x s, \operatorname{Cons}(x, \mathrm{NiI})) & =\text { List } \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, \mathrm{NiI})) \\
\rightsquigarrow \mathrm{r}(x s, \operatorname{Cons}(x, \mathrm{Nil})) & =\text { List } \operatorname{app}(\mathrm{r}(x s, \operatorname{Nil}), \operatorname{Cons}(x, \operatorname{Nil}))
\end{aligned}
$$

- problem: the second argument Nil of r in formula is too specific
- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

$$
\forall x s, y s . r(x s, y s)=\text { List } \operatorname{rev}(x s)
$$

- creativity required

$$
\forall x s, y s . \mathrm{r}(x s, y s)=\operatorname{List} \operatorname{app}(\operatorname{rev}(x s), y s)
$$

- proving main formula by induction on $x s$, since recursion is on $x s$

$$
\forall x s, y s . \mathrm{r}(x s, y s)=\text { List } \operatorname{app}(\operatorname{rev}(x s), y s)
$$

- base-case

$$
\begin{aligned}
& \mathrm{r}(\mathrm{Nil}, y s)=\text { List } \operatorname{app}(\operatorname{rev}(\mathrm{Nil}), y s) \\
& \rightsquigarrow^{*} y s=\text { List } y s \rightsquigarrow \operatorname{true}
\end{aligned}
$$

- step-case solved with associativity of append and IH added to axioms

$$
\begin{aligned}
& \mathrm{r}(\operatorname{Cons}(x, x s), y s)=\operatorname{List} \operatorname{app}(\operatorname{rev}(\operatorname{Cons}(x, x s)), y s) \\
\rightsquigarrow & \mathrm{r}(x s, \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{rev}(\operatorname{Cons}(x, x s)), y s) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{rev}(\operatorname{Cons}(x, x s)), y s) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, \operatorname{Nil})), y s) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{rev}(x s), \operatorname{app}(\operatorname{Cons}(x, \operatorname{Nil}), y s)) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, \operatorname{app}(\operatorname{Nil}, y s))) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s))=\operatorname{List} \operatorname{app}(\operatorname{rev}(x s), \operatorname{Cons}(x, y s)) \rightsquigarrow \text { true }
\end{aligned}
$$

- now add main formula to axioms, so that it can be used by \rightsquigarrow

$$
\forall x s, y s . \mathrm{r}(x s, y s)=\operatorname{List} \operatorname{app}(\operatorname{rev}(x s), y s)
$$

- then for our initial aim we get

$$
\begin{aligned}
& \text { rev_fast }(x s)=\text { List } \operatorname{rev}(x s) \\
\rightsquigarrow & \mathrm{r}(x s, \operatorname{Nil})=\text { List } \operatorname{rev}(x s) \\
\rightsquigarrow & \operatorname{app}(\operatorname{rev}(x s), \operatorname{Nil})=\text { List } \operatorname{rev}(x s)
\end{aligned}
$$

- at this point one easily identifies a missing property

$$
\forall x s . \operatorname{app}(x s, \text { Nil })=\text { List } x s
$$

which is proven by induction on $x s$ in combination with \rightsquigarrow

- afterwards it is trivial to complete the equivalence proof of the two reversal implementations

Another Problem

- consider the following program

$$
\begin{aligned}
& \text { half }(\text { Zero })=\text { Zero } \\
& \text { half }(\operatorname{Succ}(\operatorname{Zero}))=\text { Zero } \\
& \text { half }(\operatorname{Succ}(\operatorname{Succ}(x)))=\operatorname{Succ}(\operatorname{half}(x)) \\
& \text { le }(\operatorname{Zero}, y)=\operatorname{True} \\
& \text { le }(\operatorname{Succ}(x), \operatorname{Zero})=\text { False } \\
& \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(y))=\operatorname{le}(x, y)
\end{aligned}
$$

- and the desired property

$$
\forall x \text {. le(half }(x), x)=\text { Bool True }
$$

- induction on x will get stuck, since the step-case $\operatorname{Succ}(x)$ does not permit evaluation w.r.t. half-equations
- better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of half) with cases that correspond to patterns in Ihss
- induction w.r.t. algorithm was informally performed on slide 4/36
- select some n-ary function f
- each f-equation is turned into one case
- for each recursive f-call in rhs get one IH
- example: for algorithm

$$
\begin{aligned}
& \text { half }(\text { Zero })=\text { Zero } \\
& \text { half }(\operatorname{Succ}(\operatorname{Zero}))=\text { Zero } \\
& \operatorname{half}(\operatorname{Succ}(\operatorname{Succ}(x)))=\operatorname{Succ}(\operatorname{half}(x))
\end{aligned}
$$

the induction rule for half is

$$
\begin{aligned}
& \varphi[y / \text { Zero }] \\
\longrightarrow & \varphi[y / \operatorname{Succ}(\text { Zero })] \\
\longrightarrow & (\forall x . \varphi[y / x] \longrightarrow \varphi[y / \operatorname{Succ}(\operatorname{Succ}(x))])
\end{aligned}
$$

$$
\longrightarrow \forall y . \varphi
$$

- induction w.r.t. algorithm formally defined
- let f be n-ary defined function within well-defined program
- let there be k defining equations for f
- let φ be some formula which has exactly n free variables x_{1}, \ldots, x_{n}
- then the induction rule for f is

$$
\varphi_{i n d, f}:=\psi_{1} \longrightarrow \ldots \longrightarrow \psi_{k} \longrightarrow \forall x_{1}, \ldots, x_{n} . \varphi
$$

where for the i-th f-equation $f\left(\ell_{1}, \ldots, \ell_{n}\right)=r$ we define

$$
\psi_{i}:=\vec{\forall}\left(\bigwedge_{r \unrhd f\left(r_{1}, \ldots, r_{n}\right)} \varphi\left[x_{1} / r_{1}, \ldots, x_{n} / r_{n}\right]\right) \longrightarrow \varphi\left[x_{1} / \ell_{1}, \ldots, x_{n} / \ell_{n}\right]
$$

where $\vec{\forall}$ ranges over all variables in the equation

- properties
- $\mathcal{M} \models \varphi_{\text {ind,f }}$; reason: pattern-completeness and termination $(S N(\hookrightarrow \circ \unrhd))$
- heuristic: good idea to prove properties $\vec{\forall} \varphi$ about function f via $\varphi_{f, \text { ind }}$
- reason: structure will always allow one evaluation step of f-invocation

Back to Example

- consider program

$$
\begin{aligned}
& \text { half }(\operatorname{Zero})=\text { Zero } \\
& \text { half }(\operatorname{Succ}(\operatorname{Zero}))=\text { Zero } \\
& \text { half }(\operatorname{Succ}(\operatorname{Succ}(x)))=\operatorname{Succ}(\text { half }(x)) \\
& \text { le }(\operatorname{Zero}, y)=\text { True } \\
& \text { le }(\operatorname{Succ}(x), \operatorname{Zero})=\text { False } \\
& \text { le }(\operatorname{Succ}(x), \operatorname{Succ}(y))=\operatorname{le}(x, y)
\end{aligned}
$$

- for property

$$
\forall x \text {. le(half }(x), x)=\text { Bool True }
$$

chose induction for half (and not for le), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

- applying induction for half on

$$
\forall x \text {. le(half }(x), x)={ }_{\text {Bool }} \text { True }
$$

turns this problem into three new proof obligations

- le(half(Zero), Zero) $=_{\text {Bool }}$ True
- le(half(Succ(Zero)), Succ(Zero)) = Bool True
- le(half(Succ $(\operatorname{Succ}(x))), \operatorname{Succ}(\operatorname{Succ}(x)))=$ Bool True where le $($ half $(x), x)=$ Bool True can be assumed as IH
- the first two are easy, the third one works as follows

$$
\begin{aligned}
& \operatorname{le}(\operatorname{half}(\operatorname{Succ}(\operatorname{Succ}(x))), \operatorname{Succ}(\operatorname{Succ}(x)))=\text { Bool True } \\
\rightsquigarrow & \operatorname{le}(\operatorname{Succ}(\operatorname{half}(x)), \operatorname{Succ}(\operatorname{Succ}(x)))=\text { Bool True } \\
\rightsquigarrow & \operatorname{le}(\operatorname{half}(x), \operatorname{Succ}(x))=\text { Bool } \operatorname{True}
\end{aligned}
$$

- here there is another problem, namely that the IH is not applicable
- problem solvable by proving an implication like $\mathrm{le}(x, y)=$ Bool $\operatorname{True} \longrightarrow \mathrm{le}(x, \operatorname{Succ}(y))=$ Bool True; uses equational reasoning with conditions; covered informally only

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with \rightsquigarrow can happen on both sides of implication, since \rightsquigarrow yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
- assume axioms contain conditional equality $\varphi \longrightarrow \ell={ }_{\tau} r$, e.g., from IH
- current goal is implication $\psi \longrightarrow C[\ell \sigma]={ }_{\tau} t$
- we would like to replace goal by $\psi \longrightarrow C[r \sigma]={ }_{\tau} t$
- but then we must ensure $\psi \longrightarrow \varphi \sigma$, e.g., via $\psi \longrightarrow \varphi \sigma \rightsquigarrow *$ true
- \rightsquigarrow must be extended to perform more Boolean reasoning
- not done formally at this point

Equational Reasoning with Conditions, Example

- property

$$
\mathrm{le}(x, y)=\text { Bool } \operatorname{True} \longrightarrow \mathrm{le}(x, \operatorname{Succ}(y))=\text { Bool True }
$$

- apply induction on le
- first case

$$
\begin{aligned}
& \text { le }(\text { Zero }, y)=\text { Bool } \text { True } \longrightarrow \text { le }(\text { Zero, } \operatorname{Succ}(y))=\text { Bool } \text { True } \\
& \rightsquigarrow \mathrm{le}(\text { Zero, } y)={ }_{\text {Bool }} \text { True } \longrightarrow \text { True }={ }_{\text {Bool }} \text { True } \\
& \rightsquigarrow \mathrm{le}(\text { Zero }, y)=\text { Bool } \text { True } \longrightarrow \text { true } \\
& \rightsquigarrow \text { true }
\end{aligned}
$$

- second case

$$
\begin{aligned}
& \operatorname{le}(\operatorname{Succ}(x), \text { Zero })=\text { Bool } \operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(\text { Zero }))=\text { Bool True } \\
\rightsquigarrow & \text { False }=\text { Bool } \operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(\text { Zero }))=\text { Bool True } \\
\rightsquigarrow & \text { false } \longrightarrow \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(\text { Zero }))=\text { Bool } \text { True } \\
\rightsquigarrow & \text { true }
\end{aligned}
$$

Equational Reasoning with Conditions, Example

- property

$$
\mathrm{le}(x, y)=\text { Bool } \operatorname{True} \longrightarrow \mathrm{le}(x, \operatorname{Succ}(y))=\text { Bool True }
$$

- third case has IH

$$
\text { le }(x, y)=\text { Bool } \operatorname{True} \longrightarrow \mathrm{le}(x, \operatorname{Succ}(y))=\text { Bool True }
$$

and we reason as follows

$$
\begin{aligned}
& \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(y))=_{\text {Bool }} \operatorname{True} \longrightarrow \operatorname{le}(\operatorname{Succ}(x), \operatorname{Succ}(\operatorname{Succ}(y)))=_{\text {Bool }} \operatorname{True} \\
& \rightsquigarrow \mathrm{le}(x, y)=_{\text {Bool }} \operatorname{True} \longrightarrow \mathrm{le}(\operatorname{Succ}(x), \operatorname{Succ}(\operatorname{Succ}(y)))=_{\text {Bool }} \operatorname{True} \\
& \rightsquigarrow \mathrm{le}(x, y)=\text { Bool True } \longrightarrow \mathrm{le}(x, \operatorname{Succ}(y))=\text { Bool True } \\
& \rightsquigarrow \mathrm{le}(x, y)=\text { Bool } \text { True } \longrightarrow \text { True }=\text { Bool True } \\
& \rightsquigarrow \mathrm{le}(x, y)=\text { Bool True } \longrightarrow \text { true } \\
& \rightsquigarrow \text { true }
\end{aligned}
$$

- proof of property $\forall x$. le $($ half $(x), x)=$ Bool True finished

Final Example: Insertion Sort

- consider insertion sort

$$
\begin{aligned}
\text { le }(\text { Zero }, y) & =\text { True } \\
\text { le }(\operatorname{Succ}(x), \text { Zero }) & =\text { False } \\
\text { le }(\operatorname{Succ}(x), \operatorname{Succ}(y)) & =\operatorname{le}(x, y) \\
\text { if }(\text { True }, x s, y s) & =x s \\
\text { if }(\text { False }, x s, y s) & =y s \\
\text { insort }(x, \text { Nil }) & =\operatorname{Cons}(x, \text { Nil }) \\
\operatorname{insort}(x, \operatorname{Cons}(y, y s)) & =\operatorname{if}(\operatorname{le}(x, y), \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))) \\
\operatorname{sort}(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{sort}(\operatorname{Cons}(x, x s)) & =\operatorname{insort}(x, \operatorname{sort}(x s))
\end{aligned}
$$

- aim: prove soundness, e.g., result is sorted
- problem: how to express "being sorted"?
- in general: how to express properties if certain primitives are not available?
- solution: express properties via functional programs

$$
\begin{aligned}
\cdots & =\ldots \\
\operatorname{sort}(\operatorname{Cons}(x, x s)) & =\operatorname{insort}(x, \operatorname{sort}(x s))
\end{aligned}
$$

algorithm above, properties for specification below

$$
\begin{aligned}
\operatorname{and}(\text { True }, b) & =b \\
\text { and }(\text { False }, b) & =\text { False } \\
\text { all_le }(x, \text { Nil }) & =\text { True } \\
\text { all_le }(x, \operatorname{Cons}(y, y s)) & =\text { and }(\operatorname{le}(x, y), \text { all_le }(x, y s)) \\
\operatorname{sorted}(\text { Nil }) & =\text { True } \\
\operatorname{sorted}(\operatorname{Cons}(x, x s)) & =\operatorname{and}\left(\operatorname{all_ le}(x, x s), \operatorname{sorted}(x s)\right)
\end{aligned}
$$

- example properties (where $b=$ Bool True is written just as b)
- $\operatorname{sorted}(\operatorname{insort}(x, x s))=$ Bool sorted $(x s)$
- $\operatorname{sorted}(\operatorname{sort}(x s))$
- important: functional programs for specifications should be simple; they must be readable for validation and need not be efficient
- already assume property of insort:

$$
\forall x, x s . \text { sorted }(\operatorname{insort}(x, x s))=\text { Mol } \operatorname{sorted}(x s)
$$

speculative proofs are risky: conjectures might be wrong

- property $\forall x s$. sorted ($\operatorname{sort}(x s))$ is shown by induction on $x s$
- base case:

```
        sorted(sort(Nil))
sorted(Nil)
    \rightsquigarrowTrue (recall: syntax omits = Bool True)
     true
```

- step case with IH sorted($\operatorname{sort}(x s))$: sorted $(\operatorname{sort}(\operatorname{Cons}(x, x s)))$
$\rightsquigarrow \operatorname{sorted}(\operatorname{insort}(x, \operatorname{sort}(x s)))$
$\stackrel{(*)}{\rightsquigarrow} \operatorname{sorted}(\operatorname{sort}(x s))$
\rightsquigarrow True

Example: Soundness of insort

- prove $\forall x, x s$. sorted $(\operatorname{insort}(x, x s))=$ Bool $\operatorname{sorted}(x s)$ by induction on $x s$
- base case:

```
    \(\operatorname{sorted}(\operatorname{insort}(x, \operatorname{Nil}))=\) Bool \(\operatorname{sorted}(\) Nil \()\)
\(\rightsquigarrow \operatorname{sorted}(\operatorname{Cons}(x, \operatorname{Nil}))=\) Bool sorted \((\) Nil \()\)
\(\rightsquigarrow\) and(all_le ( \(x\), Nil), sorted(Nil)) \(=\) Bool sorted(Nil)
\(\rightsquigarrow \operatorname{and}(\) True, sorted(Nil)) \(=\) Bool sorted(Nil)
\(\rightsquigarrow \operatorname{sorted}(\) Nil \()={ }_{\text {Bool }}\) sorted (Nil)
\(\rightsquigarrow\) true
```


Example: Soundness of insort, Step Case

- prove $\forall x, x s$. sorted $(\operatorname{insort}(x, x s))=$ Bool $\operatorname{sorted}(x s)$ by induction on $x s$
- step case with IH $\forall x$. sorted $(\operatorname{insort}(x, y s))==_{\text {Bool }} \operatorname{sorted}(y s)$:

$$
\begin{aligned}
& \operatorname{sorted}(\operatorname{insort}(x, \operatorname{Cons}(y, y s)))=\text { Bool } \operatorname{sorted}(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{if}(\operatorname{le}(x, y), \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))))=\text { Bool } \ldots
\end{aligned}
$$

now perform case analysis on first argument of if

- case le (x, y), i.e., le $(x, y)=$ Bool True

$$
\begin{aligned}
& \operatorname{sorted}(\operatorname{iff}(\operatorname{le}(x, y), \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))))=\text { Bool } \cdots \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{if}(\operatorname{True}, \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s)))=\text { Bool } \cdots \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{Cons}(x, \operatorname{Cons}(y, y s)))=\text { Bool sorted }(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{and}\left(\operatorname{all} _\operatorname{le}(x, \operatorname{Cons}(y, y s)), \operatorname{sorted}(\operatorname{Cons}(y, y s))\right)=\text { Bool } \operatorname{sorted}(\operatorname{Cons}(y, y s))
\end{aligned}
$$

the key to resolve this final formula is the following auxiliary property

$$
\overrightarrow{\forall \mathrm{le}}(x, y) \longrightarrow \operatorname{sorted}(\operatorname{Cons}(y, z s)) \longrightarrow \operatorname{all} _\operatorname{le}(x, \operatorname{Cons}(y, z s))
$$

this property can be proved by induction on $z s$ but it will require a transitivity property for le

Example: Soundness of insort, Final Part

- prove $\forall x, x s$. sorted $(\operatorname{insort}(x, x s))==_{\text {Bool }}$ sorted $(x s)$ by ind. on $x s$
- step case with IH $\forall x$. sorted $(\operatorname{insort}(x, y s))=\operatorname{Bool} \operatorname{sorted}(y s)$:

$$
\begin{aligned}
& \operatorname{sorted}(\operatorname{insort}(x, \operatorname{Cons}(y, y s)))==_{\text {Bool }} \operatorname{sorted}(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{if}(\operatorname{le}(x, y), \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))))=\text { Bool } \ldots
\end{aligned}
$$

- case $\neg \mathrm{le}(x, y)$, i.e., le $(x, y)={ }_{\text {Bool }}$ False

$$
\begin{aligned}
& \operatorname{sorted}(\operatorname{if}(\operatorname{le}(x, y), \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))))=\text { Bool } \cdots \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{iff}(\operatorname{False}, \operatorname{Cons}(x, \operatorname{Cons}(y, y s)), \operatorname{Cons}(y, \operatorname{insort}(x, y s))))=\text { Bool } \cdots \\
\rightsquigarrow & \operatorname{sorted}(\operatorname{Cons}(y, \operatorname{insort}(x, y s)))=\text { Bool } \operatorname{sorted}(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{and}\left(\operatorname{all} _l e(y, \operatorname{insort}(x, y s)), \operatorname{sorted}(\operatorname{insort}(x, y s))\right)=\text { Bool } \operatorname{sorted}(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{and}\left(\operatorname{all_ le}(y, \operatorname{insort}(x, y s)), \operatorname{sorted}(y s)\right)=\text { Bool } \operatorname{sorted}(\operatorname{Cons}(y, y s)) \\
\rightsquigarrow & \operatorname{and}\left(\operatorname{all} _l e(y, \operatorname{insort}(x, y s)), \operatorname{sorted}(y s)\right)=\text { Bool } \operatorname{and}\left(\operatorname{all} _l e(y, y s), \operatorname{sorted}(y s)\right)
\end{aligned}
$$

at this point identify further required auxiliary properties

- $\vec{\forall}$ all_le $(y$, insort $(x, y s))=$ Bool all_le $(y, \operatorname{Cons}(x, y s))$
- $\vec{\forall} \mathrm{le}(x, y)=_{\text {Bool }}$ False $\longrightarrow \mathrm{le}(y, x)=_{\text {Bool }}$ True
these allow to complete this case and hence the overall proof for sort

Summary

- equational properties can often conveniently be proved via induction and equational reasoning via \rightsquigarrow
- induction w.r.t. algorithm preferable whenever algorithms use more complex pattern structure than $c_{i}\left(x_{1}, \ldots, x_{n}\right)$ for all constructors c_{i}
- when getting stuck with \rightsquigarrow try to detect suitable auxiliary property; after proving it, add it to set of axioms for evaluation
- not every property can be expressed purely equational; e.g., Boolean connectives are sometimes required
- specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)

