

Program Verification

Part 5 – Reasoning about Functional Programs

René Thiemann

Department of Computer Science

SS 2023

Equational Reasoning and Induction

Reasoning about Functional Programs: Current State

- given well-defined functional program, extract set of axioms AX that are satisfied in standard model ${\cal M}$
 - equations of defined symbols
 - equivalences regarding equality of constructors
 - structural induction formulas
- for proving property $\mathcal{M}\models\varphi$ it suffices to show $AX\models\varphi$
- problems: reasoning via natural deduction quite cumbersome
 - explicit introduction and elimination of quantifiers
 - no direct support for equational reasoning
- aim: equational reasoning
 - implicit transitivity reasoning: from $a =_{\tau} b =_{\tau} c =_{\tau} d$ conclude $a =_{\tau} d$
 - equational reasoning in contexts: from $a=_{\tau}b$ conclude $f(a)=_{\tau'}f(b)$
- in general: want some calculus \vdash such that $\vdash \varphi$ implies $\mathcal{M} \models \varphi$

Equational Reasoning and Induction

Equational Reasoning with Universally Quantified Formulas

- for now let us restrict to universally quantified formulas
- we can formulate properties like
 - $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - $\forall xs, ys. reverse(append(xs, ys)) =_{List} append(reverse(ys), reverse(xs))$
 - $\forall x, y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$

but not

- $\forall x. \exists y. greater(y, x) =_{\mathsf{Bool}} \mathsf{True}$
- universally quantified axioms
 - equations of defined symbols
 - $\forall y. \ \mathsf{plus}(\mathsf{Zero}, y) =_{\mathsf{Nat}} y$
 - $\forall x, y. \ \mathsf{plus}(\mathsf{Succ}(x), y) =_{\mathsf{Nat}} \mathsf{Succ}(\mathsf{plus}(x, y))$
 - .
 - axioms about equality of constructors
 - $\bullet \ \forall x,y. \ \mathsf{Succ}(x) \mathrel{=_{\mathsf{Nat}}} \mathsf{Succ}(y) \longleftrightarrow x \mathrel{=_{\mathsf{Nat}}} y$
 - $\forall x. \operatorname{Succ}(x) =_{\operatorname{Nat}} \operatorname{Zero} \longleftrightarrow \operatorname{false}$
 - but not: structural induction formulas
 - $\bullet \hspace{0.2cm} \varphi[y/\mathsf{Zero}] \longrightarrow (\forall x. \hspace{0.2cm} \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(x)]) \longrightarrow \forall y. \hspace{0.2cm} \varphi$

Equational Reasoning in Formulas

- so far: $\hookrightarrow_{\mathcal{E}}$ replaces terms by terms using equations \mathcal{E} of program
- upcoming: \rightsquigarrow to simplify formulas using universally quantified axioms
- formal definition: let AX be a set of axioms; then \rightsquigarrow_{AX} is defined as

$\overline{true} \land \varphi \rightsquigarrow_{AX} \varphi \qquad \overline{\varphi}$	$\overline{\phi} \wedge true \rightsquigarrow_{AX} \overline{\varphi}$	$false \land false$	$\varphi \rightsquigarrow_{AX} false$
$\neg false \rightsquigarrow_{AX} true$	$\neg true \rightsquigarrow_{AX} false$	-	
$\vec{\forall}\ell =_\tau r \in AX s \hookrightarrow_\{$	$_{\ell=r\}} s' \qquad \vec{\forall} \ell =$	$=_{\tau} r \in AX$	$t \hookrightarrow_{\{\ell=r\}} t'$
$s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau}$	- <i>t</i>	$s =_{\tau} t \rightsquigarrow_{AX}$	$s =_{\tau} t'$
$\vec{\forall} \left(\ell =_{\tau} r \longleftrightarrow \varphi \right) \in AX$			
$\ell\sigma =_{\tau} r\sigma \leadsto_{AX} \varphi\sigma$	$\overline{t =_{\tau} t \leadsto}$	$_{AX}$ true	
	$\psi \leadsto_{AX} \psi$	<u>۲</u>	$\varphi \rightsquigarrow_{AX} \varphi'$
$\varphi \wedge \psi \rightsquigarrow_{AX} \varphi' \wedge \psi$	$\varphi \wedge \psi \rightsquigarrow_{AX} \varphi$	$\wedge \psi' = \neg \varphi$	$\varphi \leadsto_{AX} \neg \varphi'$

consisting of Boolean simplifications, equations, equivalences and congruences; often subscript AX is dropped in \rightsquigarrow_{AX} when clear from context

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Soundness of Equational Reasoning

- we show that whenever AX is valid in the standard model \mathcal{M} , then
 - $\varphi \leadsto_{AX} \psi$ implies $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$ for all α
 - so in particular $\mathcal{M} \models \vec{\forall} \, \varphi \longleftrightarrow \psi$
- immediate consequence: $\varphi \rightsquigarrow_{AX}^*$ true implies $\mathcal{M} \models \vec{\forall} \varphi$
- define calculus: $\vdash \vec{\forall} \varphi$ if $\varphi \rightsquigarrow^*_{AX}$ true
- example

$$plus(Zero, Zero) =_{Nat} times(Zero, x)$$

$$\rightsquigarrow Zero =_{Nat} times(Zero, x)$$

$$\rightsquigarrow Zero =_{Nat} Zero$$

$$\rightsquigarrow true$$

and therefore $\mathcal{M} \models \forall x. \text{ plus}(\text{Zero}, \text{Zero}) =_{\text{Nat}} \text{times}(\text{Zero}, x)$

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

by induction on \rightsquigarrow for arbitrary α

$$\begin{array}{c} \varphi \rightsquigarrow \varphi' \\ \hline \varphi \land \psi \rightsquigarrow \varphi' \land \psi \\ \bullet & \mathsf{IH}: \mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \varphi' \text{ for arbitrary } \alpha \\ \bullet & \mathsf{conclude} \ \mathcal{M} \models_{\alpha} \varphi \land \psi \\ & \mathsf{iff} \ \mathcal{M} \models_{\alpha} \varphi \text{ and } \mathcal{M} \models_{\alpha} \psi \\ & \mathsf{iff} \ \mathcal{M} \models_{\alpha} \varphi' \text{ and } \mathcal{M} \models_{\alpha} \psi \text{ (by IH)} \\ & \mathsf{iff} \ \mathcal{M} \models_{\alpha} \varphi' \land \psi \\ \bullet & \mathsf{in total}: \ \mathcal{M} \models_{\alpha} \varphi \land \psi \longleftrightarrow \varphi' \land \psi \end{array}$$

• all other cases for Boolean simplifications and congruences are similar

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

• case
$$\frac{\vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi) \in AX}{\ell \sigma =_{\tau} r \sigma \leadsto \varphi \sigma}$$

• premise $\mathcal{M} \models \vec{\forall} (\ell =_{\tau} r \longleftrightarrow \varphi)$,
so in particular $\mathcal{M} \models_{\beta} \ell =_{\tau} r \longleftrightarrow \varphi$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_{\alpha}$
• conclude $\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma$
iff $\llbracket \ell \rrbracket_{\beta} = \llbracket r \rrbracket_{\beta}$ (by SL)
iff $\mathcal{M} \models_{\alpha} \varphi \sigma$ (by SL)

• in total:
$$\mathcal{M} \models_{\alpha} \ell \sigma =_{\tau} r \sigma \longleftrightarrow \varphi \sigma$$

Equational Reasoning and Induction

Proving Soundness of \rightsquigarrow : $\varphi \rightsquigarrow \psi$ **implies** $\mathcal{M} \models_{\alpha} \varphi \longleftrightarrow \psi$

$$\vec{\forall}\,\ell =_\tau r \in AX \quad s \hookrightarrow_{\{\ell=r\}} s'$$

• case $s =_{\tau} t \rightsquigarrow s' =_{\tau} t$

- premise $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$, and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ where C is some context, i.e., term with one hole which can be filled via $[\cdot]$
- conclude $[\![s]\!]_{\alpha}$
 - $= \llbracket C[\ell\sigma] \rrbracket_{\alpha}$ = $C[\ell\sigma] \alpha \downarrow$ (by reverse SL) = $C\alpha[\ell\sigma\alpha] \downarrow = C\alpha[\ell\sigma\alpha\downarrow] \downarrow$ $\stackrel{(*)}{=} C\alpha[r\sigma\alpha\downarrow] \downarrow = C\alpha[r\sigma\alpha] \downarrow$ = $C[r\sigma] \alpha \downarrow$

$$= \llbracket C[r\sigma] \rrbracket_{\alpha} \text{ (by reverse SL)}$$
$$= \llbracket s' \rrbracket_{\alpha}$$

• reason for (*): premise implies $\llbracket \ell \rrbracket_{\beta} = \llbracket r \rrbracket_{\beta}$ for $\beta(x) = \llbracket \sigma(x) \rrbracket_{\alpha}$, hence $\llbracket \ell \sigma \rrbracket_{\alpha} = \llbracket r \sigma \rrbracket_{\alpha}$ (by SL), and thus, $\ell \sigma \alpha \downarrow = r \sigma \alpha \downarrow$ (by reverse SL)

• in total:
$$\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$$

Comparing \rightsquigarrow with \hookrightarrow

- \hookrightarrow rewrites on terms whereas \rightsquigarrow also simplifies Boolean connectives and uses axioms about equality $=_{\tau}$
- \hookrightarrow uses defining equations of program whereas \rightsquigarrow_{AX} is parametrized by set of axioms
 - in particular proven properties like $\forall xs. reverse(reverse(xs)) =_{\text{List}} xs$ can be added to set of axioms and then be used for \rightsquigarrow
 - this addition of new knowledge greatly improves power, but can destroy both termination and confluence

example: adding $\forall xs. xs =_{\text{List}} \text{reverse}(\text{reverse}(xs))$ to AX is bad idea

- heuristics or user input required to select subset of theorems that are used with \rightsquigarrow
- new equations should be added in suitable direction
 - obvious: $\forall xs. reverse(reverse(xs)) =_{List} xs$ is intended direction
 - direction sometimes not obvious for distributive laws

 $\forall x, y, z. \operatorname{times}(\operatorname{plus}(x, y), z) =_{\operatorname{Nat}} \operatorname{plus}(\operatorname{times}(x, z), \operatorname{times}(y, z))$

reason for left-to-right: more often applicable reason for right-to-left: term gets smaller

Limits of \leadsto

- \rightsquigarrow only works with universally quantified properties
 - defining equations
 - equivalences to simplify equalities $=_{\tau}$
 - newly derived properties such as $\forall xs. reverse(reverse(xs)) =_{List} xs$
 - \rightsquigarrow can not deal with induction axioms such as the one for associativity of append (app)

 $\begin{array}{l} (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Nil}, ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Nil}, \operatorname{app}(ys, zs))) \\ \longrightarrow (\forall x, xs. (\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow \\ (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs)))) \\ \longrightarrow (\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs)))) \end{array}$

• in particular, \rightsquigarrow often cannot perform any simplification without induction proving

 $app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs)))$

cannot be simplified by \rightsquigarrow using the existing axioms

Induction in Combination with Equational Reasoning

- aim: prove equality $\vec{\forall} \ell =_{\tau} r$
- approach:
 - select induction variable x
 - reorder quantifiers such that $\vec{\forall} \ell =_{\tau} r$ is written as $\forall x. \varphi$
 - build induction formula w.r.t. slide 3/71

$$\varphi_1 \longrightarrow \ldots \longrightarrow \varphi_n \longrightarrow \forall x. \varphi$$

(no outer universal quantifier, since by construction above formula has no free variables)

• try to prove each φ_i via \rightsquigarrow

Example: Associativity of Append

- aim: prove equality $\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$
- approach:
 - select induction variable xs
 - reordering of quantifiers not required
 - the induction formula is presented on slide 11
 - φ_1 is

 $\forall ys, zs. app(app(Nil, ys), zs) =_{List} app(Nil, app(ys, zs))$

so we simply evaluate

```
\begin{aligned} & \operatorname{app}(\operatorname{app}(\operatorname{Nil}, ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Nil}, \operatorname{app}(ys, zs)) \\ & \rightsquigarrow \operatorname{app}(ys, zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Nil}, \operatorname{app}(ys, zs)) \\ & \rightsquigarrow \operatorname{app}(ys, zs) =_{\operatorname{List}} \operatorname{app}(ys, zs) \\ & \rightsquigarrow \operatorname{true} \end{aligned}
```

Example: Associativity of Append, Continued

- proving $\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$
- approach: ...
 - $arphi_2$ is

 $\forall x, xs.(\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))) \longrightarrow \\ (\forall ys, zs. \operatorname{app}(\operatorname{app}(\operatorname{Cons}(x, xs), ys), zs) =_{\operatorname{List}} \operatorname{app}(\operatorname{Cons}(x, xs), \operatorname{app}(ys, zs)))$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow

• problem: we get stuck, since currently IH is unused

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Integrating IHs into Equational Reasoning

• recall structure of induction formula for formula φ and constructor c_i :

$$\varphi_i := \forall x_1, \dots, x_{m_i}. \underbrace{\left(\bigwedge_{j, \tau_{i,j} = \tau} \varphi[x/x_j]\right)}_{\text{Hs for recursive arguments}} \longrightarrow \varphi[x/c_i(x_1, \dots, x_{m_i})]$$

- idea: for proving φ_i try to show $\varphi[x/c_i(x_1, \ldots, x_{m_i})]$ by evaluating it to true via \rightsquigarrow , where each IH $\varphi[x/x_j]$ is added as equality
- append-example
 - aim:

 $app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs)) \rightsquigarrow^* true$

- add IH $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$ to axioms
- problem IH $\varphi[x/x_j]$ is not universally quantified equation, since variable x_j is free (in append example, this would be xs)

Integrating IHs into Equational Reasoning, Continued

- to solve problem, extend \rightsquigarrow to allow evaluation with equations that contain free variables
- add two new inference rules

$$\frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'}{s =_{\tau} t \rightsquigarrow_{AX} s' =_{\tau} t} \qquad \frac{\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad t \hookrightarrow_{\{r = \ell\}} t'}{s =_{\tau} t \rightsquigarrow_{AX} s =_{\tau} t'}$$

where in both inference rules, only the variables of \vec{x} may be instantiated in the equation $\ell = r$ when simplifying with \hookrightarrow ; so the chosen substitution σ must satisfy $\sigma(y) = y$ for all $y \notin \vec{x}$

- the swap of direction, i.e., the $r = \ell$ in the second rule is intended and a heuristic
 - either apply the IH on some lhs of an equality from left-to-right
 - or apply the IH on some rhs of an equality from right-to-left

in both cases, an application will make both sides on the equality more equal

• another heuristic is to apply each IH only once

Example: Associativity of Append, Continued

- proving $\forall xs, ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$
- approach: ...
 - φ_2 is $\forall x, xs.(\forall ys, zs. app(app(xs, ys), zs) =_{\text{List}} app(xs, app(ys, zs))) \longrightarrow (\forall ys, zs. app(app(Cons(x, xs), ys), zs) =_{\text{List}} app(Cons(x, xs), app(ys, zs)))$

so we try to prove the rhs of \longrightarrow via \rightsquigarrow and add

 $\forall ys, zs. \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\operatorname{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$

to the set of axioms (only for the proof of φ_2); then

 $app(app(Cons(x, xs), ys), zs) =_{List} app(Cons(x, xs), app(ys, zs))$ $\sim * app(app(xs, ys), zs) =_{List} app(xs, app(ys, zs))$ $\sim * app(xs, app(ys, zs)) =_{List} app(xs, app(ys, zs))$ $\sim * true$

here it is important to apply the IH only once, otherwise one would get

 $app(xs, app(ys, zs)) =_{List} app(app(xs, ys), zs)$

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Integrating IHs into Equational Reasoning, Soundness

• aim: prove $\mathcal{M} \models \varphi_i$ for

$$\varphi_i := \vec{\forall} \underbrace{\bigwedge_{j} \psi_j}_{\text{IHs}} \psi_j \longrightarrow \psi$$

where we assume that $\psi \rightsquigarrow^*$ true with the additional local axioms of the IHs ψ_i

- hence show $\mathcal{M} \models_{\alpha} \psi$ under the assumptions $\mathcal{M} \models_{\alpha} \psi_j$ for all IHs ψ_j
- by existing soundness proof of \rightsquigarrow we can nearly conclude $\mathcal{M} \models_{\alpha} \psi$ from $\psi \rightsquigarrow^*$ true
- only gap: proof needs to cover new inference rules on slide 16

Equational Reasoning and Induction

Soundness of Partially Quantified Equation Application

$$\forall \vec{x}. \ \ell =_{\tau} r \in AX \quad s \hookrightarrow_{\{\ell = r\}} s'$$

• case $s =_{\tau} t \rightsquigarrow s' =_{\tau} t$ with $\sigma(y) = y$ for all $y \notin \vec{x}$

• premise is
$$\mathcal{M} \models_{\alpha} \forall \vec{x}. \ \ell =_{\tau} r$$
 (and not $\mathcal{M} \models \vec{\forall} \ell =_{\tau} r$)
and $s = C[\ell\sigma]$ and $s' = C[r\sigma]$ as before

- conclude $\llbracket s \rrbracket_{\alpha} = \llbracket s' \rrbracket_{\alpha}$ as on slide 9 as main step to derive $\mathcal{M} \models_{\alpha} s =_{\tau} t \longleftrightarrow s' =_{\tau} t$
- only change is how to obtain $[\![\ell]\!]_{\beta} = [\![r]\!]_{\beta}$ for $\beta(x) = [\![\sigma(x)]\!]_{\alpha}$
- new proof

• let
$$\vec{x} = x_1, \ldots, x_k$$

- premise implies $\llbracket \ell \rrbracket_{\alpha[x_1:=a_1,\dots,x_k:=a_k]} = \llbracket r \rrbracket_{\alpha[x_1:=a_1,\dots,x_k:=a_k]}$ for arbitrary a_i , so in particular for $a_i = \llbracket \sigma(x_i) \rrbracket_{\alpha}$
- it now suffices to prove that $lpha[x_1:=a_1,\ldots,x_k:=a_k]=eta$
- consider two cases
- for variables x_i we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](x_i) = a_i = \llbracket \sigma(x_i) \rrbracket_{\alpha} = \beta(x_i)$$

• for all other variables $y \notin \vec{x}$ we have

$$\alpha[x_1 := a_1, \dots, x_k := a_k](y) = \alpha(y) = \llbracket y \rrbracket_{\alpha} = \llbracket \sigma(y) \rrbracket_{\alpha} = \beta(y)$$

Part 5 - Reasoning about Functional Programs

Summary

- framework for inductive proofs combined with equational reasoning
- apply induction first
- then prove each case $\vec{\forall} \land \psi_j \longrightarrow \psi$ via evaluation $\psi \rightsquigarrow^*$ true where IHs ψ_j become local axioms
- free variables in IHs (induction variables) may not be instantiated by \rightsquigarrow , all the other variables may be instantiated ("arbitrary" variables)
- heuristic: apply IHs only once
- upcoming: positive and negative examples, guidelines, extensions

Examples, Guidelines, and Extensions

Associativity of Append

program

$$app(Cons(x, xs), ys) = Cons(x, app(xs, ys))$$

 $app(Nil, ys) = ys$

• formula

$$\vec{\forall} \operatorname{app}(\operatorname{app}(xs, ys), zs) =_{\mathsf{List}} \operatorname{app}(xs, \operatorname{app}(ys, zs))$$

- induction on xs works successfully
- what about induction on ys (or zs)?
- base case already gets stuck

 $app(app(xs, Nil), zs) =_{List} app(xs, app(Nil, zs))$ $\rightsquigarrow app(app(xs, Nil), zs) =_{List} app(xs, zs)$

- problem: *ys* is argument on second position of append, whereas case analysis in lhs of append happens on first argument
- guideline: select variables such that case analysis triggers evaluation

Commutativity of Addition

program

$$\begin{aligned} \mathsf{plus}(\mathsf{Succ}(x),y) &= \mathsf{Succ}(\mathsf{plus}(x,y)) \\ \mathsf{plus}(\mathsf{Zero},y) &= y \end{aligned}$$

• formula

 $\vec{\forall} \operatorname{\mathsf{plus}}(x,y) =_{\mathsf{Nat}} \operatorname{\mathsf{plus}}(y,x)$

- let us try induction on x
- base case already gets stuck

 $plus(Zero, y) =_{Nat} plus(y, Zero)$ $\rightsquigarrow y =_{Nat} plus(y, Zero)$

- final result suggests required lemma: Zero is also right neutral
- $\forall x. \text{ plus}(x, \text{Zero}) =_{\text{Nat}} x$ can be proven with our approach
- $\bullet\,$ then this lemma can be added to AX and base case of commutativity-proof can be completed

Right-Zero of Addition

program

$$\begin{aligned} \mathsf{plus}(\mathsf{Succ}(x),y) &= \mathsf{Succ}(\mathsf{plus}(x,y)) \\ \mathsf{plus}(\mathsf{Zero},y) &= y \end{aligned}$$

• formula

$$\vec{\forall} \operatorname{\mathsf{plus}}(x, \operatorname{\mathsf{Zero}}) =_{\operatorname{\mathsf{Nat}}} x$$

- $\bullet\,$ only one possible induction variable: x
- base case:

$$\mathsf{plus}(\mathsf{Zero},\mathsf{Zero}) =_{\mathsf{Nat}} \mathsf{Zero} \rightsquigarrow \mathsf{Zero} =_{\mathsf{Nat}} \mathsf{Zero} \rightsquigarrow \mathsf{true}$$

• step case adds IH $plus(x, Zero) =_{Nat} x$ as axiom and we get

 $plus(Succ(x), Zero) =_{Nat} Succ(x)$ $\rightsquigarrow Succ(plus(x, Zero)) =_{Nat} Succ(x)$ $\rightsquigarrow Succ(x) =_{Nat} Succ(x)$

 $\rightsquigarrow true$

Part 5 - Reasoning about Functional Programs

Commutativity of Addition

• formula

 $\vec{\forall} \operatorname{\mathsf{plus}}(x, y) =_{\mathsf{Nat}} \operatorname{\mathsf{plus}}(y, x)$

• step case adds IH $\forall y. \ \mathsf{plus}(x, y) =_{\mathsf{Nat}} \mathsf{plus}(y, x)$ to axioms and we get

$$plus(Succ(x), y) =_{Nat} plus(y, Succ(x))$$

$$\rightsquigarrow Succ(plus(x, y)) =_{Nat} plus(y, Succ(x))$$

$$\rightsquigarrow Succ(plus(y, x)) =_{Nat} plus(y, Succ(x))$$

- final result suggests required lemma: Succ on second argument can be moved outside
- $\forall x, y. \operatorname{plus}(x, \operatorname{Succ}(y)) =_{\operatorname{Nat}} \operatorname{Succ}(\operatorname{plus}(x, y))$ can be proven with our approach (induction on x)
- then this lemma can be added to AX and commutativity-proof can be completed

Fast Implementation of Reversal

program

 $\begin{aligned} & \mathsf{app}(\mathsf{Cons}(x,xs),ys) = \mathsf{Cons}(x,\mathsf{app}(xs,ys)) \\ & \mathsf{app}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}(\mathsf{Cons}(x,xs)) = \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})) \\ & \mathsf{rev}(\mathsf{Nil}) = \mathsf{Nil} \\ & \mathsf{r}(\mathsf{Cons}(x,xs),ys) = \mathsf{r}(xs,\mathsf{Cons}(x,ys)) \\ & \mathsf{r}(\mathsf{Nil},ys) = ys \\ & \mathsf{rev}_\mathsf{fast}(xs) = \mathsf{r}(xs,\mathsf{Nil}) \end{aligned}$

• aim: show that both implementations of reverse are equivalent, so that the naive implementation can be replaced by the faster one

 $\forall xs. \operatorname{rev}_{\mathsf{fast}}(xs) =_{\mathsf{List}} \operatorname{rev}(xs)$

• applying ~> first yields desired lemma

 $\forall xs. r(xs, Nil) =_{List} rev(xs)$

Generalizations Required

• for induction for the following formula there is only one choice: xs

 $\forall xs. r(xs, Nil) =_{\text{List}} rev(xs)$

step-case gets stuck

 $r(Cons(x, xs), Nil) =_{List} rev(Cons(x, xs))$ $\rightsquigarrow^* r(xs, Cons(x, Nil)) =_{List} app(rev(xs), Cons(x, Nil))$ $\rightsquigarrow r(xs, Cons(x, Nil)) =_{List} app(r(xs, Nil), Cons(x, Nil))$

- problem: the second argument Nil of r in formula is too specific
- solution: generalize formula by replacing constants by variables
- naive replacement does not work, since it does not hold

 $\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{rev}(xs)$

creativity required

$$\forall xs, ys. \ \mathsf{r}(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

RT (DCS @ UIBK)

Fast Implementation of Reversal, Continued

• proving main formula by induction on xs, since recursion is on xs

$$\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

base-case

 $\begin{aligned} \mathsf{r}(\mathsf{Nil}, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Nil}), ys) \\ \rightsquigarrow^* ys =_{\mathsf{List}} ys \rightsquigarrow \mathsf{true} \end{aligned}$

step-case solved with associativity of append and IH added to axioms

 $\begin{aligned} \mathsf{r}(\mathsf{Cons}(x,xs),ys) &=_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x,xs)),ys) \\ & \rightsquigarrow \mathsf{r}(xs,\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x,xs)),ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(\mathsf{Cons}(x,xs)),ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,\mathsf{Nil})),ys) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{app}(\mathsf{Cons}(x,\mathsf{Nil}),ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{cons}(x,\mathsf{app}(\mathsf{Nil},ys))) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) \\ & \rightsquigarrow \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) \\ & \to \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs),\mathsf{Cons}(x,ys)) \\ & \to$

Fast Implementation of Reversal, Finalized

 $\bullet\,$ now add main formula to axioms, so that it can be used by \rightsquigarrow

$$\forall xs, ys. r(xs, ys) =_{\mathsf{List}} \mathsf{app}(\mathsf{rev}(xs), ys)$$

• then for our initial aim we get

 $rev_fast(xs) =_{List} rev(xs)$ $\rightarrow r(xs, Nil) =_{List} rev(xs)$ $\rightarrow app(rev(xs), Nil) =_{List} rev(xs)$

• at this point one easily identifies a missing property

 $\forall xs. app(xs, Nil) =_{List} xs$

which is proven by induction on xs in combination with \rightsquigarrow

• afterwards it is trivial to complete the equivalence proof of the two reversal implementations

RT (DCS @ UIBK)

Another Problem

• consider the following program

$$\begin{split} \mathsf{half}(\mathsf{Zero}) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Zero})) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{Succ}(\mathsf{half}(x)) \\ \mathsf{le}(\mathsf{Zero}, y) &= \mathsf{True} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Zero}) &= \mathsf{False} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \mathsf{le}(x, y) \end{split}$$

• and the desired property

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

- induction on x will get stuck, since the step-case Succ(x) does not permit evaluation w.r.t. half-equations
- better induction is desirable, namely rule that corresponds to algorithm definition (e.g. of half) with cases that correspond to patterns in lhss

RT (DCS @ UIBK)

Induction w.r.t. Algorithm

- induction w.r.t. algorithm was informally performed on slide 4/36
 - select some n-ary function f
 - each f-equation is turned into one case
 - for each recursive f-call in rhs get one IH
- example: for algorithm

half(Zero) = Zerohalf(Succ(Zero)) = Zerohalf(Succ(Succ(x))) = Succ(half(x))

the induction rule for half is

$$\begin{split} & \varphi[y/\mathsf{Zero}] \\ & \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Zero})] \\ & \longrightarrow (\forall x. \ \varphi[y/x] \longrightarrow \varphi[y/\mathsf{Succ}(\mathsf{Succ}(x))]) \\ & \longrightarrow \forall y. \ \varphi \end{split}$$

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Induction w.r.t. Algorithm

- induction w.r.t. algorithm formally defined
 - let f be n-ary defined function within well-defined program
 - let there be k defining equations for \boldsymbol{f}
 - let φ be some formula which has exactly n free variables x_1,\ldots,x_n
 - then the induction rule for f is

$$\varphi_{ind,f} := \psi_1 \longrightarrow \ldots \longrightarrow \psi_k \longrightarrow \forall x_1, \ldots, x_n. \varphi$$

where for the i-th f-equation $f(\ell_1,\ldots,\ell_n)=r$ we define

$$\psi_i := \vec{\forall} \left(\bigwedge_{r \succeq f(r_1, \dots, r_n)} \varphi[x_1/r_1, \dots, x_n/r_n] \right) \longrightarrow \varphi[x_1/\ell_1, \dots, x_n/\ell_n]$$

where $\vec{\forall}$ ranges over all variables in the equation

- properties
 - $\mathcal{M} \models \varphi_{ind,f}$; reason: pattern-completeness and termination $(SN(\hookrightarrow \circ \unrhd))$
 - heuristic: good idea to prove properties $ec{\forall} \, \varphi$ about function f via $\varphi_{f,ind}$
 - ${\mbox{\circle*{-1.5}}}$ reason: structure will always allow one evaluation step of $f\mbox{-invocation}$

RT (DCS @ UIBK)

Part 5 - Reasoning about Functional Programs

Back to Example

• consider program

$$\begin{split} \mathsf{half}(\mathsf{Zero}) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Zero})) &= \mathsf{Zero} \\ \mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))) &= \mathsf{Succ}(\mathsf{half}(x)) \\ \mathsf{le}(\mathsf{Zero}, y) &= \mathsf{True} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Zero}) &= \mathsf{False} \\ \mathsf{le}(\mathsf{Succ}(x), \mathsf{Succ}(y)) &= \mathsf{le}(x, y) \end{split}$$

for property

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

chose induction for half (and not for le), since half is inner function call; hopefully evaluation of inner function calls will enable evaluation of outer function calls

(Nearly) Completing the Proof

• applying induction for half on

 $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True}$

turns this problem into three new proof obligations

- $le(half(Zero), Zero) =_{Bool} True$
- $le(half(Succ(Zero)), Succ(Zero)) =_{Bool} True$
- le(half(Succ(Succ(x))), Succ(Succ(x))) =_{Bool} True where le(half(x), x) =_{Bool} True can be assumed as IH
- the first two are easy, the third one works as follows

$$\begin{split} & \mathsf{le}(\mathsf{half}(\mathsf{Succ}(\mathsf{Succ}(x))),\mathsf{Succ}(\mathsf{Succ}(x))) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{le}(\mathsf{Succ}(\mathsf{half}(x)),\mathsf{Succ}(\mathsf{Succ}(x))) =_{\mathsf{Bool}} \mathsf{True} \end{split}$$

 $\rightsquigarrow le(half(x), Succ(x)) =_{Bool} True$

- here there is another problem, namely that the IH is not applicable
- problem solvable by proving an implication like $le(x, y) =_{Bool} True \longrightarrow le(x, Succ(y)) =_{Bool} True;$ uses equational reasoning with conditions; covered informally only

Equational Reasoning with Conditions

- generalization: instead of pure equalities also support implications
- simplifications with → can happen on both sides of implication, since → yields equivalent formulas
- applying conditional equations triggers new proofs: preconditions must be satisfied
- example:
 - assume axioms contain conditional equality $\varphi \longrightarrow \ell =_{\tau} r$, e.g., from IH
 - current goal is implication $\psi \longrightarrow C[\ell \sigma] =_{\tau} t$
 - we would like to replace goal by $\psi \longrightarrow C[r\sigma] =_\tau t$
 - but then we must ensure $\psi\longrightarrow\varphi\sigma,$ e.g., via $\psi\longrightarrow\varphi\sigma\rightsquigarrow^*$ true
- $\bullet \ \rightsquigarrow$ must be extended to perform more Boolean reasoning
- not done formally at this point

Equational Reasoning with Conditions, Example

property

$$le(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow le(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}$$

- apply induction on le
- first case

$$\begin{split} \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} &\longrightarrow \mathsf{le}(\mathsf{Zero},\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} &\longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(\mathsf{Zero},y) =_{\mathsf{Bool}} \mathsf{True} &\longrightarrow \mathsf{true} \\ & \sim \mathsf{true} \end{split}$$

second case

$$\begin{split} & \mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{False} =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{false} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Zero})) =_{\mathsf{Bool}} \mathsf{True} \\ & \rightsquigarrow \mathsf{true} \end{split}$$

Part 5 – Reasoning about Functional Programs

Equational Reasoning with Conditions, Example

property

$$le(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow le(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}$$

• third case has IH

$$\mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True}$$

and we reason as follows

$$\begin{split} & \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Succ}(y))) =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(\mathsf{Succ}(y))) =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{le}(x,\mathsf{Succ}(y)) =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{True} =_{\mathsf{Bool}} \mathsf{True} \\ & \sim \mathsf{le}(x,y) =_{\mathsf{Bool}} \mathsf{True} \longrightarrow \mathsf{true} \\ & \sim \mathsf{vtrue} \end{split}$$

• proof of property $\forall x. \ \mathsf{le}(\mathsf{half}(x), x) =_{\mathsf{Bool}} \mathsf{True} \text{ finished}$

RT (DCS @ UIBK)

Final Example: Insertion Sort

• consider insertion sort

$$\begin{split} &\mathsf{le}(\mathsf{Zero},y) = \mathsf{True} \\ &\mathsf{le}(\mathsf{Succ}(x),\mathsf{Zero}) = \mathsf{False} \\ &\mathsf{le}(\mathsf{Succ}(x),\mathsf{Succ}(y)) = \mathsf{le}(x,y) \\ & \text{if}(\mathsf{True},xs,ys) = xs \\ & \text{if}(\mathsf{False},xs,ys) = ys \\ & \text{insort}(x,\mathsf{Nil}) = \mathsf{Cons}(x,\mathsf{Nil}) \\ & \text{insort}(x,\mathsf{Cons}(y,ys)) = \mathsf{if}(\mathsf{le}(x,y),\mathsf{Cons}(x,\mathsf{Cons}(y,ys)),\mathsf{Cons}(y,\mathsf{insort}(x,ys))) \\ & \quad \mathsf{sort}(\mathsf{Nil}) = \mathsf{Nil} \\ & \quad \mathsf{sort}(\mathsf{Cons}(x,xs)) = \mathsf{insort}(x,\mathsf{sort}(xs)) \end{split}$$

- aim: prove soundness, e.g., result is sorted
- problem: how to express "being sorted"?
- in general: how to express properties if certain primitives are not available?

Expressing Properties

• solution: express properties via functional programs

 $\dots = \dots$ sort(Cons(x, xs)) = insort(x, sort(xs))

algorithm above, properties for specification below

 $\begin{aligned} & \mathsf{and}(\mathsf{True},b) = b \\ & \mathsf{and}(\mathsf{False},b) = \mathsf{False} \\ & \mathsf{all_le}(x,\mathsf{Nil}) = \mathsf{True} \\ & \mathsf{all_le}(x,\mathsf{Cons}(y,ys)) = \mathsf{and}(\mathsf{le}(x,y),\mathsf{all_le}(x,ys)) \\ & \mathsf{sorted}(\mathsf{Nil}) = \mathsf{True} \\ & \mathsf{sorted}(\mathsf{Cons}(x,xs)) = \mathsf{and}(\mathsf{all_le}(x,xs),\mathsf{sorted}(xs)) \end{aligned}$

- example properties (where $b =_{Bool} True$ is written just as b)
 - $sorted(insort(x, xs)) =_{Bool} sorted(xs)$
 - sorted(sort(*xs*))
- important: functional programs for specifications should be simple; they must be readable for validation and need not be efficient

RT (DCS @ UIBK)

(*)

Example: Soundness of sort

• already assume property of insort:

```
\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)
```

speculative proofs are risky: conjectures might be wrong

- property $\forall xs. \text{ sorted}(\text{sort}(xs))$ is shown by induction on xs
- base case:

```
sorted(sort(Nil))

→ sorted(Nil)

→ True (recall: syntax omits =<sub>Bool</sub> True)

→ true
```

 step case with IH sorted(sort(xs)): sorted(sort(Cons(x, xs)))
 → sorted(insort(x, sort(xs)))
 (*) sorted(sort(xs))
 → True

RT (DCS @ UIBK)

Part 5 – Reasoning about Functional Programs

Example: Soundness of insort

- prove $\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)$ by induction on xs
- base case:

sorted(insort(x, Nil)) =_{Bool} sorted(Nil) \rightsquigarrow sorted(Cons(x, Nil)) =_{Bool} sorted(Nil) \rightsquigarrow and(all_le(x, Nil), sorted(Nil)) =_{Bool} sorted(Nil) \rightsquigarrow and(True, sorted(Nil)) =_{Bool} sorted(Nil) \rightsquigarrow sorted(Nil) =_{Bool} sorted(Nil)

 $\rightsquigarrow true$

Example: Soundness of insort, Step Case

- prove $\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)$ by induction on xs
- step case with IH $\forall x$. sorted(insort(x, ys)) =_{Bool} sorted(ys):

 $sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))$

 \rightsquigarrow sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} ...

now perform case analysis on first argument of if

• case le(x, y), i.e., $le(x, y) =_{Bool} True$

 $sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\rightsquigarrow sorted(if(True, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\rightsquigarrow sorted(Cons(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))$

 $\rightsquigarrow \mathsf{and}(\mathsf{all_le}(x,\mathsf{Cons}(y,ys)),\mathsf{sorted}(\mathsf{Cons}(y,ys))) =_{\mathsf{Bool}} \mathsf{sorted}(\mathsf{Cons}(y,ys))$

the key to resolve this final formula is the following auxiliary property

 $\vec{\forall} \operatorname{le}(x, y) \longrightarrow \operatorname{sorted}(\operatorname{Cons}(y, zs)) \longrightarrow \operatorname{all_le}(x, \operatorname{Cons}(y, zs))$

this property can be proved by induction on zs but it will require a transitivity property for le

Example: Soundness of insort, Final Part

- prove $\forall x, xs. \text{ sorted}(\text{insort}(x, xs)) =_{\text{Bool}} \text{sorted}(xs)$ by ind. on xs
- step case with IH $\forall x$. sorted(insort(x, ys)) =_{Bool} sorted(ys):

 $sorted(insort(x, Cons(y, ys))) =_{Bool} sorted(Cons(y, ys))$ $\rightsquigarrow sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$

• case $\neg le(x, y)$, i.e., $le(x, y) =_{Bool} False$

 $sorted(if(le(x, y), Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\rightsquigarrow sorted(if(False, Cons(x, Cons(y, ys)), Cons(y, insort(x, ys)))) =_{Bool} \dots$ $\rightsquigarrow sorted(Cons(y, insort(x, ys))) =_{Bool} sorted(Cons(y, ys))$ $\rightsquigarrow and(all_le(y, insort(x, ys)), sorted(insort(x, ys))) =_{Bool} sorted(Cons(y, ys))$ $\rightsquigarrow and(all_le(y, insort(x, ys)), sorted(ys)) =_{Bool} sorted(Cons(y, ys))$ $\rightsquigarrow and(all_le(y, insort(x, ys)), sorted(ys)) =_{Bool} and(all_le(y, ys), sorted(ys))$

at this point identify further required auxiliary properties

- $\vec{\forall} \operatorname{all_le}(y, \operatorname{insort}(x, ys)) =_{\mathsf{Bool}} \operatorname{all_le}(y, \operatorname{Cons}(x, ys))$
- $\vec{\forall} \operatorname{le}(x, y) =_{\mathsf{Bool}} \mathsf{False} \longrightarrow \operatorname{le}(y, x) =_{\mathsf{Bool}} \mathsf{True}$

these allow to complete this case and hence the overall proof for sort

Summary

- equational properties can often conveniently be proved via induction and equational reasoning via \rightsquigarrow
- induction w.r.t. algorithm preferable whenever algorithms use more complex pattern structure than $c_i(x_1, \ldots, x_n)$ for all constructors c_i
- when getting stuck with → try to detect suitable auxiliary property; after proving it, add it to set of axioms for evaluation
- not every property can be expressed purely equational; e.g., Boolean connectives are sometimes required
- specify properties of functional programs (e.g., sort) as functional programs (e.g., sorted)