

Program Verification

Part 6 - Verification of Imperative Programs

René Thiemann

Department of Computer Science

Imperative Programs

Imperative Programs

- we here consider a small imperative programming language
- it consists of
 - ullet arithmetic expressions ${\mathcal A}$ over some set of variables ${\mathcal V}$

$$\frac{n \in \mathbb{Z}}{n \in \mathcal{A}} \qquad \qquad \frac{x \in \mathcal{V}}{x \in \mathcal{A}}$$

$$\frac{\{e_1, e_2\} \subseteq \mathcal{A} \quad \odot \in \{+, -, *\}}{e_1 \odot e_2 \in \mathcal{A}}$$

ullet Boolean expressions ${\cal B}$

$$\begin{array}{ll} c \in \{\texttt{true}, \texttt{false}\} & \qquad & \underbrace{\{e_1, e_2\} \subseteq \mathcal{A} \quad \odot \in \{\texttt{=,<,<=,!=}\}}_{e_1 \odot e_2 \in \mathcal{B}} \\ & \qquad & \underbrace{b \in \mathcal{B}}_{! \, b \in \mathcal{B}} & \qquad & \underbrace{\{b_1, b_2\} \subseteq \mathcal{B} \quad \odot \in \{\texttt{\&\&,|I|}\}}_{b_1 \odot b_2 \in \mathcal{B}} \end{array}$$

 $oldsymbol{\circ}$ commands ${\mathcal C}$

Commands and Programs

 \bullet commands $\mathcal C$ consist of

if-then-else

assignments

$$\frac{x \in \mathcal{V} \quad e \in \mathcal{A}}{x := e \in \mathcal{C}}$$

 $b \in \mathcal{B} \quad \{C_1, C_2\} \subseteq \mathcal{C}$ if b then C_1 else $C_2 \in \mathcal{C}$

seguential execution

 $\frac{\{C_1, C_2\} \subseteq \mathcal{C}}{C_1 : C_2 \in \mathcal{C}}$

while-loops

no-operation

 $\frac{b \in \mathcal{B} \quad C \in \mathcal{C}}{\text{while } b \ \{C\} \in \mathcal{C}}$

 $\overline{\mathtt{skip} \in \mathcal{C}}$

 curly braces are added for disambiguation, e.g. consider while $x < 5 \{ x := x + 2 \}$; y := y - 1

- a program P is just a command C
- RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

Verification

- partial correctness predicate via Hoare-triples: $\models (\varphi) P(\psi)$
 - semantic notion
 - meaning: whenever initial state satisfies φ ,
 - and execution of P terminates,
 - ullet then final state satisfies ψ
 - φ is called precondition, ψ is postcondition
 - here, formulas may range over program variables and logical variables
 - clearly, |= requires semantic of commands
- Hoare calculus: $\vdash (\varphi) P(\psi)$
 - syntactic calculus (similar to natural deduction)
 - sound: whenever $\vdash (\!(\varphi)\!) P(\!(\psi)\!)$ then $\models (\!(\varphi)\!) P(\!(\psi)\!)$

Semantics – **Expressions**

- state is evaluation $\alpha: \mathcal{V} \to \mathbb{Z}$
- semantics of arithmetic and Boolean expressions are defined as
 - $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{A} \to \mathbb{Z}$
 - e.g., if $\alpha(x) = 5$ then $[6*x+1]_{\alpha} = 31$
 - $\llbracket \cdot \rrbracket_{\alpha} : \mathcal{B} \to \{\mathsf{true}, \mathsf{false}\}$
 - e.g., if $\alpha(x)=5$ then $[\![6*x+1<20]\!]_{\alpha}=$ false
- we omit the straight-forward recursive definitions of $\llbracket \cdot \rrbracket_{\alpha}$ here

Semantics – Commands

RT (DCS @ UIBK)

• semantics of commands is given via small-step-semantics defined as relation
$$\hookrightarrow \subseteq (\mathcal{C} \times (\mathcal{V} \to \mathbb{Z}))^2$$

$$\overline{(x := e, \alpha) \hookrightarrow (\mathtt{skip}, \alpha[x := \llbracket e \rrbracket_{\alpha}])}$$

$$rac{[\![b]\!]_lpha=\mathsf{true}}{(\mathtt{if}\;b\;\mathtt{then}\;C_1\;\mathtt{else}\;C_2,lpha)\hookrightarrow(C_1,lpha)}$$

$$\frac{\llbracket b \rrbracket_{\alpha} = \mathsf{false}}{(\mathsf{if} \ b \ \mathsf{then} \ C_1 \ \mathsf{else} \ C_2, \alpha) \hookrightarrow (C_2, \alpha)}$$
$$(C_1, \alpha) \hookrightarrow (C_1', \beta)$$

 $[b]_{\alpha} = \mathsf{false}$ (while $b \ C, \alpha$) \hookrightarrow (skip, α)

• (
$$\mathtt{skip}, \alpha$$
) is normal form

Semantics – **Programs**

• we can formally define $\models (\varphi) P(\psi)$ as

$$\forall \alpha, \beta. \ \alpha \models \varphi \longrightarrow (P, \alpha) \hookrightarrow^* (\mathtt{skip}, \beta) \longrightarrow \beta \models \psi$$

- example specification: $(|x>0|) P (|y\cdot y< x|)$
 - if initially x>0, after running the program P, the final values of x and y must satisfy $y\cdot y< x$
 - nothing is required if initially $x \leq 0$
 - nothing is required if program does not terminate
 specification is satisfied by program P defined as
 - specification is satisfied by program P defined as
 v := 0
 - specification is satisfied by program P defined as
 y := 0;

while (y * y < x) {
 y := y + 1

y := y - 1

RT (DCS @ UIBK)

Program Variables and Logical Variables

y := 1;

• consider program Fact

```
while (x != 0) {
   y := y * x;
   x := x - 1
}
```

- specification for factorial: does $\models (|x \ge 0|) \; Fact \; (|y = x!|) \; hold?$
 - if $\alpha(x) = 6$ and $(Fact, \alpha) \hookrightarrow^* (\mathtt{skip}, \beta)$ then $\beta(y) = 720 = 6!$ • problem: $\beta(x) = 0$, so y = x! does not hold for final values
 - hence $\not\models (|x \ge 0|) \ Fact \ (|y = x!|)$, since specification is wrong
- solution: store initial values in logical variables
- in example: introduce logical variable x_0

$$\models (|x = x_0 \land x \ge 0|) \ Fact (|y = x_0!|)$$

via logical variables we can refer to initial values

Hoare Calculus

11/66

A Calculus for Program Verification

- aim: syntax directed calculus to reason about programs
- Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ...)

Part 6 - Verification of Imperative Programs

• present calculus as overview now, then explain single rules

$$\frac{\vdash (|\varphi|) \ C_1 \ (|\eta|) \ \vdash (|\eta|) \ C_2 \ (|\psi|)}{\vdash (|\varphi|) \ C_1; C_2 \ (|\psi|)} \ \text{composition}}$$

$$\frac{\vdash (|\varphi|) \ C_1; C_2 \ (|\psi|)}{\vdash (|\varphi|) \ C_1; C_2 \ (|\psi|)} \ \text{assignment}}$$

$$\frac{\vdash (|\varphi \wedge b|) \ C_1 \ (|\psi|) \ \vdash (|\varphi \wedge \neg b|) \ C_2 \ (|\psi|)}{\vdash (|\varphi|) \ \text{if then-else}}$$

$$\frac{\vdash (|\varphi \wedge b|) \ C \ (|\varphi|)}{\vdash (|\varphi|) \ \text{while}} \ b \ C \ (|\varphi \wedge \neg b|) \ \text{while}}$$

$$\stackrel{\vdash (|\varphi \wedge b|) \ C \ (|\varphi'|)}{\vdash (|\varphi'|) \ C \ (|\psi'|)} \ \stackrel{\vdash (|\varphi'| \longrightarrow \psi)}{\vdash (|\varphi'| \longrightarrow \psi)} \ \text{implication}$$

read rules bottom up: in order to get lower part, prove upper part

Composition Rule

$$\frac{\vdash (|\varphi|) C_1 (|\eta|) \vdash (|\eta|) C_2 (|\psi|)}{\vdash (|\varphi|) C_1; C_2 (|\psi|)} \text{ composition}$$

- ullet applicability: whenever command is sequential composition $C_1;C_2$
- ullet precondition is arphi and aim is to show that ψ holds after execution
- rationale: find some midcondition η such that execution of C_1 guarantees η , which can then be used as precondition to conclude ψ after execution of C_2
- automation: finding suitable η is usually automatic, see later slides

Assignment Rule

$$\frac{}{\vdash \left(\!\!\left| \varphi[x/e] \right|\!\!\right) x := e \left(\!\!\left| \varphi \right|\!\!\right)} \text{ assignment}$$

- applicability: whenever command is an assignment x := e
- to prove φ after execution, show $\varphi[x/e]$ before execution
- substitution seems to be on wrong side
 - effect of assignment is substitution x/e, so shouldn't rule be $\vdash (|\varphi|) x := e(|\varphi[x/e]|)$? No. this reversed rule would be wrong
 - assume before executing x := 5, the value of x is 6
 - before execution $\varphi = (x = 6)$ is satisfied, but after execution $\varphi[x/e] = (5 = 6)$ is not satisfied
- correct argumentation works as follows • if we want to ensure φ after the assignment then we need to ensure that the resulting
 - situation $(\varphi[x/e])$ holds before correct examples
 - $\vdash (12 = 2) x := 2 (1x = 2)$
 - $\vdash (2 = 4) \ x := 2 (x = 4)$
 - $\vdash (2-y > 2^2) x := 2(x-y > x^2)$
 - applying rule is easy when read from right to left: just substitute

If-Then-Else Rule

$$\frac{\vdash (\varphi \land b) C_1 (|\psi|) \quad \vdash (|\varphi \land \neg b|) C_2 (|\psi|)}{\vdash (|\varphi|) \text{ if } b \text{ then } C_1 \text{ else } C_2 (|\psi|)} \text{ if-then-else}$$

- applicability: whenever command is an if-then-else
- effect:
 - ullet the preconditions in the two branches are strengthened by adding the corresponding (negated) condition b of the if-then-else
 - often the addition of b and $\neg b$ is crucial to be able to perform the proofs for the Hoare-triples of C_1 and C_2 , respectively
- ullet rationale: if b is true in some state, then the execution will choose C_1 and we can add b as additional assumption; similar for other case
- applying rule is trivial from right to left

While Rule

$$\frac{ \vdash (\! | \varphi \wedge b |\!) \, C \, (\! | \varphi |\!)}{\vdash (\! | \varphi |\!) \, \mathtt{while} \, \, b \, C \, (\! | \varphi \wedge \neg b |\!)} \, \, \mathtt{while}$$

• $\vdash (| \varphi \wedge b |) C (| \varphi |)$ ensures, that when entering the loop, φ will be satisfied after one execution

- applicability: only rule that handles while-loop
- key ingredient: loop invariant φ
- rationale
 - φ is precondition, so in particular satisfied before loop execution
 - of the loop body C• in total, φ will be satisfied after each loop iteration
 - hence, when leaving the loop, φ and $\neg b$ are satisfied
 - while-rule does not enforce termination, partial correctness!
- automation
 - not automatic, since usually φ is not provided and postcondition is not of form $\varphi \wedge \neg b$; example: $\vdash (|x = x_0 \wedge x \geq 0|) \ Fact \ (|y = x_0!|)$
- finding suitable φ is hard and needs user guidance

Implication Rule

$$\frac{\models \varphi \longrightarrow \varphi' \quad \vdash (\!\!\mid\! \varphi' \!\!\mid\!) C (\!\!\mid\! \psi' \!\!\mid) \quad \models \psi' \longrightarrow \psi}{\vdash (\!\!\mid\! \varphi \!\!\mid\!) C (\!\!\mid\! \psi \!\!\mid\!)} \text{ implication}$$

- applicability: every command; does not change command
- rationale: weakening precondition or strengthening postcondition is sound
- remarks
 - only rule which does not decompose commands
 - application relies on prover for underlying logic, i.e., one which can prove implications
 - three main applications
 - simplify conditions that arise from applying other rules in order to get more readable proofs, e.g., replace x+1=y-2 by x=y-3
 - ullet prepare invariants, e.g., change postcondition from ψ to some formula ψ' of form $\chi \wedge
 eg b$
 - core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides

Example Proof

where prf_1 is the following proof

$$\frac{ \vdash (\exists 1 \cdot x! = x_0! \land x \ge 0) \ y := 1 \ (\exists y \cdot x! = x_0! \land x \ge 0)}{ \vdash (\exists x = x_0 \land x \ge 0) \ y := 1 \ (\exists y \cdot x! = x_0! \land x \ge 0)}$$

and prf_2 is the following proof

$$\vdash (\! \mid \! y \cdot (x-1)! = x_0! \land x - 1 \geq 0 \! \mid \!) \, \mathbf{x} \, := \, \mathbf{x} \, - \, \mathbf{1} \, (\! \mid \! y \cdot x! = x_0! \land x \geq 0 \! \mid \!)$$

- only creative step: invention of loop invariant $y \cdot x! = x_0! \wedge x \ge 0$
- quite unreadable, introduce proof tableaux

Problems in Presentation of Hoare Calculus

- proof trees become quite large even for small examples
- reason: lots of duplication, e.g., in composition rule

$$\frac{\vdash (|\varphi|) C_1 (|\eta|) \vdash (|\eta|) C_2 (|\psi|)}{\vdash (|\varphi|) C_1; C_2 (|\psi|)} \text{ composition}$$

every formula φ , η , ψ occurs twice

aim: develop better representation of Hoare-calculus proofs

Proof Tableaux

- main ideas
 - write program commands line-by-line
 interleave program commands with midconditions
 - structure

$$C_1;$$
 $(|arphi_1|)$ $C_2;$ $(|arphi_2|)$

 C_n

 $(|\varphi_n|)$

 (φ_0)

where none of the C_i is a sequential execution

• idea: each midcondition φ_i should hold after execution of C_i

Weakest Preconditions

$$C_{i+1};$$

$$(\varphi_i)$$

$$C_{i+1})$$

- problem: how to find all the midconditions φ_i ?
- solution
 - assume φ_{i+1} (and of course C_{i+1}) is given
 - then try to compute φ_i as weakest precondition, i.e., φ_i should be logically weakest formula satisfying

$$\models (\varphi_i) C_i (\varphi_{i+1})$$

 we will see, that such weakest preconditions can for many commands be computed automatically

22/66

Constructing the Proof Tableau

- aim: verify $\vdash (|\varphi_0'|) C_1; \ldots; C_n(|\varphi_n|)$
- approach: compute formulas $\varphi_{n-1}, \ldots, \varphi_0$, e.g., by taking weakest preconditions

$$(ertarphi_0) \ C_1;$$

 (φ_1)

 C_{n-1} : $(|\varphi_{n-1}|)$

$$C_n$$
 $(|\varphi_n|)$

and check $\models \varphi'_0 \longrightarrow \varphi_0$ this last check corresponds to an application of the implication-rule

next: consider the various commands how to compute a suitable formula φ_i given C_{i+1} and φ_{i+1} Part 6 - Verification of Imperative Programs

Constructing the Proof Tableau - Assignment

• for the assignment, the weakest precondition is computed via

$$\begin{aligned} & (\varphi[x/e]) \\ x := e \\ & (\varphi) \end{aligned}$$

• application is completely automatic: just substitute

Constructing the Proof Tableau – Implication

represent implication-rule by writing two consecutive formulas

- $(|\psi|)$ $(|\varphi|)$ whenever $\models \psi \longrightarrow \varphi$
- simplify formulas

application

- close proof tableau at the top, to turn given precondition into computed formula at top of program, e.g., $\models \varphi_0' \longrightarrow \varphi$ on slide 22
- example proof of $\vdash (|y = 2|) \ y := y * y; \ x := y + 1 (|x = 5|)$

$$(y=2)$$

(|x = 5|)

$$(y \cdot y = 4)$$
 (closing proof tableau at top)

$$y := y * y$$

$$(|y = 4|)$$

$$(|y = 4|)$$

 $(|y + 1 = 5|)$

(optional simplification step)

Example with Destructive Updates

ullet assume we want to calculate u=x+y via the following program P

$$(|x+y=x+y|)$$

$$\mathbf{z}:=\mathbf{x}$$

$$(|z+y=x+y|)$$

$$\mathbf{z}:=\mathbf{z}+\mathbf{y}$$

$$(|z=x+y|)$$

$$\mathbf{u}:=\mathbf{z}$$

$$(|u=x+y|)$$

(true)

- the midconditions have been inserted fully automatic
- hence we easily conclude \vdash (true) P(|u = x + y|)
- note: although the tableau is constructed bottom-up, it also makes sense to read it top-down

An Invalid Example

consider the following invalid tableau

```
(|\mathsf{true}|) (|x+1=x+1|) \mathbf{x} := \mathbf{x} + \mathbf{1} (|x=x+1|)
```

- if the tableau were okay, then the result would be the arithmetic property x=x+1, a formula that does not hold for any number x
- problem in tableau
 - assignment rule was not applied correctly
 - reason: substitution has to replace all variables
- corrected version

Proof Tableaux

Constructing the Proof Tableau – If-Then-Else

• aim: calculate φ such that

$$dash (\! |arphi \! |\!)$$
 if b then C_1 else $C_2 (\! |\psi \! |\!)$

- can be derived
- applying our procedure recursively, we get
 - formula φ_1 such that $\vdash (|\varphi_1|) C_1 (|\psi|)$ is derivable • formula φ_2 such that $\vdash (|\varphi_2|) C_2 (|\psi|)$ is derivable
- then weakest precondition for if-then-else is formula

• formal justification that φ is sound

$$\frac{\vdash \left(\!\left|\varphi_{1}\right|\!\right) C_{1} \left(\!\left|\psi\right|\!\right)}{\vdash \left(\!\left|\varphi\right|\!\right) C_{1} \left(\!\left|\psi\right|\!\right)} \quad \frac{\vdash \left(\!\left|\varphi_{2}\right|\!\right) C_{2} \left(\!\left|\psi\right|\!\right)}{\vdash \left(\!\left|\varphi\right|\!\right) \operatorname{if} b \text{ then } C_{1} \text{ else } C_{2} \left(\!\left|\psi\right|\!\right)}$$

 $\varphi := (b \longrightarrow \varphi_1) \land (\neg b \longrightarrow \varphi_2)$

Example with If-Then-Else

a := x + 1;

v := 1

 $\{((x+1)-1=0 \longrightarrow 1=x+1) \land ((x+1)-1 \neq 0 \longrightarrow x+1=x+1)\}$

(1 = x + 1)

(true)

if (a - 1 = 0) then {

consider non-optimal code to compute the successor

```
} else {
                   (a = x + 1)
          v := a
                   (y = x + 1) (formula copied to end of else-branch)
                   0 = x + 10
insertion of midconditions is completely automatic
```

 $\emptyset(a-1=0\longrightarrow 1=x+1) \land (a-1\neq 0\longrightarrow a=x+1)\emptyset$

(|y = x + 1|) (formula copied to end of then-branch)

Applying the While Rule

$$\frac{ \vdash (\mid \! \eta \wedge b \mid \!) \; C \; (\mid \! \eta \mid)}{\vdash (\mid \! \eta \mid) \; \text{while} \; b \; C \; (\mid \! \eta \wedge \neg b \mid)} \; \; \text{while}$$

• let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following? $\vdash (|\varphi|)$ while $b \ C \ (|\psi|)$

solution: find invariant η such that

$$\begin{array}{ll} \bullet \models \varphi \longrightarrow \eta & \text{precondition implies invariant} \\ \bullet \vdash (|\gamma|) \ C \ (|\eta|) & \text{handle loop body recursively, produces } \gamma \\ \bullet \models \eta \land b \longrightarrow \gamma & \eta \text{ is indeed invariant} \\ \bullet \models \eta \land \neg b \longrightarrow \psi & \text{invariant and } \neg b \text{ implies postcondition} \end{array}$$

- notes
 - invariant η has to be satisfied at beginning and end of loop-body, but not in between
 - invariant often captures the core of an algorithm:
 it describes connection between variables throughout execution
 - finding invariant is not automatic, but for seeing the connection it often helps to execute the loop a few rounds

Applying the While Rule – Soundness

$$\frac{\vdash (\mid\!\! \eta \land b\mid\!\!) \; C \; (\mid\!\! \eta\mid\!\!)}{\vdash (\mid\!\! \eta\mid\!\!) \; \text{while} \; b \; C \; (\mid\!\! \eta \land \neg b\mid\!\!)} \; \; \text{while}$$

• let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following? $\vdash (|\varphi|)$ while $b \ C \ (|\psi|)$

solution: find invariant η such that

- $\bullet \models \varphi \longrightarrow \eta \\
 \bullet \vdash (|\gamma|) C (|\eta|)$
- $\models n \land b \longrightarrow \gamma$
- $\bullet \models \eta \land \neg b \longrightarrow \psi$

soundness proof

precondition implies invariant handle loop body recursively, produces
$$\gamma$$
 η is indeed invariant invariant and $\neg b$ implies postcondition

 $\frac{ \vdash (\! | \gamma |\!) \; C \; (\! | \eta |\!)}{\vdash (\! | \eta \wedge b |\!) \; C \; (\! | \eta |\!)} }{\vdash (\! | \eta |\!) \; \text{while} \; b \; C \; (\! | \eta \wedge \neg b |\!)}$

$$\dfrac{(|\eta|) \text{ while } b \ C \ (|\eta \wedge \neg b|)}{\vdash (|\varphi|) \text{ while } b \ C \ (|\psi|)}$$

 η is invariant

precondition implies invariant

handle loop body recursively, produces γ

invariant and $\neg b$ implies postcondition

Schema to Find Loop Invariant

to create a Hoare-triple for a while-loop

$$\vdash (\![arphi]\!]$$
 while $b \mathrel{C} (\![\psi]\!]$

find η such that

- $\bullet \models \varphi \longrightarrow \eta \\
 \bullet \vdash (|\gamma|) C (|\eta|)$
 - $\models \eta \land b \longrightarrow \gamma$
 - $\bullet \models \eta \land \neg b \longrightarrow \psi$
- approach to find n
 - 1. guess initial η , e.g., based on a few loop executions
 - 2. check $\models \varphi \longrightarrow \eta$ and $\models \eta \land \neg b \longrightarrow \psi$; if not successful modify η
 - 3. compute γ by bottom-up generation of $\vdash (|\gamma|) C(|\eta|)$
 - 4. check $\models \eta \land b \longrightarrow \gamma$
 - 5. if last check is successful, proof is done
- 6. otherwise, adjust η
- note: if φ is not known for checking $\models \varphi \longrightarrow \eta$, then instead perform bottom-up propagation of commands before while-loop (starting with η) and then use precondition of whole program

Proof Tableaux

Verification of Factorial Program - Initial Invariant • program P: y := 1; while x > 0 {y := y * x; x := x - 1}

- aim: $\vdash (|x = x_0 \land x > 0) P (|y = x_0!)$
- for guessing initial invariant, execute a few iterations to compute 6!

	iteration	x_0	x	y	x!	
	0	6	6	1	720	
	1	6	5	6	120	
	2	6	4	30	24	
	3	6	3	120	6	
	4	6	2	360	2	
	5	6	1	720	1	
observations						

observation

- column x! was added since computing x! is aim
- multiplication of y and x! stays identical: $y \cdot x! = x_0!$
- hence use $y \cdot x! = x_0!$ as initial candidate of invariant
- $y = x_0$. In the call and the contract of y
- alternative reasoning with symbolic execution
 in y we store x₀ · (x₀ 1) · · · · (x + 1) = x₀!/x!, so multiplying with x! we get y · x! = x₀!

• initial invariant: $\eta = (y \cdot x! = x_0!)$ potential proof tableau

Verification of Factorial Program – Testing Initial Invariant

 $(|\eta|)$

 $(|\eta|)$

 $(n \wedge x > 0)$

 $(n \land \neg x > 0)$ $(|y = x_0!|)$

 $(|x=x_0 \wedge x>0|)$ $(1 \cdot x! = x_0!)$

while (x > 0) {

v := v * x:

x := x - 1

y := 1;

Part 6 - Verification of Imperative Programs

(implication does not hold)

(implication verified)

Proof Tableaux

33/66

- problem: condition $\neg x > 0$ ($x \le 0$) does not enforce x = 0 at end
- RT (DCS @ UIBK)

• strengthened invariant: $\eta = (y \cdot x! = x_0! \land x > 0)$

- potential proof tableau $(|x = x_0 \wedge x > 0)$
 - $(1 \cdot x! = x_0! \land x > 0)$

Verification of Factorial Program – Strengthening Invariant

- y := 1; $(|\eta|)$
- while (x > 0) {
 - $(n \wedge x > 0)$ $((y \cdot x) \cdot (x-1)! = x_0! \land x-1 > 0)$

 - v := v * x:

RT (DCS @ UIBK)

- x := x 1 $(|\eta|)$

 $(n \land \neg x > 0)$ $(|y = x_0!|)$

 $(|y \cdot (x-1)! = x_0! \land x-1 > 0)$

proof completed, since all implications verified (e.g. by SMT solver)

Part 6 - Verification of Imperative Programs

- (implication verified)

(implication verified)

(implication verified)

34/66

Proof Tableaux

Larger Example - Minimal-Sum Section

- assume extension of programming language: read-only arrays (writing into arrays requires significant extension of calculus)
- user is responsible for proper array access
- problem definition
 - given array $a[0],\ldots,a[n-1]$ of length n, a section of a is a continuous block $a[i],\ldots,a[j]$ with $0\leq i\leq j< n$
 - define $S_{i,j}$ as sum of section

$$S_{i,j} := a[i] + \dots + a[j]$$

- section (i, j) is minimal, if $S_{i,j} \leq S_{i',j'}$ for all sections (i', j') of a
- example: consider array [-7, 15, -1, 3, 15, -6, 4, -5]
 - [3,15,-6] and [-6] are sections, but [3,-6,4] is not
 - ullet there are two minimal-sum sections: [-7] and [-6,4,-5]

Minimal-Sum Section - Tasks

- write a program that computes sum of minimal section
- write a specification that makes "compute sum of minimal section" formal
- show that program satisfies the formal specification

Minimal-Sum Section – Challenges

- trivial algorithm
 - compute all sections $(O(n^2))$
 - compute all sums of these sections and find the minimum
 - results in $O(n^3)$ algorithm
- aim: O(n)-algorithm which reads the array only once
- ullet consequence: proof required that it is not necessary to explicitly compute all $O(n^2)$ sections
- example: consider array [-8, 3, -65, 20, 45, -100, -8, 17, -4, -14]
 - when reading from left-to-right a promising candidate might be [-8, 3, -65], but there also is the later [-100, -8], so how to decide what to take?

Minimal-Sum Section - Algorithm

- idea of algorithm
 - k: index that traverses array from left-to-right
 - s: minimal-sum of all sections seen so far
 - t: minimal-sum of all sections that end at position k-1
- algorithm Min_Sum

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
   t := min(t + a[k], a[k]);
   s := min(s, t);
   k := k + 1
}
```

correctness not obvious, so let us better prove it

39/66

Minimal-Sum Section - Specification

- we split the specification in two parts via two Hoare-triples
 - Sp_1 specifies that the value of s is smaller than the sum of any section

$$(\texttt{|true|}) \; \textit{Min_Sum} \, (\forall i, j. \; 0 \leq i \leq j < n \longrightarrow s \leq S_{i,j})$$

ullet Sp_2 specifies that there exists some section whose sum is s

$$(\texttt{|true|}) \; \textit{Min_Sum} \; (\exists i, j. \; 0 \leq i \leq j < n \land s = S_{i,j})$$

Minimal-Sum Section – Proving Sp_1 k := 1;

```
t := a[0];
s := a[0];
while (k != n)  {
  t := min(t + a[k], a[k]);
```

s := min(s, t): k := k + 1

- invariant often similar to postcondition
- invariant expresses relationships that are valid at beginning of each loop-iteration

• suitable invariant is
$$Inv_1(s,k)$$
 defined as

$$\forall i, j. \ 0 \leq i \leq j < k \longrightarrow s \leq S_{i,j}$$

 $Sp_1: (|true|) Min_Sum (|\forall i, j, 0 \le i \le j \le n \longrightarrow s \le S_{i,j})$

```
(|Inv_1(a[0],1)|)
                                                                                     (true statement)
          k := 1;
                               (|Inv_1(a[0],k)|)
          t := a[0];
                               (|Inv_1(a[0],k)|)
          s := a[0];
                               (|Inv_1(s,k)|)
          while (k != n) {
                               (|Inv_1(s,k) \wedge k \neq n|)
                               (|Inv_1(\min(s, \min(t + a[k], a[k])), k + 1)|)
                                                                                     (does not hold, no info on t)
             t := min(t + a[k], a[k]);
                               (|Inv_1(\min(s,t),k+1)|)
             s := min(s, t);
                               (|Inv_1(s, k+1)|)
             k := k + 1;
                               (|Inv_1(s,k)|)
                               (|Inv_1(s,k) \land \neg k \neq n|)
                               (|Inv_1(s,n)|)
                                                                                     (implication verified)
                                              Part 6 - Verification of Imperative Programs
RT (DCS @ UIBK)
                                                                                                                            41/66
```

42/66

Proof Tableaux

Minimal-Sum Section – Strengthening Invariant

 $Sp_1: (|true|) Min_Sum (|\forall i, j, 0 \le i \le j \le n \longrightarrow s \le S_{i,j})$

 $\forall i, j, 0 < i < j < k \longrightarrow s < S_{i,j}$

 $\forall i. \ 0 < i < k \longrightarrow t < S_{i,k-1}$

Part 6 - Verification of Imperative Programs

t := a[0];s := a[0];

k := 1;

while (k != n) {

t := min(t + a[k], a[k]);

• suitable invariant for s is $Inv_1(s,k)$ defined as

• define similar invariant for t: $Inv_2(t, k)$ defined as

• now try strengthened invariant $Inv_1(s,k) \wedge Inv_2(t,k)$

s := min(s, t);

k := k + 1

οт	/-

RT (DCS @ UIBK)

```
(|Inv_1(a[0],1) \wedge Inv_2(a[0],1)|)
                                                                             (true statement)
       k := 1:
            (|Inv_1(a[0],k) \wedge Inv_2(a[0],k)|)
       t := a[0]:
            (|Inv_1(a[0],k) \wedge Inv_2(t,k)|)
       s := a[0]:
            (Inv_1(s,k) \wedge Inv_2(t,k))
       while (k != n) {
            (Inv_1(s,k) \land Inv_2(t,k) \land k \neq n)
            (|Inv_1(\min(s,\min(t+a[k],a[k])),k+1) \wedge Inv_2(\min(t+a[k],a[k]),k+1)) (implication verified)
          t := min(t + a[k], a[k]):
            (|Inv_1(\min(s,t),k+1) \wedge Inv_2(t,k+1)|)
          s := min(s, t);
            (|Inv_1(s, k+1) \wedge Inv_2(t, k+1)|)
          k := k + 1:
            (Inv_1(s,k) \wedge Inv_2(t,k))
            (|Inv_1(s,k) \wedge Inv_2(t,k) \wedge \neg k \neq n|)
                                                                             (implication verified)
            (|Inv_1(s,n)|)
RT (DCS @ UIBK)
                                                 Part 6 - Verification of Imperative Programs
                                                                                                                                43/66
```

Minimal-Sum Section – Proving the Implications

- invariants
 - $Inv_1(s, k) := \forall i, j. \ 0 \le i \le j < k \longrightarrow s \le S_{i,j}$ • $Inv_2(t, k) := \forall i. \ 0 < i < k \longrightarrow t < S_{i,k-1}$
 - implications
 - true $\longrightarrow Inv_1(a[0],1) \wedge Inv_2(a[0],1)$
 - because of the conditions of the quantifiers, by fixing k=1 we only have to consider section (0,0), i.e, we show $a[0] \leq S_{0,0} = a[0]$
 - let 0 < k < n where n is length of array a; then $\mathit{Inv}_1(s,k) \land \mathit{Inv}_2(t,k) \land k \neq n$ implies both $\mathit{Inv}_2(\min(t+a[k],a[k]),k+1)$ and $\mathit{Inv}_1(\min(s,\min(t+a[k],a[k])),k+1)$; proof

• pick any $0 \le i \le k+1$; we show $\min(t+a[k], a[k]) \le S_{i,k}$; if $i \le k$ then

- $S_{i,k} = S_{i,k-1} + a[k]$, so we use $\mathit{Inv}_2(t,k)$ to get $t \leq S_{i,k-1}$ and thus $\min(t + a[k], a[k])) \leq t + a[k] \leq S_{i,k-1} + a[k] = S_{i,k}$; otherwise, i = k and we have $\min(t + a[k], a[k]) \leq a[k] = S_{i,k}$
- pick any $0 \le i \le j < k+1$; we need to show $\min(s, \min(t+a[k], a[k])) \le S_{i,j}$; if j=k then the result follows from the previous statement; otherwise j < k and the result follows from $\mathit{Inv}_1(s,k)$

Proof Tableaux – Summary

- we have proven soundness of non-trivial algorithm *Min_Sum*
- with gaps
 - ullet we only proved Sp_1 , but not Sp_2
 - lemma on previous slide demanded 0 < k < n which does not follow from loop-condition $k \neq n$; a proper fix would require a strengthened invariant which includes bounds on k
- main reasoning (proving the implications on previous slide) was done purely in logic with no reference to program
- such an approach is often conducted in verification of programs
 - there is a verification condition generator (VCG)
 - VCG converts assertions in programs (invariants) into logical formulas; here: Hoare-calculus handles program statements, verification conditions are instances of implication-rule
 - verification conditions are passed to SMT-solver, theorem prover, etc., to finally show correctness
 - problem: in case SMT-solver fails, user needs to understand failure to adapt invariants, assertions, etc.

Termination of Imperative Programs

Adding Termination to Calculus

• since while-loops are only source of non-termination in presented imperative language, it suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before

- recall: total correctness = partial correctness + termination
- previous while-rule already proved partial correctness
- only task: extend existing while-rule to additionally prove termination
- idea of ensuring termination: use variants
 - a variant (or measure) is an integer expression;
 - this integer expression strictly decreases in every loop iteration and
 - at the same time the variant stays non-negative;
 - conclusion: there cannot be infinitely many loop iterations

A While-Rule For Total Correctness

while-rule for partial correctness

$$\frac{ \vdash (\! | \varphi \wedge b |\!) \, C \, (\! | \varphi |\!)}{\vdash (\! | \varphi |\!) \, \text{while} \, \, b \, C \, (\! | \varphi \wedge \neg b |\!)} \, \, \text{while}$$

extended while-rule for total correctness

$$\frac{\vdash (| \varphi \wedge b \wedge e_0 = \mathbf{e} \geq 0) C (| \varphi \wedge e_0 > e \geq 0)}{\vdash (| \varphi \wedge e \geq 0) \text{ while } b C (| \varphi \wedge \neg b)} \text{ while-total}$$

where

- e is variant expression with values before execution of C
 - ullet e is (the same) variant expression with values after execution of C
- e_0 is fresh logical variable, used to store the value of e before: $e_0 = e$
- hence, postcondition $e_0 > e$ enforces decrease of e when executing C
- non-negativeness is added three times, even in precondition of while
- e is of type integer so that SN $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x > y \ge 0\}$ can be used as underlying terminating relation: each loop iteration corresponds to a step $([e]_{\alpha_{\text{holor}}}, [e]_{\alpha_{\text{object}}})$ in this

Applying While-Total

$$\frac{\vdash (\!(\varphi \land b \land e_0 = e \ge 0\!)) C (\!(\varphi \land e_0 > e \ge 0\!))}{\vdash (\!(\varphi \land e \ge 0\!)) \text{ while } b C (\!(\varphi \land \neg b\!))} \text{ while-total}$$

- application
 - e_0 is fresh logical variable, so nothing to choose
 - variant e has to be chosen, but this is often easy
 - while $(x < 5) \{ \dots x := x + 1 \dots \}$ is same as while $(5 x > 0) \{ \dots x := x + 1 \dots \}$, so e = 5 x
 - while $(y \ge x) \{ ... \ y := y 2 ... \}$ is same as
 - while $(y x \ge 0)$ { ... y := y 2 ...}, so e = y x (+2)
 while (x != y) { ... y := y + 1 ...} is same as
 while (x y != 0) { ... y := y + 1 ...}, so e = x y
 - checking the condition is then easily possible via proof tableau, in the same way as for the while-rule for partial correctness
 - all side-conditions $e \ge 0$ can completely be eliminated by choosing $e = \max(0, e')$ for some e', but then proving $e_0 > e$ will become harder as it has to deal with \max
 - invariant φ can be taken unchanged from partial correctness proof

Total Correctness of Factorial Program

• red parts have been added for termination proof with variant x-z

```
(|\text{true} \wedge x > 0|)
                                                      (new termination condition on x)
                 (11 = 0! \land x - 0 > 0)
v := 1;
                 (|y| = 0! \land x - 0 > 0)
z := 0;
                 (|y = z| \land x - z > 0)
                                                                  (new condition added)
while (x != z) {
                 (|y = z! \land x \neq z \land e_0 = x - z > 0) (new condition added)
                 (y \cdot (z+1) = (z+1)! \land e_0 > x - (z+1) > 0) (more reasoning)
  z := z + 1:
                 (|y \cdot z = z| \land e_0 > x - z > 0)
  v := v * z:
                 (|u| = z! \land e_0 > x - z > 0)
                                                                   (new condition added)
                 (|u| = z! \land \neg x \neq z)
                 (|y = x!|)
```

Remarks on Total Correctness of Factorial Program

- \bullet precondition $x \geq 0$ was added automatically from termination proof
- in fact, the program does not terminate on negative inputs
- for factorial program (and other imperative programs) Hoare-calculus permits to prove local termination, i.e., termination on certain inputs
- in contrast, for functional program we always considered universal termination, i.e., termination of all inputs
- termination proofs can also be performed stand-alone (without partial correctness proof): just prove postcondition "true" with while-total-rule:

$$\vdash (\!(arphi)\!)\,P\,(\!(\mathsf{true})\!)$$

implies termination of P on inputs that satisfy φ , so

$$\vdash$$
 (true) P (true)

shows universal termination of P

Soundness of Hoare-Calculus

Soundness of Hoare-Calculus

- so far, we have two notions of soundness
 - $\models (\varphi) P (\psi)$: via semantic of imperative programs, i.e., whenever $\alpha \models \varphi$ and $(P, \alpha) \hookrightarrow^* (\operatorname{skip}, \beta)$ then $\beta \models \psi$ must hold
 - $\vdash (\varphi) P(\psi)$: syntactic, what can be derived via Hoare-calculus rules
- missing: soundness of calculus, i.e.,

$$\vdash (\varphi) P(\psi)$$
 implies $\models (\varphi) P(\psi)$

- formal proof is based on big-step semantics \rightarrow (see exercises): $(P, \alpha) \hookrightarrow^* (\mathtt{skip}, \beta)$ is turned into $(P, \alpha) \rightarrow \beta$
- soundness of the calculus is then established by the following property, which is proven by induction w.r.t. the Hoare-calculus rules for arbitrary α, β :

$$\vdash (\varphi) C (\psi) \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

$\textbf{Proving} \vdash (\![\varphi]\!] \ C \ (\![\psi]\!] \ \longrightarrow \alpha \models \varphi \longrightarrow (C,\alpha) \to \beta \longrightarrow \beta \models \psi$

Case 1: implication-rule

$$\vdash (|\varphi|) C (|\psi|)$$
 since $\models \varphi \longrightarrow \varphi'$, $\vdash (|\varphi'|) C (|\psi'|)$, and $\models \psi' \longrightarrow \psi$

- IH: $\forall \alpha, \beta. \alpha \models \varphi' \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi'$
- assume $\alpha \models \varphi$ and $(C, \alpha) \rightarrow \beta$
- then by $\models \varphi \longrightarrow \varphi'$ conclude $\alpha \models \varphi'$
- in combination with IH get $\beta \models \psi'$
- with $\models \psi' \longrightarrow \psi$ conclude $\beta \models \psi$

Proving
$$\vdash (\varphi) C (\psi) \longrightarrow \alpha \models \varphi \longrightarrow (C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$$

Case 2: composition-rule

$$\vdash (|\varphi|) C_1; C_2 (|\psi|) \text{ since } \vdash (|\varphi|) C_1 (|\eta|) \text{ and } \vdash (|\eta|) C_2 (|\psi|)$$

- IH-1: $\forall \alpha, \beta. \alpha \models \varphi \longrightarrow (C_1, \alpha) \rightarrow \beta \longrightarrow \beta \models \eta$
- IH-2: $\forall \alpha, \beta. \alpha \models \eta \longrightarrow (C_2, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$
- assume $\alpha \models \varphi$ and $(C_1; C_2, \alpha) \rightarrow \beta$
- from the latter and the definition of \rightarrow , there must be γ such that $(C_1, \alpha) \rightarrow \gamma$ and $(C_2, \gamma) \rightarrow \beta$
- by using IH-1 (choose α and γ in \forall), obtain $\gamma \models \eta$
- by using IH-2 (choose γ and β in \forall), obtain $\beta \models \psi$

$$\mathbf{Proving} \vdash (\![\varphi]\!] \ C \ (\![\psi]\!] \ \longrightarrow \alpha \models \varphi \longrightarrow (C,\alpha) \to \beta \longrightarrow \beta \models \psi$$

Case 3: if-then-else-rule

$$dash (arphi)$$
 if b then C_1 else C_2 (ψ)

- IH-1: $\forall \alpha, \beta. \alpha \models \varphi \land b \longrightarrow (C_1, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$
- IH-2: $\forall \alpha, \beta, \alpha \models \varphi \land \neg b \longrightarrow (C_2, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$
- assume $\alpha \models \varphi$ and (if b then C_1 else $C_2, \alpha) \to \beta$
- ullet perform case analysis on $[\![b]\!]_lpha$
- w.l.o.g. we only consider the case $[\![b]\!]_{\alpha}=$ true where
 - from $\alpha \models \varphi$ conclude $\alpha \models \varphi \land b$
 - from (if b then C_1 else C_2, α) $\to \beta$ conclude $(C_1, \alpha) \to \beta$
 - by using IH-1 get $\beta \models \psi$

$$\textbf{Proving} \vdash (\![\varphi]\!] \ C \ (\![\psi]\!] \ \longrightarrow \alpha \models \varphi \longrightarrow (C,\alpha) \to \beta \longrightarrow \beta \models \psi$$

Case 4: assignment-rule

$$\vdash (\varphi) x := e(\psi) \text{ since } \varphi = \psi[x/e]$$

- assume $\alpha \models \varphi$ and $(x := e, \alpha) \rightarrow \beta$
- by definition of ightarrow, conclude $eta=lpha[x:=[\![e]\!]_lpha]$
- hence assumption $\alpha \models \varphi$ is equivalent to
 - $\alpha \models \psi[x/e]$
 - $\alpha[x := \llbracket e \rrbracket_{\alpha}] \models \psi$
 - $\beta \models \psi$

by unrolling φ -equality by substitution lemma for formulas by unrolling β -equality

$\textbf{Proving} \vdash (\![\varphi]\!] \ C \ (\![\psi]\!] \ \longrightarrow \alpha \models \varphi \longrightarrow (C,\alpha) \to \beta \longrightarrow \beta \models \psi$

Case 5: while-rule

$$\vdash \left(\!\left|\varphi\right|\!\right) \text{ while } b \ C' \left(\!\left|\psi\right|\!\right) \ \text{since} \vdash \left(\!\left|\varphi \wedge b\right|\!\right) C' \left(\!\left|\varphi\right|\!\right) \ \text{and} \ \psi = \varphi \wedge \neg b$$

- $\bullet \ \ \text{(outer) IH: } \forall \alpha,\beta.\,\alpha \models \varphi \land b \longrightarrow (C',\alpha) \rightarrow \beta \longrightarrow \beta \models \varphi$
- we now prove $\alpha \models \varphi \longrightarrow (\text{while } b \ C', \alpha) \rightarrow \beta \longrightarrow \beta \models \psi$ by an inner induction on α w.r.t. \rightarrow , but for fixed b, C', β , φ , ψ
 - case 1: (while b $C', \alpha) \to \beta$ since $[\![b]\!]_{\alpha} = \text{false and } \beta = \alpha$
 - in this case conclude $\beta = \alpha \models \varphi \land \neg b = \psi$
 - case 2: (while b $C', \alpha) \to \beta$ since $[\![b]\!]_{\alpha} = \text{true}$, $(C', \alpha) \to \gamma$ and (while b $C', \gamma) \to \beta$
 - inner IH: $\gamma \models \varphi \longrightarrow \beta \models \psi$
 - assume $\alpha \models \varphi$
 - hence $\alpha \models \varphi \wedge b$
 - by outer IH (choose α and γ in \forall) get $\gamma \models \varphi$
 - then inner IH yields $\beta \models \psi$

Summary of Soundness of Hoare-Calculus

- since Hoare-calculus rules and semantics are formally defined, it is possible to verify soundness of the calculus
- proof requires inner induction for while-loop,
 since big-step semantics of while-command refers to itself
- here: only soundness of Hoare-calculus for partial correctness
- possible extension: total correctness
 - define semantic notion $\models_{total} (|\varphi|) C (|\psi|)$ stating total correctness
 - ullet prove that Hoare-calculus with while-total is sound w.r.t. \models_{total}

Programming by Contract

Programming by Contract – Idea

- Hoare-triple (|\varphi|) P (|\varphi|) may be seen as a contract between supplier and consumer of program P
 - \bullet supplier insists that consumer invokes P only on states satisfying φ
 - ${\color{blue}\bullet}$ supplier promises that after execution of P formula ψ holds
- validation of Hoare-triples with Hoare-calculus can be seen as validation of contracts for method- or procedure-calls

62/66

Example

• consider method where ... is program Fact on slide 9 int factorial (int x) { int y; ...; return y }

example contract

```
method name: factorial
input: int x
output: int
assumes: x >= 0
```

guarantees: result = x!

modifies only: local variables

- remarks
 - return-value of method is referred to as result in contract
 - since x is local parameter (call-by-value) and y is local variable, there will be no impact on global variables;
 - for procedures and call-by-reference variables, one usually wants to know whether modifications take place

Modified Example

consider procedure where ... is program Fact on slide 9
 void factorial_proc (int x) { ... }

example contract

```
procedure name: factorial_proc
```

input: int x assumes: $x \ge 0$

guarantees: y = x!

modifies only: y

remarks

- y is no longer local variable, but global
- procedure has no return value
- guarantees are expressed via global variables and parameters (and if required, logical variables)
- ullet modification of global variable y visible in contract

Invoking Methods

assume we want to write method for binomial coefficients

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

to compute chance of lotto-jackpot 1 : $\binom{49}{6}$ • int binom (int n. int k) {

programming-by-contract also demands contracts for new methods

• in example, we need to ensure that preconditions of factorial-invocations are met

return factorial(n) / (factorial(k) * factorial (n-k))

method name: binom inputs: int n, int k output: int

assumes: $n \ge 0$, $k \ge 0$, $n \ge k$ guarantees: result = n choose k

modifies only: local variables RT (DCS @ UIBK) Part 6 - Verification of Imperative Programs

Programming by Contract – Advantages

- in the same way as methods help to structure larger programs, contracts for these methods help to verify larger programs
- reason: for verifying code invoking method m, it suffices to look at contract of m without looking at implementation of m
- positive effects
 - add layer of abstraction

return z }

- easy to change implementation of m as long as contract stays identical
- verification becomes more modular
- example: for invocation of min in minimal-sum section it does not matter whether
 - min is built-in operator which is substituted as such, or
 - min is user-defined method that according to the contract computes the mathematical min-operation
 - implementation can be ignored for caller, but developer needs to verify it against contract
 int min(int x, int y) {
 int z;
 if x <= y then z := x else z := y;</pre>

Summary – Verification of Imperative Programs

- covered
 - syntax and semantic of small imperative programming language
 - \bullet Hoare-calculus to verify Hoare-triples $(\!(\varphi)\!)\,P\,(\!(\psi)\!)$
 - proof tableaux and automation:
 Hoare-calculus is VCG that converts program logic into implications (verification conditions)
 that must be shown in underlying logic
 - proofs are mostly automatic, except for loop invariants
 - soundness of Hoare-calculus
 - programming by contracts: abstract from concrete method-implementations, use contracts
- not covered
 - heap-access, references, arrays, etc.: extension to separation logic, memory model
 - bounded integers: reasoning engine for bit-vector-arithmetic
 - multi-threading