

Program Verification

Part 6 - Verification of Imperative Programs

René Thiemann

Department of Computer Science

Imperative Programs

Imperative Programs

- we here consider a small imperative programming language
- it consists of
- arithmetic expressions \mathcal{A} over some set of variables \mathcal{V}

$$
\frac{n \in \mathbb{Z}}{n \in \mathcal{A}} \quad \frac{x \in \mathcal{V}}{x \in \mathcal{A}} \quad \frac{\left\{e_{1}, e_{2}\right\} \subseteq \mathcal{A} \odot \in\{+,-, *\}}{e_{1} \odot e_{2} \in \mathcal{A}}
$$

- Boolean expressions \mathcal{B}

$$
\begin{array}{rr}
\frac{c \in\{\text { true, false }\}}{c \in \mathcal{B}} & \frac{\left\{e_{1}, e_{2}\right\} \subseteq \mathcal{A} \odot \in\{=,<,<=,!=\}}{e_{1} \odot e_{2} \in \mathcal{B}} \\
\frac{b \in \mathcal{B}}{!b \in \mathcal{B}} & \frac{\left\{b_{1}, b_{2}\right\} \subseteq \mathcal{B} \odot \in\{\& \&,| |\}}{b_{1} \odot b_{2} \in \mathcal{B}}
\end{array}
$$

- commands \mathcal{C}
- commands \mathcal{C} consist of
- assignments

$$
\frac{x \in \mathcal{V} \quad e \in \mathcal{A}}{x:=e \in \mathcal{C}}
$$

- if-then-else

$$
\frac{b \in \mathcal{B} \quad\left\{C_{1}, C_{2}\right\} \subseteq \mathcal{C}}{\text { if } b \text { then } C_{1} \text { else } C_{2} \in \mathcal{C}}
$$

- sequential execution

$$
\frac{\left\{C_{1}, C_{2}\right\} \subseteq \mathcal{C}}{C_{1} ; C_{2} \in \mathcal{C}}
$$

- while-loops

$$
\frac{b \in \mathcal{B} \quad C \in \mathcal{C}}{\text { while } b\{C\} \in \mathcal{C}}
$$

- no-operation

$$
\overline{\operatorname{skip} \in \mathcal{C}}
$$

- curly braces are added for disambiguation, e.g. consider while $\mathrm{x}<5\{\mathrm{x}:=\mathrm{x}+2\}$; $\mathrm{y}:=\mathrm{y}-1$
- a program P is just a command C

Verification

- partial correctness predicate via Hoare-triples: $=(|\varphi|) P(|\psi|)$
- semantic notion
- meaning: whenever initial state satisfies φ,
- and execution of P terminates,
- then final state satisfies ψ
- φ is called precondition, ψ is postcondition
- here, formulas may range over program variables and logical variables
- clearly, \models requires semantic of commands
- Hoare calculus: $\vdash(\varphi \mid) P(|\psi|)$
- syntactic calculus (similar to natural deduction)
- sound: whenever $\vdash(|\varphi|) P(\psi \mid)$ then $\vDash(\varphi \mid) P(\psi \mid$

Semantics - Expressions

- state is evaluation $\alpha: \mathcal{V} \rightarrow \mathbb{Z}$
- semantics of arithmetic and Boolean expressions are defined as
- $\llbracket \rrbracket_{\alpha}: \mathcal{A} \rightarrow \mathbb{Z}$
e.g., if $\alpha(x)=5$ then $\llbracket 6 * x+1 \rrbracket_{\alpha}=31$
- $\llbracket \cdot \rrbracket_{\alpha}: \mathcal{B} \rightarrow\{$ true, false $\}$
e.g., if $\alpha(x)=5$ then $\llbracket 6 * x+1<20 \rrbracket_{\alpha}=$ false
- we omit the straight-forward recursive definitions of $\llbracket \cdot \rrbracket_{\alpha}$ here

Semantics - Commands

- semantics of commands is given via small-step-semantics defined as relation $\hookrightarrow \subseteq(\mathcal{C} \times(\mathcal{V} \rightarrow \mathbb{Z}))^{2}$

$$
\begin{gathered}
\overline{(x:=e, \alpha) \hookrightarrow\left(\text { skip }, \alpha\left[x:=\llbracket e \rrbracket_{\alpha}\right]\right)} \\
\frac{\llbracket b \rrbracket_{\alpha}=\text { true }}{\left(\text { if } b \text { then } C_{1} \text { else } C_{2}, \alpha\right) \hookrightarrow\left(C_{1}, \alpha\right)} \\
\frac{\llbracket b \rrbracket_{\alpha}=\text { false }}{\left(\text { if } b \text { then } C_{1} \text { else } C_{2}, \alpha\right) \hookrightarrow\left(C_{2}, \alpha\right)} \\
\left(C_{1}, \alpha\right) \hookrightarrow\left(C_{1}^{\prime}, \beta\right) \\
\left(C_{1} ; C_{2}, \alpha\right) \hookrightarrow\left(C_{1}^{\prime} ; C_{2}, \beta\right) \\
(\text { skip } ; C, \alpha) \hookrightarrow(C, \alpha) \\
\overline{(\text { while } b C, \alpha) \hookrightarrow(C \text {; while } b C, \alpha)} \\
\frac{\llbracket b \rrbracket_{\alpha}=\text { false }}{(\text { while } b C, \alpha) \hookrightarrow(\text { skip }, \alpha)}
\end{gathered}
$$

- (skip, α) is normal form
- we can formally define $\models(|\varphi|) P(\psi \mid$ as

$$
\forall \alpha, \beta . \alpha \models \varphi \longrightarrow(P, \alpha) \hookrightarrow^{*}(\text { skip }, \beta) \longrightarrow \beta \models \psi
$$

- example specification: $(x>0 \mid) P(y \cdot y<x \mid)$
- if initially $x>0$, after running the program P, the final values of x and y must satisfy $y \cdot y<x$
- nothing is required if initially $x \leq 0$
- nothing is required if program does not terminate
- specification is satisfied by program P defined as

$$
y:=0
$$

- specification is satisfied by program P defined as

$$
\begin{aligned}
& \mathrm{y}:=0 ; \\
& \text { while }(\mathrm{y} * \mathrm{y}<\mathrm{x})\{ \\
& \mathrm{y}:=\mathrm{y}+1 \\
& \} ; \\
& \mathrm{y}:=\mathrm{y}-1
\end{aligned}
$$

Program Variables and Logical Variables

- consider program Fact

```
y := 1;
while (x != 0) {
    y := y * x;
    x := x - 1
}
```

- specification for factorial: does $\models(x \geq 0 \mid)$ Fact $(y=x$! $)$ hold?
- if $\alpha(x)=6$ and $($ Fact, $\alpha) \hookrightarrow^{*}$ (skip, β) then $\beta(y)=720=6$!
- problem: $\beta(x)=0$, so $y=x$! does not hold for final values
- hence $\forall(|x \geq 0|)$ Fact ($y=x$!) , since specification is wrong
- solution: store initial values in logical variables
- in example: introduce logical variable x_{0}

$$
\models\left(x=x_{0} \wedge x \geq 0 \mid\right) \text { Fact }\left(y=x_{0}!\right)
$$

via logical variables we can refer to initial values

Hoare Calculus

A Calculus for Program Verification

- aim: syntax directed calculus to reason about programs
- Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, ...)
- present calculus as overview now, then explain single rules

$$
\begin{aligned}
& \frac{\vdash(\varphi) C_{1}(\eta) \vdash(\eta) C_{2}(\psi)}{\vdash(\varphi)) C_{1} ; C_{2}(\psi)} \text { composition } \\
& \overline{\vdash(\varphi[x / e]) x:=e(\varphi)} \text { assignment } \\
& \frac{\vdash(\varphi \wedge b) C_{1}(\psi) \quad \vdash(\varphi \wedge \neg b) C_{2}(\psi \psi)}{\vdash(\varphi) \text { if } b \text { then } C_{1} \text { else } C_{2}(\psi)} \text { if-then-else } \\
& \vdash(\varphi \wedge b) C(\varphi \varphi) \\
& \overline{\vdash(\varphi) \text {) while } b C(\rho \wedge \neg b)} \text { while } \\
& \frac{\models \varphi \longrightarrow \varphi^{\prime} \quad \vdash\left(\varphi^{\prime}\right) C\left(\psi^{\prime}\right) \quad \vDash \psi^{\prime} \longrightarrow \psi}{\vdash(\varphi) C(\psi)} \text { implication }
\end{aligned}
$$

- read rules bottom up: in order to get lower part, prove upper part

Composition Rule

$$
\frac{\vdash(\varphi \varphi \mid) C_{1}(|\eta|) \vdash(\eta \mid) C_{2}(\psi \mid)}{\vdash(\varphi \varphi) C_{1} ; C_{2}(\psi \psi)} \text { composition }
$$

- applicability: whenever command is sequential composition $C_{1} ; C_{2}$
- precondition is φ and aim is to show that ψ holds after execution
- rationale: find some midcondition η such that execution of C_{1} guarantees η, which can then be used as precondition to conclude ψ after execution of C_{2}
- automation: finding suitable η is usually automatic, see later slides

$$
\overline{\vdash(\varphi[x / e]) x:=e \ \varphi \emptyset} \text { assignment }
$$

- applicability: whenever command is an assignment $x:=e$
- to prove φ after execution, show $\varphi[x / e]$ before execution
- substitution seems to be on wrong side
- effect of assignment is substitution x / e, so shouldn't rule be $\vdash(\varphi \varphi) x:=e(\varphi \varphi[x / e])$? No, this reversed rule would be wrong
- assume before executing $x:=5$, the value of x is 6
- before execution $\varphi=(x=6)$ is satisfied, but after execution $\varphi[x / e]=(5=6)$ is not satisfied
- correct argumentation works as follows
- if we want to ensure φ after the assignment then we need to ensure that the resulting situation $(\varphi[x / e])$ holds before
- correct examples
- $\vdash(2=2) x:=2(x=2)$
- $\vdash(2=4) x:=2(x=4)$
- $\vdash\left(2-y>2^{2}\right) x:=2\left(x-y>x^{2}\right)$
- applying rule is easy when read from right to left: just substitute

If-Then-Else Rule

$$
\frac{\vdash(\varphi \wedge b \mid) C_{1}(\psi \mid) \quad(\varphi \wedge \neg b \mid) C_{2}(|\psi|)}{\vdash(|\varphi|) \text { if } b \text { then } C_{1} \text { else } C_{2}(\psi \mid)} \text { if-then-else }
$$

- applicability: whenever command is an if-then-else
- effect:
- the preconditions in the two branches are strengthened by adding the corresponding (negated) condition b of the if-then-else
- often the addition of b and $\neg b$ is crucial to be able to perform the proofs for the Hoare-triples of C_{1} and C_{2}, respectively
- rationale: if b is true in some state, then the execution will choose C_{1} and we can add b as additional assumption; similar for other case
- applying rule is trivial from right to left

$$
\frac{\vdash(|\varphi \wedge b| C(|\varphi|)}{\vdash(|\varphi|) \text { while } b C(|\varphi \wedge \neg b|)} \text { while }
$$

- applicability: only rule that handles while-loop
- key ingredient: loop invariant φ
- rationale
- φ is precondition, so in particular satisfied before loop execution
- $\vdash(|\varphi \wedge b| C(\varphi \varphi)$ ensures, that when entering the loop, φ will be satisfied after one execution of the loop body C
- in total, φ will be satisfied after each loop iteration
- hence, when leaving the loop, φ and $\neg b$ are satisfied
- while-rule does not enforce termination, partial correctness!
- automation
- not automatic, since usually φ is not provided and postcondition is not of form $\varphi \wedge \neg$; ; example: $\vdash\left(x=x_{0} \wedge x \geq 0\right.$) Fact ($y=x_{0}$!)
- finding suitable φ is hard and needs user guidance

Implication Rule

$$
\frac{\models \varphi \longrightarrow \varphi^{\prime} \quad \vdash\left(\varphi^{\prime} \mid\right) C\left(\psi^{\prime} \mid\right) \quad \models \psi^{\prime} \longrightarrow \psi}{\vdash(\varphi \mid) C(\psi \mid)} \text { implication }
$$

- applicability: every command; does not change command
- rationale: weakening precondition or strengthening postcondition is sound
- remarks
- only rule which does not decompose commands
- application relies on prover for underlying logic, i.e., one which can prove implications
- three main applications
- simplify conditions that arise from applying other rules in order to get more readable proofs, e.g., replace $x+1=y-2$ by $x=y-3$
- prepare invariants, e.g., change postcondition from ψ to some formula ψ^{\prime} of form $\chi \wedge \neg b$
- core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides

$$
\begin{aligned}
& \frac{\stackrel{\vdash\left(\|(y \cdot x) \cdot(x-1)!=x_{0}!\wedge x-1 \geq 0 \mid\right) \text { y }:=\mathrm{y} * \mathrm{x}\left(\left|y \cdot(x-1)!=x_{0}!\wedge x-1 \geq 0\right|\right)}{\vdash\left(\| y \cdot x!=x_{0}!\wedge x>0 \wedge x \neq 0 \mid \mathrm{y}:=\mathrm{y} * \mathrm{x}\left(\| y \cdot(x-1)!=x_{0}!\wedge x-1>0 \mid\right.\right.}}{} \\
& \vdash\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0 \wedge x \neq 0\right|\right) \text { y }:=\mathrm{y} * \mathrm{x}\left(\left|y \cdot(x-1)!=x_{0}!\wedge x-1 \geq 0\right|\right) \quad \operatorname{prf}_{2} \\
& \vdash\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0 \wedge x \neq 0\right|\right) \text { y }:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right. \\
& \begin{aligned}
& \frac{p r f_{1}}{} \frac{\vdash\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right) \text { while } \mathrm{x}!=0\{\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1\}\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0 \wedge \neg x \neq 0\right|\right)}{\vdash\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right) \text { while } \mathrm{x}!=0\{\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1\}\left(\left|y=x_{0}!\right|\right)} \\
& \vdash\left(\left|x=x_{0} \wedge x \geq 0\right| \mathrm{y}:=1 ; \text { while } \mathrm{x}!=0\{\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1\}\left(\left|y=x_{0}!\right|\right)\right.
\end{aligned}
\end{aligned}
$$

where prf_{1} is the following proof

$$
\frac{\overline{\vdash\left(\left|1 \cdot x!=x_{0}!\wedge x \geq 0\right|\right) \text { y }:=1\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right)}}{\vdash\left(\left|x=x_{0} \wedge x \geq 0\right|\right) \text { y }:=1\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right)}
$$

and prf_{2} is the following proof

$$
\overline{\vdash\left(\left|y \cdot(x-1)!=x_{0}!\wedge x-1 \geq 0\right|\right) \mathrm{x}:=\mathrm{x}-1\left(\left|y \cdot x!=x_{0}!\wedge x \geq 0\right|\right)}
$$

- only creative step: invention of loop invariant $y \cdot x!=x_{0}!\wedge x \geq 0$
- quite unreadable, introduce proof tableaux

Proof Tableaux

Problems in Presentation of Hoare Calculus

- proof trees become quite large even for small examples
- reason: lots of duplication, e.g., in composition rule

$$
\frac{\vdash(\varphi \varphi \mid) C_{1}(\eta \mid) \vdash(\eta \mid) C_{2}(\psi \mid)}{\vdash(|\varphi|) C_{1} ; C_{2}(\psi \mid)} \text { composition }
$$

every formula φ, η, ψ occurs twice

- aim: develop better representation of Hoare-calculus proofs
- main ideas
- write program commands line-by-line
- interleave program commands with midconditions
- structure
$\quad\left(\varphi_{0}\right)$
$C_{1} ; \quad\left(\varphi_{1} \cap\right)$
$C_{2} ;$
$\quad\left(\varphi_{2} \cap\right.$
\ldots
C_{n}
$\quad\left(\varphi_{n}\right)$
where none of the C_{i} is a sequential execution
- idea: each midcondition φ_{i} should hold after execution of C_{i}

$$
\begin{gathered}
\left(\left|\varphi_{i}\right|\right) \\
C_{i+1} ; \\
\quad\left(\varphi_{i+1} \mid\right)
\end{gathered}
$$

- problem: how to find all the midconditions φ_{i} ?
- solution
- assume φ_{i+1} (and of course C_{i+1}) is given
- then try to compute φ_{i} as weakest precondition, i.e., φ_{i} should be logically weakest formula satisfying

$$
\vDash\left(\varphi_{i} \mid\right) C_{i}\left(\varphi_{i+1} \|\right.
$$

- we will see, that such weakest preconditions can for many commands be computed automatically
- aim: verify $\vdash\left(\varphi_{0}^{\prime} \mid\right) C_{1} ; \ldots ; C_{n}\left(\varphi_{n}\right)$
- approach: compute formulas $\varphi_{n-1}, \ldots, \varphi_{0}$, e.g., by taking weakest preconditions

$$
\begin{aligned}
& \text { (} \varphi_{0} \text {) } \\
& C_{1} \text {; } \\
& \left(\varphi_{1}\right) \\
& C_{n-1} \text {; } \\
& \left(\varphi_{n-1}\right) \\
& C_{n} \\
& \left(\varphi_{n}\right)
\end{aligned}
$$

and check $\models \varphi_{0}^{\prime} \longrightarrow \varphi_{0}$
this last check corresponds to an application of the implication-rule

- next: consider the various commands how to compute a suitable formula φ_{i} given C_{i+1} and φ_{i+1}

Constructing the Proof Tableau - Assignment

- for the assignment, the weakest precondition is computed via

$$
x:=e^{\langle\varphi[x / e] D}
$$

- application is completely automatic: just substitute
- represent implication-rule by writing two consecutive formulas
whenever $\models \psi \longrightarrow \varphi$
- application
- simplify formulas
- close proof tableau at the top, to turn given precondition into computed formula at top of program, e.g., $\models \varphi_{0}^{\prime} \longrightarrow \varphi$ on slide 22
- example proof of $\vdash(y=2) \mathrm{y}:=\mathrm{y} * \mathrm{y} ; \mathrm{x}:=\mathrm{y}+1(x=5 \mid)$

$$
(y=2 \mid)
$$

$$
(\mid y \cdot y=4) \quad(\text { closing proof tableau at top })
$$

$$
\mathrm{y}:=\mathrm{y} * \mathrm{y}
$$

$$
(y=4)
$$

(optional simplification step)

$$
x:=y+1
$$

$$
(x=5 \mid)
$$

Example with Destructive Updates

- assume we want to calculate $u=x+y$ via the following program P
(true)
$(x+y=x+y \mid)$

$$
\mathrm{z}:=\mathrm{x}
$$

$$
(|z+y=x+y|)
$$

$$
z:=z+y
$$

$$
(z=x+y \mid)
$$

u := z

$$
(u=x+y \mid)
$$

- the midconditions have been inserted fully automatic
- hence we easily conclude $\vdash($ true $\mid) P(|u=x+y|)$
- note: although the tableau is constructed bottom-up, it also makes sense to read it top-down
- consider the following invalid tableau

$$
\begin{gathered}
(\mid \text { true }) \\
\mathbf{x}:=\mathbf{x}+1(x+1=x+1) \\
(|x=x+1|)
\end{gathered}
$$

- if the tableau were okay, then the result would be the arithmetic property $x=x+1$, a formula that does not hold for any number x
- problem in tableau
- assignment rule was not applied correctly
- reason: substitution has to replace all variables
- corrected version

$$
\begin{gathered}
(x+1=(x+1)+1) \\
\mathbf{x}:=\mathbf{x}+1 \\
(x=x+1)
\end{gathered}
$$

- aim: calculate φ such that

$$
\vdash(|\varphi|) \text { if } b \text { then } C_{1} \text { else } C_{2}(\psi)
$$

can be derived

- applying our procedure recursively, we get
- formula φ_{1} such that $\left.\vdash\left(\varphi_{1}\right)\right) C_{1}(\psi)$ is derivable
- formula φ_{2} such that $\vdash\left(\varphi_{2} \mid\right) C_{2}(\psi)$ is derivable
- then weakest precondition for if-then-else is formula

$$
\varphi:=\left(b \longrightarrow \varphi_{1}\right) \wedge\left(\neg b \longrightarrow \varphi_{2}\right)
$$

- formal justification that φ is sound

$$
\frac{\frac{\vdash\left(\varphi_{1} \mid\right) C_{1}(\psi \mid)}{\vdash(\varphi \wedge b \mid) C_{1}(\psi \mid)} \frac{\vdash\left(\left|\varphi_{2}\right|\right) C_{2}(\psi)}{\vdash(\varphi \varphi \wedge \neg b \mid) C_{2}(\psi \mid)}}{\vdash(\varphi \mid) \text { if } b \text { then } C_{1} \text { else } C_{2}(\psi \mid)}
$$

Example with If-Then-Else

- consider non-optimal code to compute the successor
(true)
$(((x+1)-1=0 \longrightarrow 1=x+1) \wedge((x+1)-1 \neq 0 \longrightarrow x+1=x+1) \mid)$

$$
\begin{aligned}
& \text { a }:=\mathrm{x}+1 \text {; } \\
& ((a-1=0 \longrightarrow 1=x+1) \wedge(a-1 \neq 0 \longrightarrow a=x+1) \mid) \\
& \text { if }(a-1=0) \text { then }\{ \\
& \text { (1 }=x+1 \text {) } \\
& \text { y := } 1 \\
& (y=x+1) \quad \text { (formula copied to end of then-branch) } \\
& \text { \} else \{ } \\
& (a=x+1) \\
& \text { y := a } \\
& (y=x+1) \quad \text { (formula copied to end of else-branch) } \\
& \text { \} } \\
& \text { (} y=x+1 \text {) }
\end{aligned}
$$

- insertion of midconditions is completely automatic
- large formula obtained in 2nd line must be proven in underlying logic

$$
\frac{\vdash(\eta \wedge b \mid) C(|\eta|)}{\vdash(\eta \mid) \text { while } b C(\eta \wedge \neg b \mid)} \text { while }
$$

- let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following?

$$
\vdash(|\varphi|) \text { while } b C(\psi \psi)
$$

solution: find invariant η such that

- $\vDash \varphi \longrightarrow \eta$
- $\vdash(\gamma) C(\eta)$
- $\models \eta \wedge b \longrightarrow \gamma$
$\bullet \models \eta \wedge \neg b \longrightarrow \psi$
precondition implies invariant handle loop body recursively, produces γ
η is indeed invariant invariant and $\neg b$ implies postcondition
- notes
- invariant η has to be satisfied at beginning and end of loop-body, but not in between
- invariant often captures the core of an algorithm: it describes connection between variables throughout execution
- finding invariant is not automatic, but for seeing the connection it often helps to execute the loop a few rounds

$$
\frac{\vdash(\eta \wedge b \mid) C(|\eta|)}{\vdash(\eta \mid) \text { while } b C(\eta \wedge \neg b \mid)} \text { while }
$$

- let us consider applicability in combination with implication-rule for arbitrary setting: how to derive the following?

$$
\vdash(|\varphi|) \text { while } b C(\psi \mid)
$$

solution: find invariant η such that

- $\models \varphi \longrightarrow \eta$
- $\vdash(\gamma) C(\eta)$
- $\vDash \eta \wedge b \longrightarrow \gamma$
$\bullet \vDash \eta \wedge \neg b \longrightarrow \psi$
- soundness proof

$$
\frac{\frac{\vdash(\gamma \gamma) C(\eta \mid)}{\vdash(\eta \wedge b \mid) C(\eta \mid)}}{\frac{\vdash(\eta \mid) \text { while } b C(\eta \wedge \neg b \mid)}{\vdash(\varphi \mid) \text { while } b C(\psi \mid)}}
$$

- to create a Hoare-triple for a while-loop

$$
\vdash(|\varphi|) \text { while } b C(|\psi|)
$$

find η such that

- $\models \varphi \longrightarrow \eta$
- $\vdash(\gamma) C(\eta)$
- $\models \eta \wedge b \longrightarrow \gamma$
- $\vDash \eta \wedge \neg b \longrightarrow \psi$
precondition implies invariant handle loop body recursively, produces γ
η is invariant invariant and $\neg b$ implies postcondition
- approach to find η

1. guess initial η, e.g., based on a few loop executions
2. check $\models \varphi \longrightarrow \eta$ and $\vDash \eta \wedge \neg b \longrightarrow \psi$; if not successful modify η
3. compute γ by bottom-up generation of $\vdash(|\gamma|) C(|\eta|)$
4. check $\models \eta \wedge b \longrightarrow \gamma$
5. if last check is successful, proof is done
6. otherwise, adjust η

- note: if φ is not known for checking $\models \varphi \longrightarrow \eta$, then instead perform bottom-up propagation of commands before while-loop (starting with η) and then use precondition of whole program

Verification of Factorial Program - Initial Invariant

- program $P:$ y := 1; while $\mathrm{x}>0\{\mathrm{y}:=\mathrm{y} * \mathrm{x} ; \mathrm{x}:=\mathrm{x}-1\}$
- aim: $\vdash\left(x=x_{0} \wedge x \geq 0 \mid\right) P\left(\left|y=x_{0}!\right|\right)$
- for guessing initial invariant, execute a few iterations to compute 6 !

iteration	x_{0}	x	y	$x!$
0	6	6	1	720
1	6	5	6	120
2	6	4	30	24
3	6	3	120	6
4	6	2	360	2
5	6	1	720	1

observations

- column x ! was added since computing x ! is aim
- multiplication of y and x ! stays identical: $y \cdot x!=x_{0}$!
- hence use $y \cdot x!=x_{0}$! as initial candidate of invariant
- alternative reasoning with symbolic execution
- in y we store $x_{0} \cdot\left(x_{0}-1\right) \cdot \ldots \cdot(x+1)=x_{0}!/ x!$, so multiplying with x ! we get $y \cdot x!=x_{0}$!
- initial invariant: $\eta=\left(y \cdot x!=x_{0}\right.$! $)$
- potential proof tableau

$$
\begin{aligned}
& \left(x=x_{0} \wedge x \geq 0 \mid\right. \\
& \left(1 \cdot x!=x_{0}!\right) \quad \text { (implication verified) }
\end{aligned}
$$

$$
\mathrm{y}:=1 \text {; }
$$

$$
(\eta \mid)
$$

$$
\text { while }(x>0)\{
$$

$$
(\eta \wedge x>0 \mid)
$$

$$
\mathrm{y}:=\mathrm{y} * \mathrm{x}
$$

$$
x:=x-1
$$

$$
(\eta \mid)
$$

\}

$$
\begin{aligned}
& (\eta \wedge \neg x>0 \mid) \\
& \left(y=x_{0}!\mid\right) \quad \text { (implication does not hold) }
\end{aligned}
$$

- problem: condition $\neg x>0(x \leq 0)$ does not enforce $x=0$ at end

Verification of Factorial Program - Strengthening Invariant

- strengthened invariant: $\eta=\left(y \cdot x!=x_{0}!\wedge x \geq 0\right)$
- potential proof tableau

$$
\begin{aligned}
& \left(x=x_{0} \wedge x \geq 0 \mid\right. \\
& \left(1 \cdot x!=x_{0}!\wedge x \geq 0 \mid\right) \quad \text { (implication verified) }
\end{aligned}
$$

```
y := 1;
    (\eta|
while (x > 0) {
    (\eta\wedgex>0|)
    ( (y\cdotx)\cdot(x-1)! = \mp@subsup{x}{0}{}!\wedgex-1\geq00) (implication verified)
    y := y * x;
    (y.(x-1)! = \mp@subsup{x}{0}{}!\wedgex-1\geq0|)
    x := x - 1
    |\eta|
}
\[
(\eta \wedge \neg x>0)
\]
\[
\left(y=x_{0}!\right) \quad \text { (implication verified) }
\]
```

- proof completed, since all implications verified (e.g. by SMT solver)

Larger Example - Minimal-Sum Section

- assume extension of programming language: read-only arrays (writing into arrays requires significant extension of calculus)
- user is responsible for proper array access
- problem definition
- given array $a[0], \ldots, a[n-1]$ of length n, a section of a is a continuous block $a[i], \ldots, a[j]$ with $0 \leq i \leq j<n$
- define $S_{i, j}$ as sum of section

$$
S_{i, j}:=a[i]+\cdots+a[j]
$$

- section (i, j) is minimal, if $S_{i, j} \leq S_{i^{\prime}, j^{\prime}}$ for all sections $\left(i^{\prime}, j^{\prime}\right)$ of a
- example: consider array $[-7,15,-1,3,15,-6,4,-5]$
- $[3,15,-6]$ and $[-6]$ are sections, but $[3,-6,4]$ is not
- there are two minimal-sum sections: $[-7]$ and $[-6,4,-5]$

Minimal-Sum Section - Tasks

- write a program that computes sum of minimal section
- write a specification that makes "compute sum of minimal section" formal
- show that program satisfies the formal specification

Minimal-Sum Section - Challenges

- trivial algorithm
- compute all sections $\left(O\left(n^{2}\right)\right)$
- compute all sums of these sections and find the minimum
- results in $O\left(n^{3}\right)$ algorithm
- aim: $O(n)$-algorithm which reads the array only once
- consequence: proof required that it is not necessary to explicitly compute all $O\left(n^{2}\right)$ sections
- example: consider array $[-8,3,-65,20,45,-100,-8,17,-4,-14]$
- when reading from left-to-right a promising candidate might be $[-8,3,-65]$, but there also is the later $[-100,-8]$, so how to decide what to take?

Minimal-Sum Section - Algorithm

- idea of algorithm
- k : index that traverses array from left-to-right
- s : minimal-sum of all sections seen so far
- t : minimal-sum of all sections that end at position $k-1$
- algorithm Min_Sum

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
    t := min(t + a[k], a[k]);
    s := min(s, t);
    k := k + 1
}
```

- correctness not obvious, so let us better prove it

Minimal-Sum Section - Specification

- we split the specification in two parts via two Hoare-triples
- $S p_{1}$ specifies that the value of s is smaller than the sum of any section

$$
\text { (|true|) Min_Sum }\left(\forall i, j .0 \leq i \leq j<n \longrightarrow s \leq S_{i, j} \mid\right)
$$

- $S p_{2}$ specifies that there exists some section whose sum is s

$$
\text { (true|) Min_Sum }\left(\exists \exists i, j .0 \leq i \leq j<n \wedge s=S_{i, j} \mid\right)
$$

Minimal-Sum Section - Proving $S p_{1}$

$\mathrm{k}:=1$;
$\mathrm{t}:=\mathrm{a}[0]$;
s := a[0];
while (k != n) \{
$\mathrm{t}:=\min (\mathrm{t}+\mathrm{a}[\mathrm{k}], \mathrm{a}[\mathrm{k}])$;
$\mathrm{s}:=\min (\mathrm{s}, \mathrm{t})$;
$\mathrm{k}:=\mathrm{k}+1$
\}

$$
S p_{1}:(\text { true }) \text { Min_Sum }\left(\forall i, j .0 \leq i \leq j<n \longrightarrow s \leq S_{i, j} \mid\right)
$$

- find candidate invariant
- invariant often similar to postcondition
- invariant expresses relationships that are valid at beginning of each loop-iteration
- suitable invariant is $\operatorname{Inv}_{1}(s, k)$ defined as

$$
\forall i, j .0 \leq i \leq j<k \longrightarrow s \leq S_{i, j}
$$

$\left(\left|\operatorname{lnv} v_{1}(a[0], 1)\right|\right)$

$$
\begin{array}{ll}
\mathrm{k}:=1 ; & \left(\ln v_{1}(a[0], k)\right) \\
\mathrm{t}:=\mathrm{a}[0] ; & \\
\mathrm{s}:=\mathrm{a}[0] ; & \left(\ln v_{1}(a[0], k)\right) \\
& \left(\ln v_{1}(s, k)\right)
\end{array}
$$

while (k != n) \{

$$
\left(\ln v_{1}(s, k) \wedge k \neq n \mid\right)
$$

$$
\left(\left|\ln v_{1}(\min (s, \min (t+a[k], a[k])), k+1)\right|\right) \quad(\text { does not hold, no info on } t)
$$

$$
\mathrm{t}:=\min (\mathrm{t}+\mathrm{a}[\mathrm{k}], \mathrm{a}[\mathrm{k}]) ;
$$

$$
\left(\ln v_{1}(\min (s, t), k+1) \mid\right)
$$

$$
\mathrm{s}:=\min (\mathrm{s}, \mathrm{t}) ;
$$

$$
\left(\ln v_{1}(s, k+1) \mid\right)
$$

$$
\mathrm{k}:=\mathrm{k}+1
$$

$$
\left(\ln v_{1}(s, k) \mid\right)
$$

\}

$$
\begin{aligned}
& \left(\ln v_{1}(s, k) \wedge \neg k \neq n \mid\right) \\
& \left(\ln v_{1}(s, n)\right) \quad \text { Part 6 - Verification of Imperative Programs }
\end{aligned}
$$

Minimal-Sum Section - Strengthening Invariant

```
k := 1;
t := a[0];
s := a[0];
while (k != n) {
    t := min(t + a[k], a[k]);
    s := min(s, t);
    k := k + 1
}
```

$$
S p_{1}:(\text { true }) \text { Min_Sum }\left(\forall i, j .0 \leq i \leq j<n \longrightarrow s \leq S_{i, j}\right)
$$

- suitable invariant for s is $\operatorname{Inv}_{1}(s, k)$ defined as

$$
\forall i, j .0 \leq i \leq j<k \longrightarrow s \leq S_{i, j}
$$

- define similar invariant for $t: \operatorname{Inv}_{2}(t, k)$ defined as

$$
\forall i .0 \leq i<k \longrightarrow t \leq S_{i, k-1}
$$

- now try strengthened invariant $\operatorname{Inv}_{1}(s, k) \wedge \operatorname{Inv}_{2}(t, k)$
$\left(\left|\operatorname{lnv} v_{1}(a[0], 1) \wedge \operatorname{Inv}_{2}(a[0], 1)\right|\right)$

```
k := 1;
    (Inv}\mp@subsup{v}{1}{}(a[0],k)\wedge \Inv2(a[0],k))
t := a[0];
    | Inv ( (a[0],k)^ Inv ( }(t,k)|
s := a[0];
    | Inv ( }(s,k)\wedgeInv\mp@subsup{v}{2}{}(t,k)
while (k != n) {
    | Inv v}(s,k)\wedge||\mp@subsup{v}{2}{}(t,k)\wedgek\not=n|
    (Inv
    t := min(t + a[k], a[k]);
    (lnv
    s := min(s, t);
        | Inv 1 (s,k+1) ^ Inv v
    k := k + 1;
    (|nv
}
    | Inv v}(s,k)\wedge |nv v (t,k)^\negk\not=n|
    (Inv
    (implication verified)

\section*{Minimal-Sum Section - Proving the Implications}
- invariants
- \(\operatorname{Inv}_{1}(s, k):=\forall i, j .0 \leq i \leq j<k \longrightarrow s \leq S_{i, j}\)
- \(\operatorname{Inv}_{2}(t, k):=\forall i .0 \leq i<k \longrightarrow t \leq S_{i, k-1}\)
- implications
- true \(\longrightarrow \operatorname{Inv}_{1}(a[0], 1) \wedge \operatorname{Inv}_{2}(a[0], 1)\)
- because of the conditions of the quantifiers, by fixing \(k=1\) we only have to consider section \((0,0)\), i.e, we show \(a[0] \leq S_{0,0}=a[0]\)
- let \(0<k<n\) where \(n\) is length of array \(a\); then \(\operatorname{Inv}_{1}(s, k) \wedge \operatorname{Inv}_{2}(t, k) \wedge k \neq n\) implies both \(\operatorname{Inv} v_{2}(\min (t+a[k], a[k]), k+1)\) and \(\operatorname{Inv}_{1}(\min (s, \min (t+a[k], a[k])), k+1)\); proof
- pick any \(0 \leq i<k+1\); we show \(\min (t+a[k], a[k])) \leq S_{i, k}\); if \(i<k\) then \(S_{i, k}=S_{i, k-1}+a[k]\), so we use \(\operatorname{Inv}_{2}(t, k)\) to get \(t \leq S_{i, k-1}\) and thus \(\min (t+a[k], a[k])) \leq t+a[k] \leq S_{i, k-1}+a[k]=S_{i, k}\);
otherwise, \(i=k\) and we have \(\min (t+a[k], a[k]) \leq a[k]=S_{i, k}\)
- pick any \(0 \leq i \leq j<k+1\);
we need to \(\operatorname{show} \min (s, \min (t+a[k], a[k])) \leq S_{i, j}\); if \(j=k\) then the result follows from the previous statement; otherwise \(j<k\) and the result follows from \(\operatorname{Inv}_{1}(s, k)\)

\section*{Proof Tableaux - Summary}
- we have proven soundness of non-trivial algorithm Min_Sum
- with gaps
- we only proved \(S p_{1}\), but not \(S p_{2}\)
- lemma on previous slide demanded \(0<k<n\) which does not follow from loop-condition \(k \neq n\); a proper fix would require a strengthened invariant which includes bounds on \(k\)
- main reasoning (proving the implications on previous slide) was done purely in logic with no reference to program
- such an approach is often conducted in verification of programs
- there is a verification condition generator (VCG)
- VCG converts assertions in programs (invariants) into logical formulas; here: Hoare-calculus handles program statements, verification conditions are instances of implication-rule
- verification conditions are passed to SMT-solver, theorem prover, etc., to finally show correctness
- problem: in case SMT-solver fails, user needs to understand failure to adapt invariants, assertions, etc.

\section*{Termination of Imperative Programs}

\section*{Adding Termination to Calculus}
- since while-loops are only source of non-termination in presented imperative language, it suffices to adjust the while-rule in the Hoare-calculus

\section*{all other Hoare-calculus rules can be used as before}
- recall: total correctness \(=\) partial correctness + termination
- previous while-rule already proved partial correctness
- only task: extend existing while-rule to additionally prove termination
- idea of ensuring termination: use variants
- a variant (or measure) is an integer expression;
- this integer expression strictly decreases in every loop iteration and
- at the same time the variant stays non-negative;
- conclusion: there cannot be infinitely many loop iterations

\section*{A While-Rule For Total Correctness}
- while-rule for partial correctness
\[
\frac{\vdash(|\varphi \wedge b| C(|\varphi|)}{\vdash(|\varphi|) \text { while } b C(|\varphi \wedge \neg b|)} \text { while }
\]
- extended while-rule for total correctness
\[
\frac{\vdash\left(\varphi \wedge b \wedge e_{0}=e \geq 0 \mid C\left(\varphi \varphi \wedge e_{0}>e \geq 0 \mid\right)\right.}{\vdash(\varphi \wedge e \geq 0 \mid \text { while } b C(\varphi \wedge \neg b \mid)} \text { while-total }
\]
where
- \(e\) is variant expression with values before execution of \(C\)
- \(e\) is (the same) variant expression with values after execution of \(C\)
- \(e_{0}\) is fresh logical variable, used to store the value of \(e\) before: \(e_{0}=e\)
- hence, postcondition \(e_{0}>e\) enforces decrease of \(e\) when executing \(C\)
- non-negativeness is added three times, even in precondition of while
- \(e\) is of type integer so that \(S N\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x>y \geq 0\}\) can be used as underlying terminating relation: each loop iteration corresponds to a step \(\left(\llbracket e \rrbracket_{\alpha_{\text {befrer }}}, \llbracket e \rrbracket_{\alpha_{\text {after }}}\right)\) in this relation
\[
\frac{\vdash\left(\varphi \wedge b \wedge e_{0}=e \geq 0 \mid C\left(\rho \varphi \wedge e_{0}>e \geq 0 \mid\right)\right.}{\vdash(\varphi \wedge e \geq 0 \mid) \text { while } b C(|\varphi \wedge \neg b|)} \text { while-total }
\]

\section*{- application}
- \(e_{0}\) is fresh logical variable, so nothing to choose
- variant \(e\) has to be chosen, but this is often easy
- while \((\mathrm{x}<5)\{\ldots \mathrm{x}:=\mathrm{x}+1 \ldots\}\) is same as
while \((5-\mathrm{x}>0)\{\ldots \mathrm{x}:=\mathrm{x}+1 \ldots\}\), so \(e=5-x\)
- while ( \(\mathrm{y}>\mathrm{>}=\mathrm{x}\) ) \(\{\ldots \mathrm{y}:=\mathrm{y}-2 \ldots\}\) is same as while \((\mathrm{y}-\mathrm{x}>=0)\{\ldots \mathrm{y}:=\mathrm{y}-2 \ldots\}\), so \(e=y-x(+2)\)
- while ( \(\mathrm{x}!=\mathrm{y}\) ) \(\{\ldots\) y \(:=\mathrm{y}+1 \ldots\}\) is same as while ( \(\mathrm{x}-\mathrm{y}!=0\) ) \(\{\ldots \mathrm{y}:=\mathrm{y}+1 \ldots\}\), so \(e=x-y\)
- checking the condition is then easily possible via proof tableau, in the same way as for the while-rule for partial correctness
- all side-conditions \(e \geq 0\) can completely be eliminated by choosing \(e=\max \left(0, e^{\prime}\right)\) for some \(e^{\prime}\), but then proving \(e_{0}>e\) will become harder as it has to deal with max
- invariant \(\varphi\) can be taken unchanged from partial correctness proof

\section*{Total Correctness of Factorial Program}
- red parts have been added for termination proof with variant \(x-z\)
\[
\begin{aligned}
& \text { (true } \wedge x \geq 0 \text { ) (new termination condition on } x \text { ) } \\
& \text { (1 }=0 \text { ! } \wedge x-0 \geq 0 \text { ) } \\
& \text { y := 1; } \\
& 0 y=0!\wedge x-0 \geq 0 \text { ) } \\
& \text { z := 0; } \\
& \text { ( } y=z!\wedge x-z \geq 0 \text { ) } \\
& \text { while ( } x \text { ! }=z \text { ) \{ } \\
& \text { ( } y=z!\wedge x \neq z \wedge e_{0}=x-z \geq 0 \text { ) (new condition added) } \\
& 0 y \cdot(z+1)=(z+1)!\wedge e_{0}>x-(z+1) \geq 00 \quad \text { (more reasoning) } \\
& \text { z := z + 1; } \\
& \left(y \cdot z=z!\wedge e_{0}>x-z \geq 0\right. \text { ) } \\
& \text { y := y * z; } \\
& \text { ( } y=z!\wedge e_{0}>x-z \geq 0 \text { ) } \\
& \text { (new condition added) } \\
& \text { \} } \\
& (y=z!\wedge \neg x \neq z) \\
& \text { ( } y=x!\text { ) }
\end{aligned}
\]
- precondition \(x \geq 0\) was added automatically from termination proof
- in fact, the program does not terminate on negative inputs
- for factorial program (and other imperative programs) Hoare-calculus permits to prove local termination, i.e., termination on certain inputs
- in contrast, for functional program we always considered universal termination, i.e., termination of all inputs
- termination proofs can also be performed stand-alone (without partial correctness proof):
just prove postcondition "true" with while-total-rule:
\[
\vdash(|\varphi|) P(\mid \text { true } \mid)
\]
implies termination of \(P\) on inputs that satisfy \(\varphi\), so
\[
\vdash(\text { truel }) P \text { (true) }
\]
shows universal termination of \(P\)

\section*{Soundness of Hoare-Calculus}

\section*{Soundness of Hoare-Calculus}
- so far, we have two notions of soundness
- \(\models(\varphi \mid) P(\psi \mid)\) : via semantic of imperative programs, i.e., whenever \(\alpha \models \varphi\) and \((P, \alpha) \hookrightarrow^{*}(\) skip,\(\beta)\) then \(\beta \models \psi\) must hold
- \(\vdash(\varphi \varphi) P(\psi)\) : syntactic, what can be derived via Hoare-calculus rules
- missing: soundness of calculus, i.e.,
\[
\vdash(|\varphi|) P(\psi \psi \mid) \text { implies } \models(\varphi \mid) P(\psi \mid)
\]
- formal proof is based on big-step semantics \(\rightarrow\) (see exercises): \((P, \alpha) \hookrightarrow^{*}(\) skip, \(\beta)\) is turned into \((P, \alpha) \rightarrow \beta\)
- soundness of the calculus is then established by the following property, which is proven by induction w.r.t. the Hoare-calculus rules for arbitrary \(\alpha, \beta\) :
\[
\vdash(\mid \varphi) C(\psi \mid) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi
\]

\section*{Proving \(\vdash(|\varphi|) C(\psi \mid) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi\)}

Case 1: implication-rule
\(\vdash(\varphi \mid) C(\psi \mid)\) since \(\models \varphi \longrightarrow \varphi^{\prime}, \vdash\left(\varphi^{\prime} \mid\right) C\left(\psi^{\prime} \mid\right)\), and \(\models \psi^{\prime} \longrightarrow \psi\)
- \(\mathrm{IH}: \forall \alpha, \beta \cdot \alpha=\varphi^{\prime} \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi^{\prime}\)
- assume \(\alpha \models \varphi\) and \((C, \alpha) \rightarrow \beta\)
- then by \(\vDash \varphi \longrightarrow \varphi^{\prime}\) conclude \(\alpha \models \varphi^{\prime}\)
- in combination with IH get \(\beta \models \psi^{\prime}\)
- with \(\vDash \psi^{\prime} \longrightarrow \psi\) conclude \(\beta \models \psi\)

\section*{Proving \(\vdash(\varphi) C(\psi) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi\)}

Case 2: composition-rule \(\vdash(\varphi \mid) C_{1} ; C_{2}(\psi \mid)\) since \(\vdash(\varphi \varphi) C_{1}(\eta \mid)\) and \(\vdash(\eta \mid) C_{2}(\psi \mid)\)
- IH-1: \(\forall \alpha, \beta \cdot \alpha \models \varphi \longrightarrow\left(C_{1}, \alpha\right) \rightarrow \beta \longrightarrow \beta \models \eta\)
- IH-2: \(\forall \alpha, \beta . \alpha \models \eta \longrightarrow\left(C_{2}, \alpha\right) \rightarrow \beta \longrightarrow \beta \models \psi\)
- assume \(\alpha \models \varphi\) and \(\left(C_{1} ; C_{2}, \alpha\right) \rightarrow \beta\)
- from the latter and the definition of \(\rightarrow\), there must be \(\gamma\) such that \(\left(C_{1}, \alpha\right) \rightarrow \gamma\) and \(\left(C_{2}, \gamma\right) \rightarrow \beta\)
- by using IH-1 (choose \(\alpha\) and \(\gamma\) in \(\forall\) ), obtain \(\gamma \models \eta\)
- by using \(\mathrm{IH}-2\) (choose \(\gamma\) and \(\beta\) in \(\forall\) ), obtain \(\beta \models \psi\)

\section*{Proving \(\vdash(\varphi) C(\psi \psi) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi\)}

Case 3: if-then-else-rule
\(\vdash(|\varphi|)\) if \(b\) then \(C_{1}\) else \(C_{2}(\psi \mid)\)
since \(\vdash(\varphi \wedge b \mid) C_{1}(\psi \mid)\) and \(\vdash(\varphi \wedge \neg b) C_{2}(\psi)\)
- IH-1: \(\forall \alpha, \beta . \alpha \models \varphi \wedge b \longrightarrow\left(C_{1}, \alpha\right) \rightarrow \beta \longrightarrow \beta \models \psi\)
- IH-2: \(\forall \alpha, \beta \cdot \alpha \models \varphi \wedge \neg b \longrightarrow\left(C_{2}, \alpha\right) \rightarrow \beta \longrightarrow \beta \models \psi\)
- assume \(\alpha \models \varphi\) and (if \(b\) then \(C_{1}\) else \(C_{2}, \alpha\) ) \(\rightarrow \beta\)
- perform case analysis on \(\llbracket b \rrbracket_{\alpha}\)
- w.l.o.g. we only consider the case \(\llbracket b \rrbracket_{\alpha}=\) true where
- from \(\alpha \models \varphi\) conclude \(\alpha \models \varphi \wedge b\)
- from (if \(b\) then \(C_{1}\) else \(\left.C_{2}, \alpha\right) \rightarrow \beta\) conclude \(\left(C_{1}, \alpha\right) \rightarrow \beta\)
- by using \(\mathrm{IH}-1\) get \(\beta \models \psi\)

\section*{Proving \(\vdash(\varphi) C(\psi \psi) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi\)}

Case 4: assignment-rule \(\vdash(\varphi \varphi) x:=e(\psi)\) since \(\varphi=\psi[x / e]\)
- assume \(\alpha \models \varphi\) and \((x:=e, \alpha) \rightarrow \beta\)
- by definition of \(\rightarrow\), conclude \(\beta=\alpha\left[x:=\llbracket e \rrbracket_{\alpha}\right]\)
- hence assumption \(\alpha \models \varphi\) is equivalent to
- \(\alpha=\psi[x / e]\)
- \(\alpha\left[x:=\llbracket \llbracket \rrbracket_{\alpha} \rrbracket \models \psi\right.\)
- \(\beta \models \psi\)

> by unrolling \(\varphi\)-equality by substitution lemma for formulas
> by unrolling \(\beta\)-equality

\section*{Proving \(\vdash(\varphi) C(\psi \mid) \longrightarrow \alpha \models \varphi \longrightarrow(C, \alpha) \rightarrow \beta \longrightarrow \beta \models \psi\)}

Case 5: while-rule
\(\vdash(\varphi \mid)\) while \(b C^{\prime}(\psi \mid)\) since \(\vdash\left(\varphi \wedge b \mid C^{\prime}(\varphi \mid)\right.\) and \(\psi=\varphi \wedge \neg b\)
- (outer) IH: \(\forall \alpha, \beta \cdot \alpha=\varphi \wedge b \longrightarrow\left(C^{\prime}, \alpha\right) \rightarrow \beta \longrightarrow \beta \vDash \varphi\)
- we now prove \(\alpha \equiv \varphi \longrightarrow\left(\right.\) while \(\left.b C^{\prime}, \alpha\right) \rightarrow \beta \longrightarrow \beta \equiv \psi\) by an inner induction on \(\alpha\) w.r.t. \(\rightarrow\), but for fixed \(b, C^{\prime}, \beta, \varphi, \psi\)
- case 1: (while \(\left.b C^{\prime}, \alpha\right) \rightarrow \beta\)
since \(\llbracket b \rrbracket_{\alpha}=\) false and \(\beta=\alpha\)
- in this case conclude \(\beta=\alpha \models \varphi \wedge \neg b=\psi\)
- case 2: (while \(\left.b C^{\prime}, \alpha\right) \rightarrow \beta\)
since \(\llbracket b \rrbracket_{\alpha}=\) true, \(\left(C^{\prime}, \alpha\right) \rightarrow \gamma\) and (while \(\left.b C^{\prime}, \gamma\right) \rightarrow \beta\)
- inner IH: \(\gamma \models \varphi \longrightarrow \beta \models \psi\)
- assume \(\alpha=\varphi\)
- hence \(\alpha \models \varphi \wedge b\)
- by outer IH (choose \(\alpha\) and \(\gamma\) in \(\forall\) ) get \(\gamma \models \varphi\)
- then inner IH yields \(\beta=\psi\)

\section*{Summary of Soundness of Hoare-Calculus}
- since Hoare-calculus rules and semantics are formally defined, it is possible to verify soundness of the calculus
- proof requires inner induction for while-loop, since big-step semantics of while-command refers to itself
- here: only soundness of Hoare-calculus for partial correctness
- possible extension: total correctness
- define semantic notion \(\models_{\text {total }}(\varphi) C(\psi \psi)\) stating total correctness
- prove that Hoare-calculus with while-total is sound w.r.t. \(\models_{\text {total }}\)

\section*{Programming by Contract}

\section*{Programming by Contract - Idea}
- Hoare-triple \((|\varphi|) P(|\psi|)\) may be seen as a contract between supplier and consumer of program \(P\)
- supplier insists that consumer invokes \(P\) only on states satisfying \(\varphi\)
- supplier promises that after execution of \(P\) formula \(\psi\) holds
- validation of Hoare-triples with Hoare-calculus can be seen as validation of contracts for method- or procedure-calls

\section*{Example}
- consider method where . . . is program Fact on slide 9
```

int factorial (int x) { int y; ...; return y }

```
- example contract
```

method name:
input:
output:
assumes:
guarantees
result = x!
modifies only: local variables

```
- remarks
- return-value of method is referred to as result in contract
- since \(x\) is local parameter (call-by-value) and \(y\) is local variable, there will be no impact on global variables;
- for procedures and call-by-reference variables, one usually wants to know whether modifications take place

\section*{Modified Example}
- consider procedure where ... is program Fact on slide 9 void factorial_proc (int x) \{ ... \}
- example contract
procedure name: factorial_proc
input:
assumes:
int \(x\)
\(\mathrm{x}>=0\)
guarantees:
\(y=x\) !
modifies only: y
- remarks
- \(y\) is no longer local variable, but global
- procedure has no return value
- guarantees are expressed via global variables and parameters (and if required, logical variables)
- modification of global variable \(y\) visible in contract

\section*{Invoking Methods}
- assume we want to write method for binomial coefficients
\[
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}
\]
to compute chance of lotto-jackpot 1 : \(\binom{49}{6}\)
- int binom (int \(n\), int k) \{
```

 return factorial(n) / (factorial(k) * factorial (n-k))
    ```
\}
- programming-by-contract also demands contracts for new methods
- in example, we need to ensure that preconditions of factorial-invocations are met
```

method name: binom
inputs: int n, int k
output:
assumes:
guarantees:
modifies only: local variables

```

\section*{Programming by Contract - Advantages}
- in the same way as methods help to structure larger programs, contracts for these methods help to verify larger programs
- reason: for verifying code invoking method \(m\), it suffices to look at contract of \(m\) without looking at implementation of \(m\)
- positive effects
- add layer of abstraction
- easy to change implementation of \(m\) as long as contract stays identical
- verification becomes more modular
- example: for invocation of min in minimal-sum section it does not matter whether
- min is built-in operator which is substituted as such, or
- min is user-defined method that according to the contract computes the mathematical min-operation
implementation can be ignored for caller, but developer needs to verify it against contract
int \(\min (\) int \(x\), int \(y) ~\{\)
        int \(z\);
        if x <= y then z := x else z := y ;
        return \(z\) \}

\section*{Summary - Verification of Imperative Programs}
- covered
- syntax and semantic of small imperative programming language
- Hoare-calculus to verify Hoare-triples \((|\varphi|) P(\psi \mid)\)
- proof tableaux and automation:

Hoare-calculus is VCG that converts program logic into implications (verification conditions) that must be shown in underlying logic
- proofs are mostly automatic, except for loop invariants
- soundness of Hoare-calculus
- programming by contracts: abstract from concrete method-implementations, use contracts
- not covered
- heap-access, references, arrays, etc.: extension to separation logic, memory model
- bounded integers: reasoning engine for bit-vector-arithmetic
- multi-threading```

