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Imperative Programs

Imperative Programs

Imperative Programs

• we here consider a small imperative programming language
• it consists of

• arithmetic expressions A over some set of variables V

n ∈ Z
n ∈ A

x ∈ V
x ∈ A

{e1, e2} ⊆ A ⊙ ∈ {+,-,*}
e1 ⊙ e2 ∈ A

• Boolean expressions B

c ∈ {true, false}
c ∈ B

{e1, e2} ⊆ A ⊙ ∈ {=,<,<=,!=}
e1 ⊙ e2 ∈ B

b ∈ B
!b ∈ B

{b1, b2} ⊆ B ⊙ ∈ {&&,||}
b1 ⊙ b2 ∈ B

• commands C
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Imperative Programs

Commands and Programs
• commands C consist of

• assignments
x ∈ V e ∈ A
x := e ∈ C

• if-then-else b ∈ B {C1, C2} ⊆ C
if b then C1 else C2 ∈ C

• sequential execution {C1, C2} ⊆ C
C1;C2 ∈ C

• while-loops
b ∈ B C ∈ C

while b {C} ∈ C
• no-operation

skip ∈ C
• curly braces are added for disambiguation, e.g. consider
while x < 5 { x := x + 2 } ; y := y - 1

• a program P is just a command C
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Imperative Programs

Verification

• partial correctness predicate via Hoare-triples: |= (|φ|)P (|ψ|)
• semantic notion
• meaning: whenever initial state satisfies φ,
• and execution of P terminates,
• then final state satisfies ψ
• φ is called precondition, ψ is postcondition
• here, formulas may range over program variables and logical variables
• clearly, |= requires semantic of commands

• Hoare calculus: ⊢ (|φ|)P (|ψ|)
• syntactic calculus (similar to natural deduction)
• sound: whenever ⊢ (|φ|)P (|ψ|) then |= (|φ|)P (|ψ|)
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Imperative Programs

Semantics – Expressions

• state is evaluation α : V → Z
• semantics of arithmetic and Boolean expressions are defined as

• [[·]]α : A → Z
e.g., if α(x) = 5 then [[6 ∗ x+ 1]]α = 31

• [[·]]α : B → {true, false}
e.g., if α(x) = 5 then [[6 ∗ x+ 1 < 20]]α = false

• we omit the straight-forward recursive definitions of [[·]]α here
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Imperative Programs

Semantics – Commands
• semantics of commands is given via small-step-semantics
defined as relation ↪→ ⊆ (C × (V → Z))2

(x := e, α) ↪→ (skip, α[x := [[e]]α])

[[b]]α = true

(if b then C1 else C2, α) ↪→ (C1, α)

[[b]]α = false

(if b then C1 else C2, α) ↪→ (C2, α)

(C1, α) ↪→ (C ′
1, β)

(C1;C2, α) ↪→ (C ′
1;C2, β) (skip;C,α) ↪→ (C,α)

[[b]]α = true

(while b C, α) ↪→ (C; while b C, α)

[[b]]α = false

(while b C, α) ↪→ (skip, α)

• (skip, α) is normal form
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Imperative Programs

Semantics – Programs
• we can formally define |= (|φ|)P (|ψ|) as

∀α, β. α |= φ −→ (P, α) ↪→∗ (skip, β) −→ β |= ψ

• example specification: (|x > 0|)P (|y · y < x|)
• if initially x > 0, after running the program P ,

the final values of x and y must satisfy y · y < x
• nothing is required if initially x ≤ 0
• nothing is required if program does not terminate
• specification is satisfied by program P defined as

y := 0

• specification is satisfied by program P defined as

y := 0;

while (y * y < x) {

y := y + 1

};

y := y - 1
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Imperative Programs

Program Variables and Logical Variables
• consider program Fact

y := 1;

while (x != 0) {

y := y * x;

x := x - 1

}

• specification for factorial: does |= (|x ≥ 0|)Fact (|y = x!|) hold?
• if α(x) = 6 and (Fact , α) ↪→∗ (skip, β) then β(y) = 720 = 6!
• problem: β(x) = 0, so y = x! does not hold for final values
• hence ̸|= (|x ≥ 0|)Fact (|y = x!|) , since specification is wrong

• solution: store initial values in logical variables

• in example: introduce logical variable x0

|= (|x = x0 ∧ x ≥ 0|)Fact (|y = x0!|)

via logical variables we can refer to initial values
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Hoare Calculus

Hoare Calculus

A Calculus for Program Verification
• aim: syntax directed calculus to reason about programs

• Hoare calculus separates reasoning on programs from logical reasoning (arithmetic, . . . )

• present calculus as overview now, then explain single rules

⊢ (|φ|)C1 (|η|) ⊢ (|η|)C2 (|ψ|)
⊢ (|φ|)C1;C2 (|ψ|)

composition

⊢ (|φ[x/e]|)x := e (|φ|)
assignment

⊢ (|φ ∧ b|)C1 (|ψ|) ⊢ (|φ ∧ ¬b|)C2 (|ψ|)
⊢ (|φ|) if b then C1 else C2 (|ψ|)

if-then-else

⊢ (|φ ∧ b|)C (|φ|)
⊢ (|φ|) while b C (|φ ∧ ¬b|) while

|= φ −→ φ′ ⊢ (|φ′|)C (|ψ′|) |= ψ′ −→ ψ

⊢ (|φ|)C (|ψ|) implication

• read rules bottom up: in order to get lower part, prove upper part
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Hoare Calculus

Composition Rule

⊢ (|φ|)C1 (|η|) ⊢ (|η|)C2 (|ψ|)
⊢ (|φ|)C1;C2 (|ψ|)

composition

• applicability: whenever command is sequential composition C1;C2

• precondition is φ and aim is to show that ψ holds after execution

• rationale: find some midcondition η such that execution of C1 guarantees η, which can
then be used as precondition to conclude ψ after execution of C2

• automation: finding suitable η is usually automatic, see later slides
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Hoare Calculus

Assignment Rule

⊢ (|φ[x/e]|)x := e (|φ|)
assignment

• applicability: whenever command is an assignment x := e

• to prove φ after execution, show φ[x/e] before execution
• substitution seems to be on wrong side

• effect of assignment is substitution x/e, so shouldn’t rule be ⊢ (|φ|)x := e (|φ[x/e]|) ?
No, this reversed rule would be wrong

• assume before executing x := 5, the value of x is 6
• before execution φ = (x = 6) is satisfied, but after execution φ[x/e] = (5 = 6) is not satisfied

• correct argumentation works as follows
• if we want to ensure φ after the assignment then we need to ensure that the resulting

situation (φ[x/e]) holds before
• correct examples

• ⊢ (|2 = 2|)x := 2 (|x = 2|)
• ⊢ (|2 = 4|)x := 2 (|x = 4|)
• ⊢ (|2− y > 22|)x := 2 (|x− y > x2|)

• applying rule is easy when read from right to left: just substitute
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Hoare Calculus

If-Then-Else Rule

⊢ (|φ ∧ b|)C1 (|ψ|) ⊢ (|φ ∧ ¬b|)C2 (|ψ|)
⊢ (|φ|) if b then C1 else C2 (|ψ|)

if-then-else

• applicability: whenever command is an if-then-else
• effect:

• the preconditions in the two branches are strengthened by adding the corresponding
(negated) condition b of the if-then-else

• often the addition of b and ¬b is crucial to be able to perform the proofs for the
Hoare-triples of C1 and C2, respectively

• rationale: if b is true in some state, then the execution will choose C1 and we can add b
as additional assumption; similar for other case

• applying rule is trivial from right to left
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Hoare Calculus

While Rule

⊢ (|φ ∧ b|)C (|φ|)
⊢ (|φ|) while b C (|φ ∧ ¬b|) while

• applicability: only rule that handles while-loop

• key ingredient: loop invariant φ
• rationale

• φ is precondition, so in particular satisfied before loop execution
• ⊢ (|φ∧ b|)C (|φ|) ensures, that when entering the loop, φ will be satisfied after one execution

of the loop body C
• in total, φ will be satisfied after each loop iteration
• hence, when leaving the loop, φ and ¬b are satisfied
• while-rule does not enforce termination, partial correctness!

• automation
• not automatic, since usually φ is not provided and postcondition is not of form φ ∧ ¬b;

example: ⊢ (|x = x0 ∧ x ≥ 0|)Fact (|y = x0!|)
• finding suitable φ is hard and needs user guidance
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Hoare Calculus

Implication Rule

|= φ −→ φ′ ⊢ (|φ′|)C (|ψ′|) |= ψ′ −→ ψ

⊢ (|φ|)C (|ψ|) implication

• applicability: every command; does not change command

• rationale: weakening precondition or strengthening postcondition is sound
• remarks

• only rule which does not decompose commands
• application relies on prover for underlying logic, i.e., one which can prove implications
• three main applications

• simplify conditions that arise from applying other rules in order to get more readable proofs,
e.g., replace x+ 1 = y − 2 by x = y − 3

• prepare invariants, e.g., change postcondition from ψ to some formula ψ′ of form χ ∧ ¬b
• core reasoning engine when closing proofs for while-loops in proof tableaux, see later slides
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Hoare Calculus

Example Proof

prf 1

⊢ (|(y · x) · (x − 1)! = x0! ∧ x − 1 ≥ 0|) y := y * x (|y · (x − 1)! = x0! ∧ x − 1 ≥ 0|)

⊢ (|y · x! = x0! ∧ x ≥ 0 ∧ x ̸= 0|) y := y * x (|y · (x − 1)! = x0! ∧ x − 1 ≥ 0|) prf 2

⊢ (|y · x! = x0! ∧ x ≥ 0 ∧ x ̸= 0|) y := y * x; x := x - 1 (|y · x! = x0! ∧ x ≥ 0|)

⊢ (|y · x! = x0! ∧ x ≥ 0|) while x != 0 {y := y * x; x := x - 1} (|y · x! = x0! ∧ x ≥ 0 ∧ ¬x ̸= 0|)

⊢ (|y · x! = x0! ∧ x ≥ 0|) while x != 0 {y := y * x; x := x - 1} (|y = x0!|)

⊢ (|x = x0 ∧ x ≥ 0|) y := 1;while x != 0 {y := y * x; x := x - 1} (|y = x0!|)

where prf 1 is the following proof

⊢ (|1 · x! = x0! ∧ x ≥ 0|) y := 1 (|y · x! = x0! ∧ x ≥ 0|)

⊢ (|x = x0 ∧ x ≥ 0|) y := 1 (|y · x! = x0! ∧ x ≥ 0|)

and prf 2 is the following proof

⊢ (|y · (x − 1)! = x0! ∧ x − 1 ≥ 0|) x := x - 1 (|y · x! = x0! ∧ x ≥ 0|)

• only creative step: invention of loop invariant y · x! = x0! ∧ x ≥ 0

• quite unreadable, introduce proof tableaux
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Proof Tableaux

Proof Tableaux

Problems in Presentation of Hoare Calculus

• proof trees become quite large even for small examples

• reason: lots of duplication, e.g., in composition rule

⊢ (|φ|)C1 (|η|) ⊢ (|η|)C2 (|ψ|)
⊢ (|φ|)C1;C2 (|ψ|)

composition

every formula φ, η, ψ occurs twice

• aim: develop better representation of Hoare-calculus proofs
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Proof Tableaux

Proof Tableaux
• main ideas

• write program commands line-by-line
• interleave program commands with midconditions

• structure

(|φ0|)
C1;

(|φ1|)
C2;

(|φ2|)
. . .

Cn

(|φn|)

where none of the Ci is a sequential execution

• idea: each midcondition φi should hold after execution of Ci
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Proof Tableaux

Weakest Preconditions

(|φi|)
Ci+1;

(|φi+1|)

• problem: how to find all the midconditions φi?
• solution

• assume φi+1 (and of course Ci+1) is given
• then try to compute φi as weakest precondition,

i.e., φi should be logically weakest formula satisfying

|= (|φi|)Ci (|φi+1|)

• we will see, that such weakest preconditions can for many commands be computed
automatically
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Proof Tableaux

Constructing the Proof Tableau
• aim: verify ⊢ (|φ′

0|)C1; . . . ;Cn (|φn|)
• approach: compute formulas φn−1, . . . , φ0, e.g., by taking weakest preconditions

(|φ0|)
C1;

(|φ1|)
. . .

Cn−1;

(|φn−1|)
Cn

(|φn|)
and check |= φ′

0 −→ φ0

this last check corresponds to an application of the implication-rule

• next: consider the various commands how to compute a suitable formula φi given Ci+1

and φi+1
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Proof Tableaux

Constructing the Proof Tableau – Assignment

• for the assignment, the weakest precondition is computed via

(|φ[x/e]|)
x := e

(|φ|)

• application is completely automatic: just substitute
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Proof Tableaux

Constructing the Proof Tableau – Implication
• represent implication-rule by writing two consecutive formulas

(|ψ|)
(|φ|)

whenever |= ψ −→ φ

• application
• simplify formulas
• close proof tableau at the top, to turn given precondition into computed formula at top of

program, e.g., |= φ′
0 −→ φ on slide 22

• example proof of ⊢ (|y = 2|) y := y * y; x := y + 1 (|x = 5|)
(|y = 2|)
(|y · y = 4|) (closing proof tableau at top)

y := y * y

(|y = 4|) (optional simplification step)

(|y + 1 = 5|)
x := y + 1

(|x = 5|)
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Proof Tableaux

Example with Destructive Updates
• assume we want to calculate u = x+ y via the following program P

(|true|)
(|x+ y = x+ y|)

z := x

(|z + y = x+ y|)
z := z + y

(|z = x+ y|)
u := z

(|u = x+ y|)

• the midconditions have been inserted fully automatic

• hence we easily conclude ⊢ (|true|)P (|u = x+ y|)
• note: although the tableau is constructed bottom-up, it also makes sense to read it
top-down

RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs 25/66

Proof Tableaux

An Invalid Example
• consider the following invalid tableau

(|true|)
(|x+ 1 = x+ 1|)

x := x + 1

(|x = x+ 1|)

• if the tableau were okay, then the result would be the arithmetic property x = x+ 1,
a formula that does not hold for any number x

• problem in tableau
• assignment rule was not applied correctly
• reason: substitution has to replace all variables

• corrected version

(|x+ 1 = (x+ 1) + 1|)
x := x + 1

(|x = x+ 1|)
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Proof Tableaux

Constructing the Proof Tableau – If-Then-Else
• aim: calculate φ such that

⊢ (|φ|) if b then C1 else C2 (|ψ|)

can be derived
• applying our procedure recursively, we get

• formula φ1 such that ⊢ (|φ1|)C1 (|ψ|) is derivable
• formula φ2 such that ⊢ (|φ2|)C2 (|ψ|) is derivable

• then weakest precondition for if-then-else is formula

φ := (b −→ φ1) ∧ (¬b −→ φ2)

• formal justification that φ is sound

⊢ (|φ1|)C1 (|ψ|)
⊢ (|φ ∧ b|)C1 (|ψ|)

⊢ (|φ2|)C2 (|ψ|)
⊢ (|φ ∧ ¬b|)C2 (|ψ|)

⊢ (|φ|) if b then C1 else C2 (|ψ|)
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Proof Tableaux

Example with If-Then-Else
• consider non-optimal code to compute the successor

(|true|)
(|((x+ 1)− 1 = 0 −→ 1 = x+ 1) ∧ ((x+ 1)− 1 ̸= 0 −→ x+ 1 = x+ 1)|)

a := x + 1;

(|(a− 1 = 0 −→ 1 = x+ 1) ∧ (a− 1 ̸= 0 −→ a = x+ 1)|)
if (a - 1 = 0) then {

(|1 = x+ 1|)
y := 1

(|y = x+ 1|) (formula copied to end of then-branch)

} else {
(|a = x+ 1|)

y := a

(|y = x+ 1|) (formula copied to end of else-branch)

}
(|y = x+ 1|)

• insertion of midconditions is completely automatic

• large formula obtained in 2nd line must be proven in underlying logic
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Proof Tableaux

Applying the While Rule

⊢ (|η ∧ b|)C (|η|)
⊢ (|η|) while b C (|η ∧ ¬b|) while

• let us consider applicability in combination with implication-rule for arbitrary setting: how
to derive the following?

⊢ (|φ|) while b C (|ψ|)
solution: find invariant η such that

• |= φ −→ η precondition implies invariant
• ⊢ (|γ|)C (|η|) handle loop body recursively, produces γ
• |= η ∧ b −→ γ η is indeed invariant
• |= η ∧ ¬b −→ ψ invariant and ¬b implies postcondition

• notes
• invariant η has to be satisfied at beginning and end of loop-body, but not in between
• invariant often captures the core of an algorithm:

it describes connection between variables throughout execution
• finding invariant is not automatic, but for seeing the connection

it often helps to execute the loop a few rounds
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Proof Tableaux

Applying the While Rule – Soundness

⊢ (|η ∧ b|)C (|η|)
⊢ (|η|) while b C (|η ∧ ¬b|) while

• let us consider applicability in combination with implication-rule for arbitrary setting: how
to derive the following?

⊢ (|φ|) while b C (|ψ|)
solution: find invariant η such that

• |= φ −→ η precondition implies invariant
• ⊢ (|γ|)C (|η|) handle loop body recursively, produces γ
• |= η ∧ b −→ γ η is indeed invariant
• |= η ∧ ¬b −→ ψ invariant and ¬b implies postcondition

• soundness proof
⊢ (|γ|)C (|η|)

⊢ (|η ∧ b|)C (|η|)
⊢ (|η|) while b C (|η ∧ ¬b|)
⊢ (|φ|) while b C (|ψ|)
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Proof Tableaux

Schema to Find Loop Invariant
• to create a Hoare-triple for a while-loop

⊢ (|φ|) while b C (|ψ|)
find η such that

• |= φ −→ η precondition implies invariant
• ⊢ (|γ|)C (|η|) handle loop body recursively, produces γ
• |= η ∧ b −→ γ η is invariant
• |= η ∧ ¬b −→ ψ invariant and ¬b implies postcondition

• approach to find η

1. guess initial η, e.g., based on a few loop executions
2. check |= φ −→ η and |= η ∧ ¬b −→ ψ; if not successful modify η
3. compute γ by bottom-up generation of ⊢ (|γ|)C (|η|)
4. check |= η ∧ b −→ γ
5. if last check is successful, proof is done
6. otherwise, adjust η

• note: if φ is not known for checking |= φ −→ η, then instead perform bottom-up
propagation of commands before while-loop (starting with η) and then use precondition
of whole program
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Proof Tableaux

Verification of Factorial Program – Initial Invariant
• program P : y := 1; while x > 0 {y := y * x; x := x - 1}
• aim: ⊢ (|x = x0 ∧ x ≥ 0|)P (|y = x0!|)
• for guessing initial invariant, execute a few iterations to compute 6!

iteration x0 x y x!
0 6 6 1 720
1 6 5 6 120
2 6 4 30 24
3 6 3 120 6
4 6 2 360 2
5 6 1 720 1

observations
• column x! was added since computing x! is aim
• multiplication of y and x! stays identical: y · x! = x0!
• hence use y · x! = x0! as initial candidate of invariant

• alternative reasoning with symbolic execution
• in y we store x0 · (x0 − 1) · . . . · (x+ 1) = x0!/x!,

so multiplying with x! we get y · x! = x0!
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Proof Tableaux

Verification of Factorial Program – Testing Initial Invariant
• initial invariant: η = (y · x! = x0!)
• potential proof tableau

(|x = x0 ∧ x ≥ 0|)
(|1 · x! = x0!|) (implication verified)

y := 1;

(|η|)
while (x > 0) {

(|η ∧ x > 0|)

y := y * x;

x := x - 1

(|η|)
}

(|η ∧ ¬x > 0|)
(|y = x0!|) (implication does not hold)

• problem: condition ¬x > 0 (x ≤ 0) does not enforce x = 0 at end
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Proof Tableaux

Verification of Factorial Program – Strengthening Invariant
• strengthened invariant: η = (y · x! = x0! ∧ x ≥ 0)
• potential proof tableau

(|x = x0 ∧ x ≥ 0|)
(|1 · x! = x0! ∧ x ≥ 0|) (implication verified)

y := 1;

(|η|)
while (x > 0) {

(|η ∧ x > 0|)
(|(y · x) · (x− 1)! = x0! ∧ x− 1 ≥ 0|) (implication verified)

y := y * x;

(|y · (x− 1)! = x0! ∧ x− 1 ≥ 0|)
x := x - 1

(|η|)
}

(|η ∧ ¬x > 0|)
(|y = x0!|) (implication verified)

• proof completed, since all implications verified (e.g. by SMT solver)
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Proof Tableaux

Larger Example – Minimal-Sum Section

• assume extension of programming language: read-only arrays
(writing into arrays requires significant extension of calculus)

• user is responsible for proper array access
• problem definition

• given array a[0], . . . , a[n− 1] of length n,
a section of a is a continuous block a[i], . . . , a[j] with 0 ≤ i ≤ j < n

• define Si,j as sum of section
Si,j := a[i] + · · ·+ a[j]

• section (i, j) is minimal, if Si,j ≤ Si′,j′ for all sections (i
′, j′) of a

• example: consider array [−7, 15,−1, 3, 15,−6, 4,−5]
• [3, 15,−6] and [−6] are sections, but [3,−6, 4] is not
• there are two minimal-sum sections: [−7] and [−6, 4,−5]
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Proof Tableaux

Minimal-Sum Section – Tasks

• write a program that computes sum of minimal section

• write a specification that makes “compute sum of minimal section” formal

• show that program satisfies the formal specification
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Proof Tableaux

Minimal-Sum Section – Challenges

• trivial algorithm
• compute all sections (O(n2))
• compute all sums of these sections and find the minimum
• results in O(n3) algorithm

• aim: O(n)-algorithm which reads the array only once

• consequence: proof required that it is not necessary to explicitly compute all O(n2)
sections

• example: consider array [−8, 3,−65, 20, 45,−100,−8, 17,−4,−14]
• when reading from left-to-right a promising candidate might be [−8, 3,−65],

but there also is the later [−100,−8], so how to decide what to take?
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Proof Tableaux

Minimal-Sum Section – Algorithm

• idea of algorithm
• k: index that traverses array from left-to-right
• s: minimal-sum of all sections seen so far
• t: minimal-sum of all sections that end at position k − 1

• algorithm Min Sum

k := 1;

t := a[0];

s := a[0];

while (k != n) {

t := min(t + a[k], a[k]);

s := min(s, t);

k := k + 1

}

• correctness not obvious, so let us better prove it
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Proof Tableaux

Minimal-Sum Section – Specification

• we split the specification in two parts via two Hoare-triples
• Sp1 specifies that the value of s is smaller than the sum of any section

(|true|)Min Sum (|∀i, j. 0 ≤ i ≤ j < n −→ s ≤ Si,j |)

• Sp2 specifies that there exists some section whose sum is s

(|true|)Min Sum (|∃i, j. 0 ≤ i ≤ j < n ∧ s = Si,j |)
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Proof Tableaux

Minimal-Sum Section – Proving Sp1
k := 1;

t := a[0];

s := a[0];

while (k != n) {

t := min(t + a[k], a[k]);

s := min(s, t);

k := k + 1

}

Sp1 : (|true|)Min Sum (|∀i, j. 0 ≤ i ≤ j < n −→ s ≤ Si,j |)

• find candidate invariant
• invariant often similar to postcondition
• invariant expresses relationships that are valid at beginning of each loop-iteration

• suitable invariant is Inv1(s, k) defined as

∀i, j. 0 ≤ i ≤ j < k −→ s ≤ Si,j
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Proof Tableaux

(|Inv1(a[0], 1)|) (true statement)

k := 1;

(|Inv1(a[0], k)|)
t := a[0];

(|Inv1(a[0], k)|)
s := a[0];

(|Inv1(s, k)|)
while (k != n) {

(|Inv1(s, k) ∧ k ̸= n|)
(|Inv1(min(s,min(t+ a[k], a[k])), k + 1)|) (does not hold, no info on t)

t := min(t + a[k], a[k]);

(|Inv1(min(s, t), k + 1)|)
s := min(s, t);

(|Inv1(s, k + 1)|)
k := k + 1;

(|Inv1(s, k)|)
}

(|Inv1(s, k) ∧ ¬k ̸= n|)
(|Inv1(s, n)|) (implication verified)
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Proof Tableaux

Minimal-Sum Section – Strengthening Invariant
k := 1;

t := a[0];

s := a[0];

while (k != n) {

t := min(t + a[k], a[k]);

s := min(s, t);

k := k + 1

}

Sp1 : (|true|)Min Sum (|∀i, j. 0 ≤ i ≤ j < n −→ s ≤ Si,j |)

• suitable invariant for s is Inv1(s, k) defined as

∀i, j. 0 ≤ i ≤ j < k −→ s ≤ Si,j

• define similar invariant for t: Inv2(t, k) defined as

∀i. 0 ≤ i < k −→ t ≤ Si,k−1

• now try strengthened invariant Inv1(s, k) ∧ Inv2(t, k)
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Proof Tableaux

(|Inv1(a[0], 1) ∧ Inv2(a[0], 1)|) (true statement)

k := 1;

(|Inv1(a[0], k) ∧ Inv2(a[0], k)|)
t := a[0];

(|Inv1(a[0], k) ∧ Inv2(t, k)|)
s := a[0];

(|Inv1(s, k) ∧ Inv2(t, k)|)
while (k != n) {

(|Inv1(s, k) ∧ Inv2(t, k) ∧ k ̸= n|)
(|Inv1(min(s,min(t+ a[k], a[k])), k + 1) ∧ Inv2(min(t+ a[k], a[k]), k + 1)|) (implication verified)

t := min(t + a[k], a[k]);

(|Inv1(min(s, t), k + 1) ∧ Inv2(t, k + 1)|)
s := min(s, t);

(|Inv1(s, k + 1) ∧ Inv2(t, k + 1)|)
k := k + 1;

(|Inv1(s, k) ∧ Inv2(t, k)|)
}

(|Inv1(s, k) ∧ Inv2(t, k) ∧ ¬k ̸= n|)
(|Inv1(s, n)|) (implication verified)

RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs 43/66

Proof Tableaux

Minimal-Sum Section – Proving the Implications

• invariants
• Inv1(s, k) := ∀i, j. 0 ≤ i ≤ j < k −→ s ≤ Si,j

• Inv2(t, k) := ∀i. 0 ≤ i < k −→ t ≤ Si,k−1

• implications
• true −→ Inv1(a[0], 1) ∧ Inv2(a[0], 1)

• because of the conditions of the quantifiers, by fixing k = 1 we only have to consider section
(0, 0), i.e, we show a[0] ≤ S0,0 = a[0]

• let 0 < k < n where n is length of array a; then Inv1(s, k) ∧ Inv2(t, k) ∧ k ̸= n implies both
Inv2(min(t+ a[k], a[k]), k + 1) and Inv1(min(s,min(t+ a[k], a[k])), k + 1);
proof

• pick any 0 ≤ i < k + 1; we show min(t+ a[k], a[k])) ≤ Si,k; if i < k then
Si,k = Si,k−1 + a[k], so we use Inv2(t, k) to get t ≤ Si,k−1 and thus
min(t+ a[k], a[k])) ≤ t+ a[k] ≤ Si,k−1 + a[k] = Si,k;
otherwise, i = k and we have min(t+ a[k], a[k]) ≤ a[k] = Si,k

• pick any 0 ≤ i ≤ j < k + 1;
we need to show min(s,min(t+ a[k], a[k])) ≤ Si,j ;
if j = k then the result follows from the previous statement;
otherwise j < k and the result follows from Inv1(s, k)
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Proof Tableaux

Proof Tableaux – Summary

• we have proven soundness of non-trivial algorithm Min Sum
• with gaps

• we only proved Sp1, but not Sp2
• lemma on previous slide demanded 0 < k < n which does not follow from loop-condition
k ̸= n; a proper fix would require a strengthened invariant which includes bounds on k

• main reasoning (proving the implications on previous slide) was done purely in logic with
no reference to program

• such an approach is often conducted in verification of programs
• there is a verification condition generator (VCG)
• VCG converts assertions in programs (invariants) into logical formulas;

here: Hoare-calculus handles program statements,
verification conditions are instances of implication-rule

• verification conditions are passed to SMT-solver, theorem prover, etc.,
to finally show correctness

• problem: in case SMT-solver fails, user needs to understand failure to adapt invariants,
assertions, etc.
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Termination of Imperative Programs

Termination of Imperative Programs

Adding Termination to Calculus

• since while-loops are only source of non-termination in presented imperative language, it
suffices to adjust the while-rule in the Hoare-calculus

all other Hoare-calculus rules can be used as before

• recall: total correctness = partial correctness + termination

• previous while-rule already proved partial correctness

• only task: extend existing while-rule to additionally prove termination
• idea of ensuring termination: use variants

• a variant (or measure) is an integer expression;
• this integer expression strictly decreases in every loop iteration and
• at the same time the variant stays non-negative;
• conclusion: there cannot be infinitely many loop iterations
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Termination of Imperative Programs

A While-Rule For Total Correctness
• while-rule for partial correctness

⊢ (|φ ∧ b|)C (|φ|)
⊢ (|φ|) while b C (|φ ∧ ¬b|) while

• extended while-rule for total correctness

⊢ (|φ ∧ b ∧ e0 = e ≥ 0|)C (|φ ∧ e0 > e ≥ 0|)
⊢ (|φ ∧ e ≥ 0|) while b C (|φ ∧ ¬b|) while-total

where
• e is variant expression with values before execution of C
• e is (the same) variant expression with values after execution of C
• e0 is fresh logical variable, used to store the value of e before: e0 = e
• hence, postcondition e0 > e enforces decrease of e when executing C
• non-negativeness is added three times, even in precondition of while
• e is of type integer so that SN {(x, y) ∈ Z× Z | x > y ≥ 0} can be used as underlying

terminating relation: each loop iteration corresponds to a step ([[e]]αbefore
, [[e]]αafter

) in this
relation
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Termination of Imperative Programs

Applying While-Total

⊢ (|φ ∧ b ∧ e0 = e ≥ 0|)C (|φ ∧ e0 > e ≥ 0|)
⊢ (|φ ∧ e ≥ 0|) while b C (|φ ∧ ¬b|) while-total

• application
• e0 is fresh logical variable, so nothing to choose
• variant e has to be chosen, but this is often easy

• while (x < 5) { ... x := x + 1 ...} is same as
while (5 - x > 0) { ... x := x + 1 ...}, so e = 5− x

• while (y >= x) { ... y := y - 2 ...} is same as
while (y - x >= 0) { ... y := y - 2 ...}, so e = y − x (+2)

• while (x != y) { ... y := y + 1 ...} is same as
while (x - y != 0) { ... y := y + 1 ...}, so e = x− y

• checking the condition is then easily possible via proof tableau, in the same way as for the
while-rule for partial correctness

• all side-conditions e ≥ 0 can completely be eliminated by choosing e = max(0, e′) for some
e′, but then proving e0 > e will become harder as it has to deal with max

• invariant φ can be taken unchanged from partial correctness proof

RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs 49/66

Termination of Imperative Programs

Total Correctness of Factorial Program
• red parts have been added for termination proof with variant x− z

(|true ∧ x ≥ 0|) (new termination condition on x)

(|1 = 0! ∧ x− 0 ≥ 0|)
y := 1;

(|y = 0! ∧ x− 0 ≥ 0|)
z := 0;

(|y = z! ∧ x− z ≥ 0|) (new condition added)

while (x != z) {
(|y = z! ∧ x ̸= z ∧ e0 = x− z ≥ 0|) (new condition added)

(|y · (z + 1) = (z + 1)! ∧ e0 > x− (z + 1) ≥ 0|) (more reasoning)

z := z + 1;

(|y · z = z! ∧ e0 > x− z ≥ 0|)
y := y * z;

(|y = z! ∧ e0 > x− z ≥ 0|) (new condition added)

}
(|y = z! ∧ ¬x ̸= z|)
(|y = x!|)
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Termination of Imperative Programs

Remarks on Total Correctness of Factorial Program
• precondition x ≥ 0 was added automatically from termination proof

• in fact, the program does not terminate on negative inputs

• for factorial program (and other imperative programs) Hoare-calculus permits to prove
local termination, i.e., termination on certain inputs

• in contrast, for functional program we always considered
universal termination, i.e., termination of all inputs

• termination proofs can also be performed stand-alone
(without partial correctness proof):
just prove postcondition “true” with while-total-rule:

⊢ (|φ|)P (|true|)

implies termination of P on inputs that satisfy φ, so

⊢ (|true|)P (|true|)

shows universal termination of P
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Soundness of Hoare-Calculus
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Soundness of Hoare-Calculus

Soundness of Hoare-Calculus

• so far, we have two notions of soundness
• |= (|φ|)P (|ψ|) : via semantic of imperative programs, i.e., whenever α |= φ and

(P, α) ↪→∗ (skip, β) then β |= ψ must hold
• ⊢ (|φ|)P (|ψ|) : syntactic, what can be derived via Hoare-calculus rules

• missing: soundness of calculus, i.e.,

⊢ (|φ|)P (|ψ|) implies |= (|φ|)P (|ψ|)

• formal proof is based on big-step semantics → (see exercises):
(P, α) ↪→∗ (skip, β) is turned into (P, α) → β

• soundness of the calculus is then established by the following property, which is proven by
induction w.r.t. the Hoare-calculus rules for arbitrary α, β:

⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C,α) → β −→ β |= ψ
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Soundness of Hoare-Calculus

Proving ⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C, α) → β −→ β |= ψ

Case 1: implication-rule
⊢ (|φ|)C (|ψ|) since |= φ −→ φ′, ⊢ (|φ′|)C (|ψ′|) , and |= ψ′ −→ ψ

• IH: ∀α, β. α |= φ′ −→ (C,α) → β −→ β |= ψ′

• assume α |= φ and (C,α) → β

• then by |= φ −→ φ′ conclude α |= φ′

• in combination with IH get β |= ψ′

• with |= ψ′ −→ ψ conclude β |= ψ
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Soundness of Hoare-Calculus

Proving ⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C, α) → β −→ β |= ψ

Case 2: composition-rule
⊢ (|φ|)C1;C2 (|ψ|) since ⊢ (|φ|)C1 (|η|) and ⊢ (|η|)C2 (|ψ|)
• IH-1: ∀α, β. α |= φ −→ (C1, α) → β −→ β |= η

• IH-2: ∀α, β. α |= η −→ (C2, α) → β −→ β |= ψ

• assume α |= φ and (C1;C2, α) → β

• from the latter and the definition of →, there must be γ such that (C1, α) → γ and
(C2, γ) → β

• by using IH-1 (choose α and γ in ∀), obtain γ |= η

• by using IH-2 (choose γ and β in ∀), obtain β |= ψ
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Soundness of Hoare-Calculus

Proving ⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C, α) → β −→ β |= ψ

Case 3: if-then-else-rule
⊢ (|φ|) if b then C1 else C2 (|ψ|)
since ⊢ (|φ ∧ b|)C1 (|ψ|) and ⊢ (|φ ∧ ¬b|)C2 (|ψ|)
• IH-1: ∀α, β. α |= φ ∧ b −→ (C1, α) → β −→ β |= ψ

• IH-2: ∀α, β. α |= φ ∧ ¬b −→ (C2, α) → β −→ β |= ψ

• assume α |= φ and (if b then C1 else C2, α) → β

• perform case analysis on [[b]]α
• w.l.o.g. we only consider the case [[b]]α = true where

• from α |= φ conclude α |= φ ∧ b
• from (if b then C1 else C2, α) → β conclude (C1, α) → β
• by using IH-1 get β |= ψ
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Soundness of Hoare-Calculus

Proving ⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C, α) → β −→ β |= ψ

Case 4: assignment-rule
⊢ (|φ|)x := e (|ψ|) since φ = ψ[x/e]

• assume α |= φ and (x := e, α) → β

• by definition of →, conclude β = α[x := [[e]]α]

• hence assumption α |= φ is equivalent to
• α |= ψ[x/e] by unrolling φ-equality
• α[x := [[e]]α] |= ψ by substitution lemma for formulas
• β |= ψ by unrolling β-equality

RT (DCS @ UIBK) Part 6 – Verification of Imperative Programs 57/66

Soundness of Hoare-Calculus

Proving ⊢ (|φ|)C (|ψ|) −→ α |= φ −→ (C, α) → β −→ β |= ψ

Case 5: while-rule
⊢ (|φ|) while b C ′ (|ψ|) since ⊢ (|φ ∧ b|)C ′ (|φ|) and ψ = φ ∧ ¬b
• (outer) IH: ∀α, β. α |= φ ∧ b −→ (C ′, α) → β −→ β |= φ

• we now prove α |= φ −→ (while b C ′, α) → β −→ β |= ψ
by an inner induction on α w.r.t. →, but for fixed b, C ′, β, φ, ψ

• case 1: (while b C ′, α) → β
since [[b]]α = false and β = α

• in this case conclude β = α |= φ ∧ ¬b = ψ

• case 2: (while b C ′, α) → β
since [[b]]α = true, (C ′, α) → γ and (while b C ′, γ) → β

• inner IH: γ |= φ −→ β |= ψ
• assume α |= φ
• hence α |= φ ∧ b
• by outer IH (choose α and γ in ∀) get γ |= φ
• then inner IH yields β |= ψ
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Soundness of Hoare-Calculus

Summary of Soundness of Hoare-Calculus

• since Hoare-calculus rules and semantics are formally defined, it is possible to verify
soundness of the calculus

• proof requires inner induction for while-loop,
since big-step semantics of while-command refers to itself

• here: only soundness of Hoare-calculus for partial correctness
• possible extension: total correctness

• define semantic notion |=total (|φ|)C (|ψ|) stating total correctness
• prove that Hoare-calculus with while-total is sound w.r.t. |=total
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Programming by Contract
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Programming by Contract

Programming by Contract – Idea

• Hoare-triple (|φ|)P (|ψ|) may be seen as a contract between supplier and consumer of
program P

• supplier insists that consumer invokes P only on states satisfying φ
• supplier promises that after execution of P formula ψ holds

• validation of Hoare-triples with Hoare-calculus can be seen as
validation of contracts for method- or procedure-calls
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Programming by Contract

Example

• consider method where ... is program Fact on slide 9

int factorial (int x) { int y; ...; return y }

• example contract

method name: factorial

input: int x

output: int

assumes: x >= 0

guarantees: result = x!

modifies only: local variables

• remarks
• return-value of method is referred to as result in contract
• since x is local parameter (call-by-value) and y is local variable,

there will be no impact on global variables;
• for procedures and call-by-reference variables, one usually wants to know whether

modifications take place
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Programming by Contract

Modified Example

• consider procedure where ... is program Fact on slide 9

void factorial_proc (int x) { ... }

• example contract

procedure name: factorial_proc

input: int x

assumes: x >= 0

guarantees: y = x!

modifies only: y

• remarks
• y is no longer local variable, but global
• procedure has no return value
• guarantees are expressed via global variables and parameters

(and if required, logical variables)
• modification of global variable y visible in contract
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Programming by Contract

Invoking Methods
• assume we want to write method for binomial coefficients(

n

k

)
=

n!

k! · (n− k)!

to compute chance of lotto-jackpot 1 :
(
49
6

)
• int binom (int n, int k) {

return factorial(n) / (factorial(k) * factorial (n-k))

}

• programming-by-contract also demands contracts for new methods
• in example, we need to ensure that preconditions of factorial-invocations are met

method name: binom

inputs: int n, int k

output: int

assumes: n >= 0, k >= 0, n >= k

guarantees: result = n choose k

modifies only: local variables
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Programming by Contract

Programming by Contract – Advantages
• in the same way as methods help to structure larger programs, contracts for these
methods help to verify larger programs

• reason: for verifying code invoking method m, it suffices to look at contract of m –
without looking at implementation of m

• positive effects
• add layer of abstraction
• easy to change implementation of m as long as contract stays identical
• verification becomes more modular

• example: for invocation of min in minimal-sum section it does not matter whether
• min is built-in operator which is substituted as such, or
• min is user-defined method that according to the contract computes the mathematical

min-operation
implementation can be ignored for caller, but developer needs to verify it against contract

int min(int x, int y) {

int z;

if x <= y then z := x else z := y;

return z }
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Summary – Verification of Imperative Programs

• covered
• syntax and semantic of small imperative programming language
• Hoare-calculus to verify Hoare-triples (|φ|)P (|ψ|)
• proof tableaux and automation:

Hoare-calculus is VCG that converts program logic into implications (verification conditions)
that must be shown in underlying logic

• proofs are mostly automatic, except for loop invariants
• soundness of Hoare-calculus
• programming by contracts: abstract from concrete method-implementations, use contracts

• not covered
• heap-access, references, arrays, etc.: extension to separation logic, memory model
• bounded integers: reasoning engine for bit-vector-arithmetic
• multi-threading
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