

Constraint Solving	SS 2024	LVA 703304
EXAM 1		June 25, 2024
LAST NAME:		
FIRST NAME:		
MATRICULATION NUMB	ER:	

SCORE

1(a)	1(b)	2(a)	2(b)	2(c)		
3(a)	3(b)	4			į	5

TOTAL	GRADE			

 $\boxed{1} \ (a) \ {\it calculation} \ + \ {\it explanation}$

(b) calculation + explanation

 $\fbox{3}\ convexity\ answer\ +\ brief\ explanation,\ calculation$

 $\fbox{4}$ description of encoding, example application

Question	Yes	No
The decision procedure for difference logic is based on Dijkstra's shortest-path-algorithm.		
In order to detect equalities for constraints $A\vec{x} \leq \vec{b}$, Bromberger and Weidenbach's method invokes the simplex algorithm on $A\vec{x} > \vec{b}$.		
The small-model property of LIA is essential for termination of the branch-and-bound algorithm.		
SAT is a decision problem in PSPACE.		
$\forall x, y. \ x \neq y \land x \leq u \land v \leq y \longrightarrow a[x] = b[y] + 3$ can be reformulated into an equivalent array property.		