
Constraint Solving SS 2024 LVA 703304

Test-Exam June 21, 2024

This is an old exam that consisted of five exercises. The available points for each
item are written in the margin. You needed at least 50 points to pass. Exercise
3(b) was a bonus exercise. Explain your answers!
Exercises 1 and 2(b) cannot be solved with knowledge of this course, as
these topics have not been treated!

1 (a) Compute the ZDD representation B of the boolean function f(a, b, c) = ab+ ac with[5]

variable ordering [a, b, c].

(b) What is count(B) for the ZDD B of part (a)?[5]

(c) List all binary boolean functions that have no 0 node in their ZDD representation.[10]

2 (a) Use Cooper’s method to transform the QLIA formula[10]

¬∀x. (3y − 1 ⩾ 3x ∨ y = 2x− 6)

into an equivalent quantifier-free formula.

(b) Find all solutions of the (integer) divisibility constraints 4 | 3a+ 2b ∧ 2 | a− b+ 1[10]

with 0 < a, b < 5.

3 In this exercise we consider the logic puzzle Makaro published by Nikoli. The grid is
divided into rooms and the objective is to fill the empty cells in the rooms with numbers,
subject to the following constraints:

• A room with n cells is filled with the numbers 1 to n.

• Neighbouring cells in adjacent rooms may not have the same number.

• The number in a cell pointed to by an arrow must be larger than the number in every
other neighbouring cell of the arrow.

For example, the puzzle on the left has the (unique) solution on the right:

3 3

1 2 1 2
3 1 2 3

1 2 3 4
2 3 1 2
1 2 1 4

(a) Construct a formula φ that is satisfiable if and only if the puzzle[20]

1

3

4

4

1

1 1

1

2 1

1

3

2

has a solution. Specify the underlying (SMT) theory and provide sufficiently many
details (allowing the instructor to construct the full encoding).

(b) Solve the puzzle of part (a). (This is a bonus exercise.)[10]

4 Linear Arithmetic

(a) Consider the following constraints:[11]

2y ≥ −4x− 3 (1)

4y + 8x ≤ −5 (2)

Apply the simplex algorithm to find a rational solution to the constraints. Here, you
should use s as name of the slack variable that is introduced for constraint (1) and
t as name of the slack variable for (2). Use Bland’s selection rule with the variable
order x < y < s < t. No preprocessing is allowed (e.g., one that would completely
eliminate one of the four variables). Provide the initial tableau and bounds as well as
intermediate results after each pivoting step and after each update of the assignment.

(b) The Bellman–Ford algorithm from the lecture works on weighted graphsG = (V,E,w).[9]

It contains a loop with |V |− 1 iterations of distance-updates, where |V | is the number
of nodes (not counting the fresh starting node s). Consider a modified algorithm
with only |V | − 2 iterations. Figure out which of the following three problematic
situations can occur. For each situation either provide a concrete witness with four
nodes (V = {a, b, c, d}, just the graph suffices), or provide a brief justification why the
situation cannot arise.

(1) It can happen that G does not contain a negative cycle, but the modified algorithm
reports a negative cycle.

(2) It can happen that G does not contain a negative cycle, the modified algorithm
returns a distance array, but at least some computed distance is not correct.

(3) It can happen that G contains a negative cycle, but the modified algorithm returns
a distance array.

5 Arrays

Consider the following program to compute Fibonacci numbers for arbitrary N ≥ 0:

int a[N+1]; // entries a[0], ..., a[N]

a[0] = 0;

a[1] = 1;

int i = 1;

while (i < N) {

a[i+1] = a[i] + a[i-1];

i = i+1;

}

return a[N];

(a) Think of a suitable invariant which permits to prove that all array accesses within the[4]

loop-body are within bounds. Write down the invariant and all formulas that have to
be validated.

(b) In order to prove soundness of the program, the following formula φ(a, i) might serve[10]

as an invariant:

φ(a, i) := (∀k. 0 ≤ k ≤ i −→ a[k] = fib(k))

Then the formula ψ expresses that the invariant is maintained after a loop iteration:

ψ := φ(a, i) ∧ i < N ∧ b = a{i+ 1← a[i] + a[i− 1]} ∧ j = i+ 1 −→ φ(b, j)

Transform the negated formula ¬ψ into an equisatisfiable quantifier-free formula χ
which does not contain any array-operations. Provide intermediate formulas.

(c) Try to prove unsatisfiability of χ. To this end you can of course use the specification[6]

of Fibonacci-numbers, in particular the equation:

∀n. n ≥ 1 −→ fib(n+ 1) = fib(n) + fib(n− 1)

Either complete the proof or indicate why your attempt got stuck and how the invariant
might be adapted.

