Homework

1. Give an example binary operation \cdot that is associative $((x \cdot y) \cdot z=x \cdot(y \cdot z))$ but not commutative $(x \cdot y=y \cdot x)$, and one that is commutative but not associative.
2. Use DPLL to check if the following formula is satisfiable on paper:

- $(\neg b \vee c) \wedge(\neg c \vee a) \wedge(\neg a \vee b) \wedge(\neg a \vee \neg b \vee \neg c) \wedge(b \vee a)$
and encode it in DIMACS and run a SAT solver on it (for example CaDiCaL ${ }^{1}$ or MiniSAT ${ }^{2}$)

3. Consider the formula $\varphi=\neg((\neg r \rightarrow s) \wedge \neg(p \vee q))$
(a) Extend the lemmas on slide 18 to formulas containing implications (\rightarrow) and equivalences (\leftrightarrow).
(b) Use the extended Tseitin's transformation to convert φ to an equisafisfiable CNF formula.
(c) How does the inclusion of \rightarrow and \leftrightarrow affect the transformation of Plaisted and Greenbaum? What CNF does it produce for φ ?
4. Consider the following conflicting state of a DPLL run:

$$
\begin{equation*}
1^{d} 23^{d} 45^{d} 6 \|(\neg 1 \vee 2) \wedge(\neg 3 \vee 4) \wedge(\neg 5 \vee 6) \wedge(5 \vee \neg 6) \wedge(\neg 6 \vee \neg 5 \vee \neg 2) \tag{3P}
\end{equation*}
$$

Find three ways of applying the backjump rule, where each uses a different backjump clause and results in a different state.

[^0]
[^0]: 1 https://fmv.jku.at/cadical/
 2http://www.minisat.se/

