
Constraint Solving SS 2024 LVA 703305

Week 2 March 15, 2024

Homework

1. Consider the formula (2 P)

φ = (¬a∨¬b)∧ (¬a∨ b∨¬c)∧ (b∨ g ∨ h)∧ (d∨ e)∧ (d∨¬e∨¬f ∨¬g)∧ (c∨¬h∨ i)∧ (¬h∨ g ∨¬i)

and the sequence of decisions and unit propagations

ad ¬b¬c¬dd e fd ¬g h¬i ∥ φ

(a) Construct the conflict graph and find all cuts corresponding to a UIP. What are the corresponding
backjup clauses, that can be learnt?

(b) Use the first UIP to backjump as far as possible. What does the implication graph look like after the
backjump?

2. The aim is to verify that the crossover gadget on slide 24 is correct.

(a) Assume ϕ is the CNF of the crossover gadget. Specify certain formulas that must be satisfiable and
further some formulas that must be unsatisfiable, in order to ensure correctness of the gadget. (2 P)

(b) Verify the correctness of the gadget by calling a SAT solver. (0.5 P)

(c) How can one replace the clause with 4 literals in the gadget to obtain a gadget that is an instance of
planar 3-SAT. (0.5 P)

3. On slide 20 we have to enumerate all legal windows to encode the run of a NTM as (2 P)
a SAT problem. Consider the transition function ∆ where:

∆(p,⊢) = {(p,⊢, R), (q,⊢, R)} ∆(p, a) = {(p, b, R), (q, a, L)}
∆(q, a) = {(q, c, L), (q, b, L)} ∆(q, b) = {(p, b, R), (q, c, R)}

For all other states s and symbols f we have ∆(s, f) = ∅. Which of the following windows is legal?

(i)
a b a
a b a

(ii)
a c a
b c a

(iii)
q b a
q b a

(iv)
b a a
p a a

(v)
a p ⊢
a ⊢ q

(vi)
c b q
c b a

(vii)
a b c
q b c

(viii)
p a c
b p c

4. We want to construct a non-deterministic Turing machine to decide 3-SAT for CNFs with up to n variables
in polynomial time. For a CNF containing the variables a1, . . . , an we use the input alphabet Σ =
{#, $, a1, a1, a2, a2, . . . , an, an}. A 3-CNF is then encoded on the input tape by listing each clause separated
by #, where each clause is a sequence of literals. The input is then terminated by the $ symbol. For example
the 3-CNF (a1∨¬a2∨a3)∧ (a2∨a4)∧ (a3∨¬a4) is represented on the tape as ⊢ a1 a2 a3 # a2 a4 # a3 a4 $.
The machine should proceed in two phases. In phase (1) it non-deterministically guesses one literal per
clause which should evaluate to true, and in phase (2) it checks if that guess is valid. To this end you
should:

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/slides/02x1.pdf#page=24
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/slides/02x1.pdf#page=20


(a) Define a non-deterministic Turing machine M for phase (1). (2 P)
Based on the above alphabet and encoding, it should guess one literal per clauses and removes the
rest. For the CNF above an example run could look like:

⊢ a1 a2 a3 # a2 a4 # a3 a4 $
∗−→
M

⊢ a3 a2 a4 $

(b) In phase (2) we check if the output of phase (1) represents a valid assignment. (1 P)
Explain how this check could be implemented. You do not have to define a full Turing machine.


