

Constraint Solving

SS 2024

LVA 703305

April 12, 2024

Week 4

## Homework

1. Consider the formula

 $\varphi \equiv (x \neq v \lor v \neq y) \land (x = v \lor x \neq y) \land (x = y \lor x \neq z) \land z = w \land (x = z \lor w \neq y)$ 

Using DPLL(T) check the satisfiability of  $\varphi$  for the following theories.

- (a)  $T_1$ : The equality logic over the natural numbers where the single predicate = is interpreted as the identity over  $\mathbb{N}$ . (2 P)
- (b)  $T_2$ : The equality logic over the Boolean values, where the single predicate = is the identity over  $\mathbb{B} = \{0, 1\}.$  (2 P)
- 2. Consider the following instance  $\gamma$  of the Chinese Remainder Theorem: for all a and b there is an x (2 P) such that  $x \equiv a \pmod{7}$  and  $x \equiv b \pmod{5}$ .
  - (a) Can  $\gamma$  be expressed in Peano arithmetic? If yes, how?
  - (b) Can  $\gamma$  be expressed in Presburger arithmetic? If yes, how?
- 3. Consider the following *Greater Than Killer Sudoku*. It follows the same rules as Killer Sudoku, but additionally adds equality (=) and greater than (>) constraints on the sum of some cages.

| 3    | 12         |            | 19           | /                 | )<br> | 14                                     |
|------|------------|------------|--------------|-------------------|-------|----------------------------------------|
|      | 23         |            |              | 8                 |       |                                        |
| 11-2 | Ļ          | L_/        |              | \                 | /     | 5                                      |
|      |            | 20         | ł j          | 14                |       | $\begin{pmatrix} - \\ 1 \end{pmatrix}$ |
|      | //         | <u>; (</u> |              | 5                 |       | 1 1                                    |
| 1.   | <br>\      |            | <sup>j</sup> | ۱<br>۱۰           | /     |                                        |
|      |            |            |              |                   | ];    | 20                                     |
|      | /<br> <br> |            | 1 1          | / <del>//</del> - |       |                                        |
|      |            |            |              |                   |       |                                        |
| }    | 4 7        |            |              |                   | €     | ]                                      |
| )    |            |            |              |                   | 7     | )                                      |
|      |            |            |              |                   |       |                                        |

- (a) Encode this puzzle in Presburger arithmetic. (You are allowed to use > as a predicate). (2 P)
- (b) Solve the puzzle using an SMT-solver (for example Z3). Is the solution unique? (2 P)

Hint: To encode that some variables  $x_1, \ldots, x_n$  are distinct you may just write  $distinct(x_1, \ldots, x_n)$ . SMT-LIB 2 also supports the constraint (assert (distinct x1 x2 x3 ...)).