Homework

1. Determine satisfiability of the following LRA formula ϕ using $\operatorname{DPLL}(T)$ and the incremental simplex implementation from the lecture ${ }_{\square}^{1}$ You should use standard Boolean unit propagation as well as theory propagation, i.e., determine sets of implied literals from a partial Boolean assignment via the theory solver. (2 P)
Hint: For this example you never have to perform any guesses, i.e., do not apply the inference rule for a Boolean decision.

$$
\begin{aligned}
\phi & :=c_{1} \wedge c_{2} \wedge c_{3} \wedge\left(c_{4} \vee c_{5}\right) \wedge\left(c_{6} \vee c_{7}\right) \\
c_{1} & :=2 x-40 y+4 z \leq 10 \\
c_{2} & :=15 y+4 z \leq 15 \\
c_{3} & :=x+y+z \leq 100 \\
c_{4} & :=3 x+14 y+7 z \geq 450 \\
c_{5} & :=-2 x+2 y-z \geq 15 \\
c_{6} & :=2 x-y+z>20 \\
c_{7} & :=2 x-3 y+2 z \geq 100
\end{aligned}
$$

2. Farkas' lemma states that a set of non-strict inequalities is unsatisfiable if and only if there exists Farkas' coefficients (see slide 14).
(a) Consider the following inequalities

$$
\underbrace{-x+2 y}_{s_{1}} \leq-2 \quad \underbrace{3 x+2 y}_{s_{2}} \leq 12 \quad \underbrace{-2 x-3 y}_{s_{3}} \leq-12
$$

where the variables range over \mathbb{Q}. Simplex finds these to be unsatisfiable where the final tableau is

$$
y=-\frac{2}{5} s_{2}-\frac{3}{5} s_{3} \quad x=\frac{3}{5} s_{2}+\frac{2}{5} s_{3} \quad s_{1}=-\frac{7}{5} s_{2}-\frac{8}{5} s_{3}
$$

with an assignment $v(x)=v(y)=v\left(s_{1}\right)=\frac{12}{5}, v\left(s_{2}\right)=12, v\left(s_{3}\right)=-12$. Find Farkas' coefficients that prove unsatisfiability for these inequalities
(b) Prove completeness of Faraks' lemma, by constructing an algorithm to extract Farkas' coefficients from any unsatisfiable simplex state.
3. Using Farkas' lemma from the lecture, prove that the following variant of the lemma also holds.

Let $\varphi=\left(\ell_{1} \leqslant b_{1}\right) \wedge\left(\ell_{2} \leqslant b_{2}\right) \wedge \cdots \wedge\left(\ell_{n} \leqslant b_{n}\right)$ be a system of linear inequalities and $\ell<b$ a linear inequality, where $b_{1}, \ldots, b_{n}, b \in \mathbb{Q}$ and all $\ell_{1}, \ldots, \ell_{n}, \ell$ are linear-homogeneous expressions (i.e. they have the shape $\left.\ell_{i}=\sum a_{i} x_{i}\right)$. If φ is satisfiable, and $\varphi \rightarrow(\ell<b)$ is valid then there exist coefficients $c_{1}, \ldots, c_{n} \geqslant 0$ such that

$$
\sum_{i=1}^{n} c_{i} \ell_{i}=\ell \quad \text { and } \quad \sum_{i=1}^{n} c_{i} b_{i} \leqslant b
$$

[^0]
[^0]: 1http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

