Homework

1. On slide 12 we showed that there is a LIA formula φ where any satisfying assignment contains a value of at least c^{n}. Design a formula which has a larger lower bound.
2. Show that determining satisfiablility of a conjunction of linear integer constraints is NP-hard.

Hint: Use a reduction from CNF-SAT.
3. For some optimization problems it is required to consider mixed linear arithmetic problems, where the set of variables \mathcal{V} is partitioned into $\mathcal{V}_{\mathbb{Z}} \uplus \mathcal{V}_{\mathbb{Q}}$, i.e., some variables are restricted to represent integers whereas the others are for rational numbers. For instance $\mathcal{V}_{\mathbb{Z}}$ might describe quantities which cannot be split, such as wheels, screws, etc., whereas $\mathcal{V}_{\mathbb{Q}}$ is used for amounts of fluids, for costs, etc.

A mixed solution of a quantifier-free formula ϕ is an assignment $v: \mathcal{V} \rightarrow \mathbb{Q}$ that satisfies ϕ and where additionally $v(x) \in \mathbb{Z}$ for all $x \in \mathcal{V}_{\mathbb{Z}}$.
(a) Modify the branch-and-bound algorithm for LIA so that it can treat mixed linear arithmetic constraints, i.e., write down pseudo-code.
(b) Consider the small model property of LIA.

The existing proof translates a set of constraints with n variables given as a polyhedron $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ with $A \in \mathbb{Z}^{m \times n}$ and $\vec{b} \in \mathbb{Z}^{m}$ into $\operatorname{hull}(H)+\operatorname{cone}(C)$ for some $H \subseteq \mathbb{Q}^{n}$ and $C \subseteq \mathbb{Z}^{n}$ where additionally some upper bound u is constructed in a way that all coefficients c of all vectors in $H \cup C$ are bounded: $|c| \leq u$.
Afterwards it is shown how some arbitrary integral solution $\vec{x} \in \operatorname{hull}(H)+\operatorname{cone}(C)$ can be turned into a small integral solution $\vec{y} \in \operatorname{hull}(H)+\operatorname{cone}(C)$ where $\left|y_{i}\right|$ is bounded by some expression involving u and n for all coefficients y_{i} of \vec{y}.
i. Provide an upper bound for $\left|y_{i}\right|$ depending on u and n.
ii. Does the transformation of the arbitrary integer solution \vec{x} into the small integer solution \vec{y} also work correctly in the mixed case with $\mathcal{V}_{\mathbb{Z}}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathcal{V}_{\mathbb{Q}}=\left\{x_{k+1}, \ldots, x_{n}\right\}$, i.e., when replacing the conditions of \vec{x}, \vec{y} being integral by $\vec{x}, \vec{y} \in \mathbb{Z}^{k} \times \mathbb{Q}^{n-k}$? Explain your answer. (2 P)
4. Consider the construction on slide 21. Let $P=\{\vec{u} \mid A \vec{u} \leqslant \vec{b}\}$, and X and V be the sets of vectors as defined on slide 21. Prove $P \subseteq$ cone $(X)+h u l l(V)$. You may assume the Farkas-Minkowsky-Weyl theorem and don't have to prove it.

