universität innsbruck

Constraint Solving

SS 2024

May 24, 2024

Week 10

Homework

- 1. Extend the definitions of $bb_a(\cdot)$ and $bb_t(\cdot)$ to cover the shift operators $bb_t(a_k \ll b_k)$, $bb_t(a_k \gg_u b_k)$ and $bb_t(a_k \gg_s b_k)$ (2 P)
- 2. Consider the definition of $bb(\cdot)$ on slide 18. We claim the formula $bb(\varphi)$ and φ are equisatisfiable, but unfortunately this is not the case for the current encoding.
 - (a) Demonstrate that the encoding $bb(\cdot)$ does not produce equisatisfiable propositional formulas using the formula $\psi = \neg (a_2 \land a_2 = 0_2)$. (1 P)
 - (b) Can you repair the definition of $bb(\cdot)$? If yes, how? (1 P)
- 3. In low level code bit manipulation can sometimes be used to lower the number of operations, or remove unnecessary branching. For the following C-functions use an SMT-solver (for example Z3¹) with bit-vector arithmetic (for example QF_BV² of SMTLib) to prove that the functions have the intended behaviour. You may assume that an int has 32-bits, and a char has 8 bits.

Hint: In C the $\hat{}$ is a bitwise xor operator, & a bitwise and operator, and >> a logical right shift on unsigned integers and an arithmetic right shift on signed integers.

(a) The following function should compute the absolute value of a 32-bit integer. (1 P)

```
unsigned int abs(int v) { // v is a 32-bit signed integer
unsigned int r; // the result
int mask = v >> 31;
r = (v + mask) ^ mask;
return r;
}
```

(b) This function should reverse the bits in a (8-bit) byte. (e.g. 11101010 turns into 01010111). (1 P)

(c) The last function computes the parity of a 32-bit unsigned integer. The parity of an integer is 0 if the number of one bits is even and 1 otherwise (e.g. 1101 has parity 1, 0110 has parity 0).
 (2 P)

¹Z3 SMT-solve: https://github.com/Z3Prover/z3

²documentation of the QF_BV logic in SMTLib: https://smt-lib.org/logics-all.shtml#QF_BV

- 4. Let $\lfloor a_m . b_k \rfloor_n$ be the operation which takes as input a fixed-point number $\langle a_m . b_k \rangle$ with a fractional part of k bits and rounds it to a number with a fractional part of n bits, where n < k. Define the flattening $bb_t(\lfloor a_m . b_k \rfloor_n)$ for the following two cases:
 - (a) rounding towards $-\infty$ (e.g. $\lfloor 11.01 \rfloor_1 = 11.0$ in two's complement) (1 P)

(1 P)

(b) rounding towards zero (e.g. $\lfloor 11.01 \rfloor_1 = 11.1$ in two's complement)