
Constraint Solving SS 2024 LVA 703305

Week 10 May 24, 2024

Homework

1. Extend the definitions of bba(·) and bbt(·) to cover the shift operators bbt(ak ≪ bk), bbt(ak ≫u bk) and
bbt(ak ≫s bk) (2 P)

2. Consider the definition of bb(·) on slide 18. We claim the formula bb(φ) and φ are equisatisfiable, but
unfortunately this is not the case for the current encoding.

(a) Demonstrate that the encoding bb(·) does not produce equisatisfiable propositional formulas using
the formula ψ = ¬(a2∧a2 = 02). (1 P)

(b) Can you repair the definition of bb(·)? If yes, how? (1 P)

3. In low level code bit manipulation can sometimes be used to lower the number of operations, or remove
unnecessary branching. For the following C-functions use an SMT-solver (for example Z31) with bit-vector
arithmetic (for example QF BV2 of SMTLib) to prove that the functions have the intended behaviour.
You may assume that an int has 32-bits, and a char has 8 bits.
Hint: In C the ^ is a bitwise xor operator, & a bitwise and operator, and >> a logical right shift on unsigned
integers and an arithmetic right shift on signed integers.

(a) The following function should compute the absolute value of a 32-bit integer. (1 P)

unsigned int abs(int v) { // v is a 32-bit signed integer

unsigned int r; // the result

int mask = v >> 31;

r = (v + mask) ^ mask;

return r;

}

(b) This function should reverse the bits in a (8-bit) byte. (e.g. 11101010 turns into 01010111). (1 P)

unsigned char reverse_bits(unsigned char b) { // b is an 8-bit value

unsigned char r; // the result (char) is truncated to 8 bits

// the trailing ULL makes the literal an unsigned 64-bit integer

r = ((b * 0x0000000202020202ULL) & 0x0000010884422010ULL) % 1023;

return r;

}

(c) The last function computes the parity of a 32-bit unsigned integer. The parity of an integer is 0 if
the number of one bits is even and 1 otherwise (e.g. 1101 has parity 1, 0110 has parity 0). (2 P)

unsigned int parity(unsigned int v) { // v is a 32-bit unsigned integer

unsigned int r; // the result

v = v ^ (v >> 1);

v = v ^ (v >> 2);

\\ the trailing U makes the literal an unsigned 32-bit integer

v = (v & 0x11111111U) * 0x11111111U;

r = (v >> 28) & 1;

return r;

}

1Z3 SMT-solve: https://github.com/Z3Prover/z3
2documentation of the QF BV logic in SMTLib: https://smt-lib.org/logics-all.shtml#QF_BV

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/slides/10x1.pdf#page=18
https://github.com/Z3Prover/z3
https://smt-lib.org/logics-all.shtml#QF_BV


4. Let ⌊am.bk⌋n be the operation which takes as input a fixed-point number ⟨am.bk⟩ with a fractional part
of k bits and rounds it to a number with a fractional part of n bits, where n < k. Define the flattening
bbt(⌊am.bk⌋n) for the following two cases:

(a) rounding towards −∞ (e.g. ⌊11.01⌋1 = 11.0 in two’s complement) (1 P)

(b) rounding towards zero (e.g. ⌊11.01⌋1 = 11.1 in two’s complement) (1 P)


