B universitat
Innsbruck

Constraint Solving SS 2024 LVA 703305
Week 10 May 24, 2024
Homework

1. Extend the definitions of bb,(:) and bb,(:) to cover the shift operators bb;(ar < bx), bb¢(ag >, bi) and
bbt(ak > bk) (2 P)

2. Consider the definition of bb(-) on slide 18. We claim the formula bb(¢) and ¢ are equisatisfiable, but
unfortunately this is not the case for the current encoding.

(a) Demonstrate that the encoding bb(-) does not produce equisatisfiable propositional formulas using
the formula ¢ = —=(as"as = 02). (1P)

(b) Can you repair the definition of bb(-)? If yes, how? (1P)

3. In low level code bit manipulation can sometimes be used to lower the number of operations, or remove
unnecessary branching. For the following C-functions use an SMT-solver (for example Z3E[) with bit-vector
arithmetic (for example QF,BVE| of SMTLib) to prove that the functions have the intended behaviour.
You may assume that an int has 32-bits, and a char has 8 bits.

Hint: In C the ~ is a bitwise xor operator, & a bitwise and operator, and >> a logical right shift on unsigned
integers and an arithmetic right shift on signed integers.

(a) The following function should compute the absolute value of a 32-bit integer. (1P)

unsigned int abs(int v) { // v is a 32-bit signed integer
unsigned int r; // the result
int mask = v >> 31;
r = (v + mask) ~ mask;
return r;

}
(b) This function should reverse the bits in a (8-bit) byte. (e.g. 11101010 turns into 01010111). (1 P)

unsigned char reverse_bits(unsigned char b) { // b is an 8-bit value
unsigned char r; // the result (char) is truncated to 8 bits
// the trailing ULL makes the literal an unsigned 64-bit integer
r = ((b * 0x0000000202020202ULL) & 0x0000010884422010ULL) % 1023;
return r;

}

(¢) The last function computes the parity of a 32-bit unsigned integer. The parity of an integer is 0 if
the number of one bits is even and 1 otherwise (e.g. 1101 has parity 1, 0110 has parity 0). (2P)

unsigned int parity(unsigned int v) { // v is a 32-bit unsigned integer
unsigned int r; // the result
v=v " (v > 1);
v=v " (v > 2);
\\ the trailing U makes the literal an unsigned 32-bit integer
v = (v & 0x11111111U) * 0x111111110;
r=(v> 28) & 1;
return r;

}

173 SMT-solve: https://github.com/Z3Prover/z3
2documentation of the QF_BV logic in SMTLib: https://smt-1ib.org/logics-all.shtml#QF_BV

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/slides/10x1.pdf#page=18
https://github.com/Z3Prover/z3
https://smt-lib.org/logics-all.shtml#QF_BV

4. Let |am.bi]n be the operation which takes as input a fixed-point number (a,,.b;) with a fractional part

of k bits and rounds it to a number with a fractional part of n bits, where n < k. Define the flattening
bbi(|@m.br|rn) for the following two cases:

(a) rounding towards —oco (e.g. [11.01]; = 11.0 in two’s complement) (1P)
(b) rounding towards zero (e.g. [11.01]; = 11.1 in two’s complement) (1P)

