Homework

1. Extend the definitions of $\mathrm{bb}_{a}(\cdot)$ and $\mathrm{bb}_{t}(\cdot)$ to cover the shift operators $\mathrm{bb}_{t}\left(a_{k} \ll b_{k}\right), \mathrm{bb}_{t}\left(a_{k} \gg_{u} b_{k}\right)$ and $\mathrm{bb}_{t}\left(a_{k} \ggg b_{k}\right)$
2. Consider the definition of $\mathrm{bb}(\cdot)$ on slide 18 . We claim the formula $\mathrm{bb}(\varphi)$ and φ are equisatisfiable, but unfortunately this is not the case for the current encoding.
(a) Demonstrate that the encoding $\mathrm{bb}(\cdot)$ does not produce equisatisfiable propositional formulas using the formula $\psi=\neg\left(a_{2} \wedge a_{2}=0_{2}\right)$.
(b) Can you repair the definition of $\mathrm{bb}(\cdot)$? If yes, how?
3. In low level code bit manipulation can sometimes be used to lower the number of operations, or remove unnecessary branching. For the following C-functions use an SMT-solver (for example Z3 ${ }^{11}$) with bit-vector arithmetic (for example QF_BV2 of SMTLib) to prove that the functions have the intended behaviour. You may assume that an int has 32 -bits, and a char has 8 bits.
Hint: In C the ^ is a bitwise xor operator, \& a bitwise and operator, and >> a logical right shift on unsigned integers and an arithmetic right shift on signed integers.
(a) The following function should compute the absolute value of a 32-bit integer.
```
unsigned int abs(int v) { // v is a 32-bit signed integer
    unsigned int r; // the result
    int mask = v >> 31;
    r = (v + mask) ^ mask;
    return r;
}
```

(b) This function should reverse the bits in a (8-bit) byte. (e.g. 11101010 turns into 01010111). (1 P)

```
unsigned char reverse_bits(unsigned char b) { // b is an 8-bit value
    unsigned char r; // the result (char) is truncated to 8 bits
    // the trailing ULL makes the literal an unsigned 64-bit integer
    r = ((b * 0x0000000202020202ULL) & 0x0000010884422010ULL) % 1023;
    return r;
}
```

(c) The last function computes the parity of a 32-bit unsigned integer. The parity of an integer is 0 if the number of one bits is even and 1 otherwise (e.g. 1101 has parity 1,0110 has parity 0).
unsigned int parity(unsigned int v) \{ // v is a 32-bit unsigned integer

```
    unsigned int r;
                                    // the result
```

 \(\mathrm{v}=\mathrm{v}\) - (v >> 1);
 v = v ~ (v >> 2);
 \\ the trailing \(U\) makes the literal an unsigned 32-bit integer
 \(\mathrm{v}=(\mathrm{v} \& 0 \mathrm{x} 11111111 \mathrm{U}) * 0 \mathrm{x} 11111111 \mathrm{U}\);
 \(r=(v \gg 28) \& 1\);
 return r ;
 \}

[^0]4. Let $\left\lfloor a_{m} \cdot b_{k}\right\rfloor_{n}$ be the operation which takes as input a fixed-point number $\left\langle a_{m} . b_{k}\right\rangle$ with a fractional part of k bits and rounds it to a number with a fractional part of n bits, where $n<k$. Define the flattening $\mathrm{bb}_{t}\left(\left\lfloor a_{m} . b_{k}\right\rfloor_{n}\right)$ for the following two cases:
(a) rounding towards $-\infty$ (e.g. $\lfloor 11.01\rfloor_{1}=11.0$ in two's complement)
(b) rounding towards zero (e.g. $\lfloor 11.01\rfloor_{1}=11.1$ in two's complement)

[^0]: ${ }^{1}$ Z3 SMT-solve: https://github.com/Z3Prover/z3
 ${ }^{2}$ documentation of the QF_BV logic in SMTLib: https://smt-lib.org/logics-all.shtml\#QF_BV

